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Objective: Epidemiological studies have found air pollution to be a driver of adverse

pregnancy outcomes, including gestational diabetes, low term birth weight and

preeclampsia. It is unknown what biological mechanisms are involved in this process. A

first trimester trophoblast cell line (HTR-8/SVneo) was exposed to various concentrations

of PM2.5 (PM2.5) in order to elucidate the effect of urban particulate matter (PM) of size

<2.5µm on placental function.

Methods: PM2.5 were collected at a site representative of urban traffic and dispersed

in cell media by indirect and direct sonication. The HTR-8 cells were grown under

standard conditions. Cellular uptake was studied after 24 and 48 h of exposure by

transmission electron microscopy (TEM). The secretion of human chorionic gonadotropin

(hCG), progesterone, and Interleukin-6 (IL-6) was measured by ELISA. Changes in

membrane integrity and H2O2 production were analyzed using the CellToxTM Green

Cytotoxicity and ROSGloTM assays. Protease activity was evaluated by MitoToxTM

assay. Mitochondrial function was assessed through high resolution respirometry in an

Oroboros O2k-FluoRespirometer, and mitochondrial content was quantified by citrate

synthase activity.

Results: TEM analysis depicted PM2.5 cellular uptake and localization of the PM2.5

to the mitochondria after 24 h. The cells showed aggregated cytoskeleton and

generalized necrotic appearance, such as chromatin condensation, organelle swelling

and signs of lost membrane integrity. The mitochondria displayed vacuolization

and disruption of cristae morphology. At 48 h exposure, a significant drop in hCG

secretion and a significant increase in progesterone secretion and IL-6 production

occurred. At 48 h exposure, a five-fold increase in protease activity and a significant

alteration of H2O2 production was observed. The HTR-8 cells exhibited evidence of

increased cytotoxicity with increasing exposure time and dose of PM2.5. No significant

difference in mitochondrial respiration or mitochondrial mass could be demonstrated.
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Conclusion: Following exposure to air pollution, intracellular accumulation of PM may

contribute to the placental dysfunction associated with pregnancy outcomes, such

as preeclampsia and intrauterine growth restriction, through their direct and indirect

effects on trophoblast protein secretion, hormone regulation, inflammatory response, and

mitochondrial interference.

Keywords: placenta, trophoblast cells, air pollution, PM2.5, preeclampsia, inflammation, polycyclic aromatic

hydrocarbons, mitochondria

INTRODUCTION

Particulate matter (PM) is a complex mixture of suspended
primary particles and agglomerates/aggregates of e.g.,
transition metal oxides, ammonium nitrate, sulfates, protein
complexes, and organic materials including polycyclic aromatic
hydrocarbons (PAHs) (1–5). PM’s toxicity is multifactorial and
depends on a variety of particle properties, such as composition,
size, and shape as well as number, mass and surface area
concentration (1–5). PM with a diameter of <2.5µm (PM2.5) is
generally associated with combustion-related emission sources
(3). This fine PM, especially the size fractions <200 nm, have a
high likelihood of depositing in the lungs’ alveolar region and,
subsequently, entering the blood circulation through the alveoli
walls via translocation (6–11).

To date, a staggering 87% of the world population resides
in areas that exceed the WHO air quality guidelines for PM2.5
(12). In fact, air pollution is the single largest environmental
cause of disease (13). Recent studies point toward an association
between air pollution exposure and a wide range of diseases such
as cardiovascular events in adults (14), cerebrovascular disease
(15), and adverse pregnancy outcomes such as preeclampsia (PE)
(16). Air pollution has also been associated with hypertensive
disorders during pregnancy (17). Furthermore, a large number
of epidemiological studies have shown an association between air
pollution exposure during pregnancy and the risk of developing
PE, even in areas with levels below the WHO air quality
guidelines (16, 18–21).

Preeclampsia is a serious pregnancy-related multisystem
syndrome, commonly defined as hypertension and proteinuria
after the 20th gestational week (22). It complicates roughly
3–7% of pregnancies worldwide (23, 24) and is the main
cause of maternal morbidity and mortality. PE is associated
with intrauterine growth restriction (IUGR), preterm birth, and
perinatal deaths. Both PE and IUGR are associated with an
increased long-term risk of developing cardiovascular disease
and metabolic disease later in life (25, 26). The association
between air pollution exposure and PE is stipulated to be driven
by the oxidative stress and systemic inflammation caused or

Abbreviations: PE, preeclampsia; PM2.5, particulate matter of size <2.5µm;
PAHs, polycyclic aromatic hydrocarbons; PM, particulate matter; IL-6, Interleukin
6; ROS, Reactive Oxygen Species; TEM, transmission electron microscopy; RT,
room temperature; hCG, human chorionic gonadotropin; SD, standard deviation;
PBS, phosphate-buffered saline; CS, citrate synthase; IUGR, intra uterine growth
restriction; NCEP, Centre of Environmental Predictions; GDAS, global data
assimilation system.

aggravated by air pollution exposure, eventually leading to the
vascular endothelial injury, which is a corner stone in the etiology
of PE (14, 24, 27, 28).

Despite the wealth of epidemiological evidence associating
the effects of air pollution on pregnant women and the
developing fetus, air pollution is still not included in the WHO
Burden of Disease studies (29). The biological mechanisms
and pathways by which air pollution exposure during or prior
to pregnancy contributes to the development of PE remain
largely unexplored. Therefore, studies deciphering the biological
mechanisms contributing to the toxicity of air pollution during
pregnancy are urgently needed. By investigating the influence
of fine particular matter on placental trophoblast cells, we aim
to identify a possible pathway by which air pollution mediates
its adverse effects on the health of pregnant women and the
developing fetus.

MATERIALS AND METHODS

Ambient PM2.5 Preparation
Ambient PM2.5 particles were collected at a central location
in Malmö, southern Sweden, over 26 days in April–May 2017.
This was conducted at a height of 3, 4m from a street crossing
with an average daily traffic (2017) of 28,000 vehicles. A high-
volume cascade impactor (BGI900, Mesa Labs, USA) was utilized
for this process. The impactor samples air (0.9 m3/min) and
collects all particles smaller than 2.5µmon a polypropylene filter.
Subsequent particle extraction followed Mesa Labs’ protocol
using pure methanol, and particles were then dried in a vacuum
evaporator (SpeedVac HT-4X Evaporator, GeneVac, UK).

Characterization of PM2.5
During the sampling period, time-resolved mass concentration
measurements of PM2.5 were conducted with a tapered element
oscillating microbalance (TEOM 1400AB) with a filter dynamics
measurement system, and of black carbon (soot) and organic
carbon using light absorption with an aethalometer (AE33). The
dried collected particles were analyzed by gas chromatography-
mass spectrometry (GC-MS) for the presence of PAH (30).
Further, the PM2.5 fraction was analyzed for metal compositions
including aluminum (Al), arsenic (As), barium (Ba), cadmium
(Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead
(Pb), manganese (Mn), nickel (Ni), thallium (Tl), vanadium (V),
and zinc (Zn). For this, ∼10mg sample was dissolved in 1ml
concentrated nitric acid at 70◦C for 16 h. After dilution with
Milli-Q water, the metal concentrations were determined by
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inductively coupled plasma-mass spectrometry (ICP-MS; iCAP
Q, Thermo Scientific, Bremen, GmbH) in collision cell mode
with kinetic energy discrimination using helium as the collision
gas. The detection limits, calculated as three times the standard
deviation (SD) of the blank, were 0.05 ng (Mn, Ni, As, Cd, Tl,
Pb), 0.06 ng (Ba), 0.07 ng (Cr, Cu,), 0.08 ng (V), 0.09 ng (Co),
0.15 ng (Zn), 0.70 ng (Fe), and 2.7 ng (Al). Additionally, wind
trajectories were calculated by Hybrid Single Particle Lagrangian
Integrated Trajectory (Hysplit, Air Resources Lab) model (31, 32)
to investigate the local and the in-transported contribution to
the collected PM2.5. Hysplit is run with gridded meteorological
data from the Center of Environmental Predictions (NCEP)
Global Data Assimilation System (GDAS). Local meteorological
data from a monitoring station at Heleneholm, Malmö
was also used to investigate the wind speeds and wind
direction in Malmö situated around 1 km from the particle
collection site.

PM2.5 Dispersion
Prior to exposure experiments, 0.9mg of dried and extracted
PM2.5, as described above, was dissolved in 900 µl of cell media
(CM; supplemented RPMI-1640 medium, see below) in 1.5ml
Eppendorf tubes and subjected to indirect and direct sonication.
Indirect ultra sonication was performed at 4◦C and at 120W
for 15min using an Ultrasonic Cleaner water bath (Mettler
Electronics), followed by direct sonication at room temperature
(RT) at 50W, 0.05 cycle, 20% amplitude for 60 s using an UP50H
Ultrasonic Processor (Hielscher Ultrasound Technology). The
immersion was aliquoted and diluted to desired concentration.
The CM without PM, used on control cells, underwent the
same protocol and maintained the same volumes. The direct
sonication step followed by vortex was performed prior to
each exposure.

Cell Culture
The commercially available HTR-8 (HTR-8/SVneo) cells, a
human first trimester transformed trophoblast cell line (the
American Type Culture Collection, ATCC Cell Lines, CRL-3271,
lot number 64275781) were maintained in HyClone RPMI-1640
medium (Fisher Scientific) supplemented with 5% fetal bovine
serum (FBS) (Life Technologies), 100µg/ml streptomycin and
100 U/ml penicillin (Fisher Scientific) at 37◦C in a humidified
5% CO2 incubator.

Uptake of PM2.5
HTR-8 cells at seeding density 0.3× 106 per well in a 6-well plate
were exposed to a single dose of 500 ng/ml of PM2.5 for 24–48 h.
After washing with phosphate-buffered saline (PBS), the cells
were trypsinized (0.25% trypsin) and pelleted by centrifugation.
The cell pellet was fixed for 2 h at RT in fixative (1.5%
paraformaldehyde and 1.5% glutaraldehyde in 0.1M Sörensen
buffer pH 7.2), washed once and then stored overnight at 4◦C in
the Sörensen buffer. The fixed samples were thereafter prepared
for ultrathin sectioning and subjected to TEM as reviewed in
Carlemalm (33).

Generation of Reactive Oxygen Species
(ROS) and Cytotoxicity
CellTox Green R© cytotoxicity assay (Promega) was employed to
evaluate cytotoxicity and used according to the manufacturer’s
protocol. In brief, 1 × 104 cells/well were plated overnight in a
96-well plate. Cells were treated with PM2.5 (1,000, 5,000 and
10,000 ng/ml) for 48 h. The CellTox green dye was diluted 1/500
in CM and applied to the cells. After 15min of incubation at
RT, fluorescence was measured at 485/535 nm using a VICTOR3

1420 Multilabel Counter (Perkin-Elmer) plate reader. ROS was
measured by ROS-Glo H2O2 Assay (Promega) according to the
manufacturer’s protocol. In short: 1 × 104 cells/well were plated
in white, clear-bottom 96-well tissue culture plates, incubated
over night to adhere and subsequently exposed to PM2.5 (5,000
and 10,000 ng/ml) for 48 h. The H2O2 substrate solution (25µM)
was added to each well and incubated for 6 h at 37◦C in a CO2

incubator. With this, the H2O2 substrate reacts directly with
H2O2 in the cells and generates a luciferin precursor. Thereafter,
ROS-Glo Detection Solution was added and incubated for 20min
at 25◦C to generate a luminescence signal. Luminescence was
measured using a VICTOR3 1420 Multilabel Counter (Perkin-
Elmer) plate reader.

Protein Secretion
Based on the results obtained from the CellTox Green R©

cytotoxicity assay, we decided to analyze the level of
protein secretion from cells exposed to the following PM2.5
concentrations: 5,000 and 10,000 ng/ml. Cells were seeded at a
seeding density of 0.3 × 106 per well in a 6-well plate. After 48 h
of exposure, the culture supernatants were collected and used
to detect the level of human chorionic gonadotropin (hCG),
progesterone and IL-6. Human IL-6 was analyzed using a human
IL-6-specific ELISA (Invitrogen) according to manufacturer’s
protocol. The hCG and progesterone analyzes were performed at
the Clinical Biochemistry Laboratory at Lund Hospital, Sweden.

Mitochondrial Quantification and Function
Cells subjected to different PM exposures (50–10,000 ng/ml)
were analyzed for oxygen consumption using an Oroboros O2k-
FluoRespirometer (Oroboros Instruments, Innsbruck, Austria)
as previously described (34). The cells were loaded into the
chamber at 0.5 × 106 cells/ml in complete CM (0.89 oxygen
solubility factor was used), with a total cell count of one million
cells per chamber, and allowed to stabilize on routine respiration
using endogenous substrates. Oligomycin (1µg/ml) was added
to inhibit the ATP-synthase, and the uncoupler protonophore
carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP)
was then titrated to induce maximum non-coupled respiration.
The experiment was terminated by adding rotenone (2µM) and
antimycin (1µg/ml) to measure non-mitochondrial respiration,
a value that was subsequently used to adjust all data for non-
mitochondrial cellular oxygen consumption. Citrate Synthase
(CS) activity was used as a marker of mitochondrial content as
previously described (35). Samples were sonicated and loaded
into a 96-well plate in assay buffer with the addition of 300µM
acetyl CoA and 100µM 5.5-dithiobis-(2-nitrobenzoic acid). In a
spectrophotometric plate reader (Bio-Rad Model 680 Microplate
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Reader; Bio-Rad Laboratories, Hercules, CA, USA) set to 412 nm
on a kinetic program with a 1.5-min duration and 10 s intervals,
the absorbance of the baseline reaction was measured. This value
was deducted from the final reading for each well. Following this,
500µM of oxaloacetate was added to each well and absorbance
was measured. Kinetic plots were individually assessed for a
linear change in absorbance and the CS-activity was calculated.
Mitochondrial respiratory data was normalized to CS-activity.

Necrosis specific protease, Tripeptidyl peptidase II, was
measured by Mitochondrial ToxGlo Assay (Promega) through
fluorogenic peptide substrate bis-AAF-R110 according to
manufacturer’s protocol (36). In brief, cells were seeded at
a density of 1 × 104 cells/well in a 96-well plate; after 2 or
48 h of PM2.5 exposure (1,000, 5,000, and 10,000 ng/ml), the
cytotoxicity reagent was added to each well, mixed by orbital
shaking for 1min and then incubated at 37◦C for 30min. The
fluorescent signal was subsequently measured at 485/535 nm
using a VICTOR3 1420 Multilabel Counter (Perkin-Elmer)
plate reader.

PAH Analysis in Cells
Cells were seeded at a seeding density of 0.3 × 106 per well
in a 6-well plate and exposed to 10,000 ng/ml of PM2.5 for
48 h. After exposure, supernatants were collected and cells were
harvested. Cell pellets were lysed with 500 µl of cell lysis buffer
and sonicated for 30min. Five hundred microliters of water
(MilliQ) and 40 ng of internal standards were added to the lysed
cells as well as to the supernatants (37). Samples were extracted
twice with 2ml of dichloromethane, and organic extracts were
combined and evaporated to near dryness. To each sample, 40
ng of recover standard and 100 µl hexane were added, after
which the samples were transferred to HPLC glass vials (Agilent).
Analysis of PAHs was performed on a GC-MS 7890 (Agilent) as
reported earlier (37).

Statistical Analysis
Data obtained through the experiments are reported as mean ±

SD. Statistical significance between groups was determined by
one-way analysis of variance followed by the Tukey’s test using
OriginPro 2017 software (OriginLab Corporation, Northampton,
MA, USA). Statistical significance was defined as P < 0.05.

RESULTS

Particle Characteristics and
Meteorological Data
Sources contributing to the collected PM2.5 were assessed in
relation to wind direction (Figure 1). The winds during the
collection period were predominantly western (48%) or eastern
(50%), with only 2% calm winds/air (defined as winds <1
m/s). During these calm periods, all PM can be assumed to
be locally generated. When western winds prevail, the major
contributive source is Copenhagen, Denmark (Figure 2); on
the other hand, air masses typically pass through southern
Finland and the Baltic states before reaching Malmö, Sweden
during eastern winds (Figure 3). The characteristics of the

FIGURE 1 | Wind direction frequency from Heleneholmsmasten in Malmö site

during the collection period.

FIGURE 2 | Typical example of air mass origins in Malmö during western

winds, trajectories generated using the Hysplit software. The lines show hourly

trajectories 72 h backward in time during 1 day.

collected PM2.5 during different wind directions are displayed in
Supplementary Table 1. As the table shows, the levels of PM2.5,
as well as soot, are higher during calm air, indicating that the
majority of all collected PM is locally generated, and is diluted
to some extent when wind speeds reach more than 1 m/s. Levels
of PAHs and metals in the collected particles can be found in
Supplementary Table 2.
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FIGURE 3 | Typical example of air mass origins in Malmö during eastern

winds, trajectories generated using the Hysplit software. The lines show hourly

trajectories 72 h backward in time during 1 day.

Pregnancy-Related Hormones and
Inflammatory Response
HTR-8 cells exposed to PM2.5 for 48 h showed a significant drop
in secreted hCG at 5,000 ng/ml (P < 0.001) and 10,000 ng/ml
(P < 0.0001; Figure 4A), as well as a dose-dependent decrease
between 5,000 and 10,000 ng/ml (P < 0.05). In addition, there
was a significant increase (P < 0.01) in progesterone at 5,000 and
10,000 ng/ml (Figure 4B). The PM2.5 exposure also resulted in a
significant increase in secretion of IL-6 at 5,000 ng/ml (P < 0.05)
and 10,000 ng/ml (P < 0.01; Figure 4C).

Cell Viability and H2O2 Production Affected
by PM2.5 Exposure
Using the CellToxTM Green Cytotoxicity assay to detect changes
in membrane integrity, PM2.5-exposed HTR-8 cells displayed
significant cytotoxicity at 1,000 and 5,000 ng/ml at 48 h exposure
but not at 10,000 ng/ml compared to controls. At baseline
measurements (0 h), there was no difference between the groups
(Figure 5A). In the HTR-8 cells, the H2O2 levels were measured
after 48 h of PM2.5 exposure and showed a significant alteration
of H2O2 in all PM2.5-exposed groups (Figure 5B).

To further investigate cell viability, dead cell protease activity
was measured at 2 and 48 h of PM2.5 exposure. Protease
activity significantly increased (P < 0.0001) with cell culture
duration, and there was a significant difference in protease
activity in all concentrations of PM2.5 compared to controls in
additions to significant differences between PM2.5 doses, with
peak measurements at 5,000 ng/ml (Figure 5C).

PM2.5 Uptake: Organelle Localization and
Morphological Changes
Transmission electron microscopy of control HTR-8 cells
revealed dark and homogenous cytoplasm and mitochondria

with intact inner and outer membranes and well-ordered
organelle morphology (Figure 6A, Supplementary Figure 3). In
comparison, PM2.5-exposed cells displayed several structural
changes including mitochondrial vacuolization, aggregated
cytoskeleton, chromatin condensation, dilated ER structures,
and autophagosomes. The cytoplasm of exposed cells was
also lighter in color compared to control cells and contained
numerous vacuoles. Finally, the uptake of PM2.5 particles was
visualized within the inner mitochondrial membranes of exposed
cells (Figures 6B,C, Supplementary Figures 2, 3). Cells were
analyzed after 24 and 48 h following exposure, but no differences
were noted related to exposure duration, with all of the above-
mentioned morphological changes seen in both groups.

Mitochondrial Function
Neither routine (endogenous) respiration, oligomycin-induced
LEAK respiration, maximum non-coupled respiration induced
by the protonophore FCCP, nor the control ratio (oligomycin-
induced LEAK respiration/maximum non-coupled respiration,
Supplementary Figure 1) differed significantly between control
cells and cells exposed to various concentrations of PM2.5
for 48 h. Data was normalized to cell number and specific
mitochondrial content (citrate synthase activity), respectively,
and analyzed without significant findings or trends considered to
be consistent or relevant.

PAH Analysis
Exposed cells and supernatants were analyzed for a set
of 16 PAHs previously detected in the collected PM2.5
(Supplementary Table 2). The PAHs could only be detected in
cell lysates and not in the supernatants. While PAHs levels were
close to the detection limit in cell lysates of untreated cells, PAH
concentrations ranged from 7 to 35 ng per sample in cells treated
with 10,000 ng PM2.5 (Table 1). Specifically, levels were highest
for benzo(b)fluoranthene (35 ng per 10,000 ng PM2.5), pyrene
(30 ng per 10,000 ng PM2.5) and fluoranthene (27 ng per 10,000
ng PM2.5), followed by phenanthrene, benzo(k)fluoranthene,
benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene
(13–15 ng per 10,000 ng PM2.5), and anthracene (7 ng
per 10,000 ng PM2.5; Table 1). The high concentrations
of benzo(b)fluoranthene, pyrene, and fluoranthene at the
cellular level are in concordance with the results from
the initial PAH analysis of the collected PM2.5 particles
(Supplementary Table 2).

DISCUSSION

Ambient air pollution in the form of particles is the single
largest environmental health threat of our time (13). Studies
on the effects of air pollution on human health pertaining to
biological pathways and biological effects have mainly focused
on the respiratory organs; therefore, more studies on adverse
health effects during pregnancy are highly warranted (38).
In fact, a growing body of evidence suggests an association
between air pollution and birth- and pregnancy outcomes
(17, 39). Even though all components of air pollution are
harmful to human health, particulate matter in particular can
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FIGURE 4 | PM2.5 decreases hCG production and increases IL-6 and progesterone production. HTR-8 cells were exposed to PM2.5 for 48 h and subsequently

measured for (A) hCG, data is presented as mean ± SD; n = 6, and *P < 0.05, ***P < 0.001, ****P < 0.0001, (B) progesterone, data is presented as mean ± SD; n
= 6, and **P < 0.01, and (C) IL-6, data is presented as mean ± SD; n = 3, and *P < 0.05, **P < 0.01 secretion in the CM.

FIGURE 5 | PM2.5 induces cytotoxicity, alters ROS production, and increases protease activity in trophoblast cells. HTR-8 cells were exposed to PM2.5 for 48 h and

subsequently analyzed for (A) cytotoxicity, data is presented as mean ± SD; n = 5 in each experimental condition. *P < 0.05, **P < 0.01 (B) ROS production, data is

presented as mean ± SD; n = 5 in each experimental condition. **P < 0.01, ***P < 0.001, ****P < 0.0001 (C) Protease activity, Data is presented as mean ± SD; n =

3 in each experimental condition. ***P < 0.001, ****P < 0.0001.

FIGURE 6 | Effect of PM2.5 on mitochondrial morphology in HTR-8 cells. Cells were exposed to a single dose of 500 ng/ml of PM2.5 for 24 or 48 h and subsequently

observed through TEM. No differences were seen between the 24 and 48 h exposure groups. Unexposed cells (A) showed mitochondria with normal organelle

morphology and intact inner and outer membranes (asterisk). In contrast, exposed cells (B,C) had internalized PM2.5 particles within the inner membrane of the

mitochondria (arrow) and displayed mitochondrial vacuolization (arrowhead), dilated ER structures with large pools of ER lumen (star), and various degrees of

mitochondrial membrane disruption. Scale bar = 1µm.
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TABLE 1 | PAH in PM2.5 exposed cells.

PAH Control cells PM2.5 10,000 ng/ml

Phenanthrene 2.3 13

Anthracene 1.4 7

Flouranthene 3.8 27

Pyrene 3.2 30

Benzo(b)flouranthene 3.8 35

Benzo(k)flouranthene – 13

Benzo(a)pyrene 2.5 15

Dibenzo(a,h)anthracene – 14

Benzo(g,h,i)perylene 1.0 13

consist of, and carry, a broad range of toxic substances that,
depending on particle size and particle solubility, can penetrate
the respiratory tract and gain access to the blood stream (40,
41). These such PM compositions are particularly dangerous
for pregnancies.

Pregnancy encompasses a period in which susceptibility to
exposure-related alterations is heightened, initiating adverse
processes that can have life-long implications for both mother
and child. Throughout pregnancy, the placenta serves as a
gatekeeper between mother and fetus. Indeed, the fetus is
indirectly in contact with the same environmental stressors as
the mother through the maternal blood circulation. This makes
the placenta a useful, albeit temporary, organ for studies on
accumulated pregnancy exposures, such as ambient air pollution.

Indeed, a recent study reports evidence of inhaled PM being
translocated from the lungs to the placenta (42). Although the
placenta’s actual exposure to PM2.5 is unknown, we attempted
to study doses relevant to human exposure. Levels up to
5,000 ng/ml, for example, could correspond to 25µg/m3, which is
theWHO target for short term exposure (24 h), and 10,000 ng/ml
might correspond to levels in a more polluted city with PM2.5
concentrations of 50 µg/m3. Previous studies have estimated
the physiological range to be similar to the doses used in this
study (43).

PM exposure in general has been linked to inhibition
of phagocytosis, stimulation of inflammatory response, and
increases in levels of oxidative stress (44). Even specific toxic
compounds connected to PM, such as PAHs, are known to be
carcinogenic and genotoxic and have also been shown to disrupt
endocrine functions (45, 46). In addition, several studies have
demonstrated that PAH exposure during pregnancy is associated
with adverse pregnancy outcomes, such as small for gestational
age (SGA) or IUGR (47). In this study, the molecular effects
of PM2.5 on first trimester trophoblast cells were evaluated by
studying mechanisms related to cytotoxicity, cellular disruption,
mitochondrial function, inflammatory response, and hormone
production. We have previously conducted a study of the
effects of PM2.5 on trophoblast cells showing a reduction
in cellular growth, endoplasmic reticulum stress, and altered
protein expression (43). In this study, we confirm our previous
results as well as broaden the scope to include additional
organelle systems.

In relation to inflammatory response, Interleukin 6 (IL-6) a
pro-inflammatory cytokine and, an anti-inflammatory myokine
was examined. It has effects on both cells from the immune
system and other cell types, such as hepatocytes (48). Interleukin-
6 is mainly secreted by monocytes but is also produced by
trophoblast cells in vivo (49) as well as in vitro by the HTR-8
trophoblast cell line (50). Interleukin 6 binds to the IL-6 receptor,
expressed either on the surface of cells or in a soluble form
released by several cell types. This pro-inflammatory cytokine,
together with IL-8 and TNF-a, have been suggested as potential
inflammatory markers for PE (51), increased plasma levels has
been associated with adverse pregnancy outcomes such as PE
(52, 53). Our results demonstrate that PM2.5 exposure elevates
the production of IL-6 in the HTR-8 cell line. Previous studies
have shown that IL-6 stimulation of trophoblast cells induces
an increase in hCG production (54). The results from our
study diverge from these findings: cells treated with PM2.5
responded with an increased production of IL-6 and a decreased
production of hCG. This might be due to possible PM2.5
interference with the steroidogenesis in the trophoblast cells
or other upstream mechanisms. The increased production of
IL-6 indicate that the trophoblast cells were in a heightened
inflammatory state; moreover, they lacked the necessary increase
in hCG, which is pivotal to maintaining viable and healthy
placental development. In fact, pregnancy-associated diseases
such as PE, IUGR and preterm births, all have defect placentation
in combination with aggravated inflammatory responses as
common denominators (55, 56). One could, therefore, speculate
that the imbalance between the increased inflammation caused
by IL-6 and the absence of hCG increase could be part of
the explanation as to why air pollution has been linked to
these pregnancy complications (57) as well as PE and IUGR
(17, 58). During the initial phase of pregnancy progesterone
is produced by corpus luteum, but by the end of the first
trimester the progesterone production is in full taken over by
the trophoblast cells. In this study we used a first trimester
cell line, and it is somewhat surprising that we observe an
increase in progesterone. The progesterone and hCG production
in trophoblasts are interconnected by a range of mediators (59).
The fact that hCG and progesterone jointly drive the trophoblasts
to form a syncytium in the very early stages in pregnancy, and
that disturbances have been observed in PE and IUGR, our
increase in progesterone it is an interesting finding (60, 61). The
levels of progesterone were significantly elevated, although close
to the detection limit of the assay.

Experimental studies have established an association between
exposure to PM2.5 containing high levels of metals or PAH
and increased ROS production in the exposed cells (62).
Correspondingly, our previous and current results illustrate
that trophoblast cells absorb PAHs and, thereafter, exhibit
an altered production of ROS (43). Considering that ROS is
a major driver of the progression of PE, through systemic
inflammation and vascular endothelial damage, these results are
unexpected and allude to the complexity of PM2.5’s impact on
biological systems.

The mitochondria are central to upholding the oxidation-
reduction balance, also called redox balance in the cell, being
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both a target for, and producer of ROS (63). Enhanced levels
of ROS tilt the cellular redox balance, which in turn trigger
inflammation and eventually apoptosis (64, 65). Exposure to
PM2.5 has been shown to target mitochondria specifically and
induce mitochondrial ROS production in human lung cells (66).
The smaller particles, ultrafine particles (UFPs), have been shown
to localize tomitochondria of endothelial cells, where they induce
major structural damage (67). Combustion-related particles have
also been shown to cause mitochondrial structural damage in
lung cells (68, 69). Studies on placentas exposed to higher levels
of air pollution show placental mitochondrial DNA methylation
(70) and decreased placental mitochondrial DNA content (71).
Such mitochondrial dysfunction has been proposed to be one
of the mechanisms contributing to the dysfunctional placenta in
PE (72).

Our results confirm that PM2.5 specifically targets the
mitochondria in the trophoblast cells, visualized by the
localization of the particles to this organelle. The structural
damage of the mitochondria observed by TEM is a direct
indicator of mitochondrial dysfunction. Potential explanations
for this dysfunction could include PM2.5’s physical presence
localized to the mitochondria, its interference with redox balance
and molecular processes in the mitochondria and/or its chemical
PAH content. Indeed, the chemical content of the particles may
add to the cellular toxicity observed. Our findings showed that
the same PAHs were found in the PM2.5 particles were also
discovered in the, suggesting that PAH may disorb, or leak, from
the particles in a biological matrix, thus being able to cause cell
damage. Despite the limited sample size of the PAH analysis on
cell lysates, these results clearly indicate that there is an uptake of
PAH into the cells.

No dose-dependent effect of exposure to PM2.5 on
mitochondrial respiration was found in this study. We did,
however, notice a somewhat surprising decline in H2O2

production in the exposed cells. One could speculate that
this might be due to the increased cytotoxicity present in the
PM2.5 exposed cells, which would effectively leave fewer viable
cells able to produce H2O2. Cells exposed to a single dose of
PM2.5 showed a significant decrease in cell count after 7 days
(Supplementary Figure 4). Cytotoxicity at the highest doses is
not statistically significant compared to the control, therefore it
would be difficult to draw any conclusions. One could speculate
if reduced proliferation as a result of exposure to high doses
of PM2.5, could explain this finding. Similar speculations of
reduced proliferation can be made regarding the protease
activity being lower in the higher fraction of PM2.5. In the PM2.5
exposed groups there was a trend of increasing ROS-production
with increasing dosage. However, due to the small sample
size, statistical significance was not upheld. Further studies are
needed to determine the effects of PM2.5 on ROS-production.
In addition to the local effects of the PM2.5 in the mitochondria,
pro-inflammatory factors such as IL-6 have been suggested
to induce mitochondrial damage (73). The results from this
study not only confirms that the particles were internalized
by the cells, as observed by TEM imaging (Figure 6), but also
showed that PAHs could be released from the particles inside

the cells, thus having a possible role in inducing the cellular
toxicity observed.

The HTR-8 trophoblast cell line does not form a syncytia, a
potential drawback of this study, however the HTR-8 trophoblast
cell line is a first trimester cell line and hence displaying
age typical characteristics for the period of gestation when
the pathological changes to the placenta associated with PE is
thought to occur. Future avenues to explore could entail syncytia
forming trophoblast, placental organoid cultures and/or the dual-
placenta-perfusion model.

To understand the correlation between PM2.5 exposure and
PE, as well as other adverse pregnancy outcomes, it is essential
to gain further knowledge of the mechanisms through which
PM2.5 interferes with placental function during pregnancy. Air
pollution has already been linked to placental transcriptome
changes (74), placental DNA methylation (75) and a reduced
placenta weight (76). Further, women exposed to high levels
of air pollution from cooking with solid fuels have shown
chronic placental hypoxia (77) and fetal thrombotic vasculopathy
(78). Adding to this body of knowledge, our data suggest that
exposure to PM2.5 in vitro has the potential to induce cellular
toxicity as well as hormone dysregulation, oxidative damage,
inflammatory response, and interference with mitochondria
in first trimester placental cells (HTR-8 cells). Future studies
will have to elucidate if theses findings are translatable to in
vivo conditions.

PUBLIC HEALTH IMPACT

The effects of air pollution on pregnancy and birth outcomes
are not negligible. One study estimated that 11% of term
low birth weight cases would be avoided if the PM2.5
concentration was reduced by 5 µg/m3 (58). Another suggests
that 11% of all PE cases were attributable to exhaust
emissions in Malmö, Sweden (79). Indeed, the PM2.5 used
in our present study was collected in real-life conditions
in Malmö, Sweden in order to mimic the actual exposure
pregnant women face in an urban setting. Our findings
on the subsequent effects on human trophoblasts cells are
suggestive of underlying placental mechanisms potentially
contributing to the adverse effects air pollution exposure exerts
during pregnancy.
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