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Abstract

Drug-induced toxicity is a significant problem in clinical care. A key problem here is a general

understanding of the molecular mechanisms accompanying the transition from desired drug

effects to adverse events following administration of either therapeutic or toxic doses, in par-

ticular within a patient context. Here, a comparative toxicity analysis was performed for fif-

teen hepatotoxic drugs by evaluating toxic changes reflecting the transition from therapeutic

drug responses to toxic reactions at the cellular level. By use of physiologically-based

pharmacokinetic modeling, in vitro toxicity data were first contextualized to quantitatively

describe time-resolved drug responses within a patient context. Comparatively studying

toxic changes across the considered hepatotoxicants allowed the identification of subsets of

drugs sharing similar perturbations on key cellular processes, functional classes of genes,

and individual genes. The identified subsets of drugs were next analyzed with regard to

drug-related characteristics and their physicochemical properties. Toxic changes were

finally evaluated to predict both molecular biomarkers and potential drug-drug interactions.

The results may facilitate the early diagnosis of adverse drug events in clinical application.

Author Summary

Liver toxicity may occur at drug levels above the therapeutic range and is thus a crucial

problem in clinical care. However, the cellular changes induced by drug administration of

therapeutic and toxic doses in humans are still not well understood. We here coupled

patient-specific drug concentration-time profiles following oral administration of thera-

peutic and toxic doses with in vitro drug response data to predict toxic changes that quan-

titatively reflect the transition from desired drug effects to undesired toxic reactions.

These toxic changes were comparatively evaluated for fifteen hepatotoxic drugs to identify

subsets of drugs, which show similar drug effects on key cellular processes, functional clas-

ses of genes, and individual genes, respectively. In addition, analyzing toxic changes for

individual genes allowed the prediction of molecular biomarkers and potential drug-drug

interactions. Our results may hence support the early diagnosis of liver toxicity in clinical
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care in the future and may, moreover, help to assess potential risks of drug combination

therapies.

Introduction

Drug-induced hepatotoxicity poses a significant problem in drug development and public

health [1,2]. Extensive drug exposure due to overdosing or patient idiosyncrasy may lead to

hepatotoxic effects such as drug-induced steatosis or cholestasis [3,4,5]. Such adverse events

may even be aggravated through drug-drug interactions (DDIs) during patient co-medication

leading to additive, synergistic, or antagonist drug effects [6,7,8,9].

Understanding the molecular mechanisms underlying the transition from desired drug ef-

fects to adverse events induced by therapeutic and toxic doses, respectively, is of general im-

portance for both clinical diagnostics and curative intervention strategies [10]. In this regard,

robust clinical biomarkers may significantly improve patient safety and health [11,12,13,14,15]

by the initial identification of cellular mechanisms indicating drug toxicity in order to imple-

ment appropriate interventions at an early stage [16,17,18,19]. Comparatively analyzing cellular

responses following the transition from therapeutic to toxic doses supports the identification of

molecular biomarkers and would clearly help to investigate to what extent specific drugs simi-

larly contribute to characteristic toxicological processes and, furthermore, to find out potential

interactions between those drugs, which might act on a mutual target gene.

A comparative study of molecular responses in human cell lines in the face of therapeutic

and toxic doses for a set of known hepatotoxic drugs could be used to better characterize drug-

induced toxicity. A severe drawback of such in vitro analyses, however, is often the limited

translatability to the in vivo situation in patients in actual clinical practice. Recently, we have

developed an integrative multiscale approach called PICD for the in vivo contextualization

of in vitro toxicity data based on physiologically-based pharmacokinetic (PBPK) modeling,

which significantly supports translations to an in vivo situation in patients (Fig 1) [20]. Impor-

tantly, PBPK modeling aims for a mechanistic representation of absorption, distribution,

metabolism, and elimination (ADME) processes governing drug pharmacokinetics (PK)

within the human body. Since PBPK models include a large amount of mechanistic informa-

tion, these models are well-suited for extrapolations to different treatment scenarios.

The main goal of this study was the analysis of drug-induced toxicity following administra-

tion of therapeutic and toxic doses of different hepatotoxicants in humans. Thus, toxic changes

reflecting drug-induced toxicity during the transition from therapeutic to toxic doses were

comparatively evaluated for fifteen hepatotoxicants to quantitatively identify subsets of drugs,

which share similar perturbations on (i) key cellular processes, (ii) functional classes of genes,

and (iii) individual genes (Fig 2). To predict drug responses in clinically relevant situations fol-

lowing administration of therapeutic and toxic doses, PBPK-based in vivo contextualization of

in vitro toxicity data (PICD) (Fig 1) was applied on a set of fifteen known hepatotoxic drugs:

acetaminophen (APAP), amiodarone (AD), azathioprine (AZA), cyclophosphamide (CPA),

cyclosporine A (CSA), diclofenac (DFN), erythromycin (ERY), flutamide (FT), haloperidol

(HPL), isoniazid (INH), phenobarbital (PB), phenytoin (PHE), rifampicin (RIF), simvastatin

(SST), valproic acid (VPA). The drugs were selected based on pharmaceutical and chemical

diversity, physicochemical properties, availability of in vitro toxicity data and experimental

drug concentration-time profiles as well as concern for drug-induced liver injury (DILI) (S1

Table). Transcriptome data obtained in primary human hepatocytes from Open TG-GATEs

[21] was used as in vitro toxicity data at the cellular level, while human PBPK models were
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developing the PBPK modeling tools PK-Sim and

MoBi.



Fig 1. PBPK-based in vivo contextualization of in vitro toxicity data (PICD). INPUT: At the organism level,

PBPK models are developed for specific drugs. At the cellular level, in vitro response data of compound-treated

primary hepatocytes are analyzed (28). COUPLING: In vivo doses are identified, which are directly related to in

vitro drug exposure (AUCin vivo = AUCin vitro). Time-dependent dose-response curves are built by mapping in vivo

doses to in vitro responses. CONTEXTUALIZATION: By use of the time-dependent dose-response curves drug
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developed at the organism level. In the comparative toxicity analysis, toxic changes were evalu-

ated in three different analyses (Fig 2). In the first analysis, toxic changes between the fifteen

hepatotoxic drugs were investigated for a large number of key cellular processes (S2 Table). In

the second analysis, toxic changes calculated for different functional classes of genes were eval-

uated for a subset of key cellular processes strongly perturbed by an identified set of high-

responsive drugs. In the third analysis, toxic changes were evaluated for a set of individual

genes thereby quantitatively discovering molecular biomarkers and potential DDIs for the

high-responsive drugs.

Results

Human whole-body PBPK models

Whole-body PBPK models were initially established for a set of fifteen hepatotoxic drugs and

were carefully validated with human experimental data from literature (S3 Table). The vali-

dated PBPK models served as input for PICD (PBPK-based in vivo contextualization of in

vitro toxicity data) [20] to quantify in vivo drug responses induced by therapeutic and toxic

doses administered in humans. Physicochemical properties, plasma protein binding, and lipo-

philicity of the different drugs and their metabolites were obtained from literature and were

used to develop the reference PBPK model for intravenous administration in humans

(Table 1). Key metabolic reactions and active drug transport were integrated into the human

PBPK models to represent the main ADME processes (S4 Table). Relative tissue-specific abun-

dances of relevant enzymes and transporters were estimated using tissue-specific gene expres-

sion data [22]. To describe the elimination of the drugs and their metabolites, renal and biliary

clearance processes were incorporated into the human PBPK models (S5 Table) and parame-

trized such that simulations are in agreement with experimental observations (S5 Table). After

model establishment, the simulated drug concentrations in plasma showed an excellent agree-

ment with in vivo PK data measured in humans (Fig 3, S1 Fig).

To validate the established reference PBPK models, experimental PK data from different

studies, which had not been used during initial model establishment, were next used to simu-

late concentration-time profiles for additional dosage regimens and patient subgroups (Fig 3,

S1 Fig). Notably, model parameters were left unchanged for model validation except the intes-

tinal permeability where the initial reference value was slightly adjusted in some cases, when

the drug was given orally (S6 Table).

The PBPK model parameters (Table 1, S4 Table, S5 Table, S6 Table, S7 Table) together with

the specific information about the clinical studies (S3 Table) are sufficient to fully reproduce

all developed human PBPK models due to the large degree of prior information, which is

already included in PBPK models. Importantly, the validated PBPK models allow accurate

simulations for different dose levels, including therapeutic or toxic doses, since potential non-

linearity’s in ADME processes are implicitly represented through the underlying model

structure.

Prediction of in vivo drug responses for humans by integrating in vitro

toxicity data into whole-body PBPK models

To analyze and compare drug-induced hepatotoxicity of the fifteen drugs within a patient con-

text, toxic changes reflecting the transition from desired drug effects to adverse events were

responses over time are predicted for PK profiles simulated for different doses. (Illustration of cells and parts of

human body adapted with permission [75], https://creativecommons.org/licenses/by/4.0/)

doi:10.1371/journal.pcbi.1005280.g001
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Fig 2. General workflow. For a set of hepatotoxic drugs, in vitro toxicity data from Open TG-GATEs [21]

were analyzed, therapeutic and toxic doses were identified in the literature, and whole-body PBPK models

were developed and validated. Toxic changes were then predicted at different timepoints (2 h, 8 h, 24 h) by
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considered by predicting time-dependent in vivo responses for humans following drug admin-

istration of therapeutic and toxic doses. In vitro toxicity data from Open TG-GATEs [21] mea-

sured in primary human hepatocytes for the fifteen hepatotoxic drugs were therefore analyzed.

Toxicity lists from QIAGENs Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City,

www.qiagen.com/ingenuity) were used to represent biological processes associated to critical

toxicological responses and are further referred to as ‘key cellular processes’ (S2 Table). Drug

concentration-time profiles were simulated for therapeutic and toxic doses identified in litera-

ture (Fig 4, S8 Table) by using the developed human PBPK models (Fig 3). PICD was next

applied to translate in vitro findings to an in vivo situation within patients.

comparing cellular response following drug administration of therapeutic and toxic doses and were

subsequently evaluated with regard to key cellular processes, functional classes of genes, and individual

genes, respectively. (Illustration of cells and parts of human body adapted with permission [75], https://

creativecommons.org/licenses/by/4.0/)

doi:10.1371/journal.pcbi.1005280.g002

Table 1. Physicochemical drug properties used in the developed PBPK models. Molecular weight (MW), octanol/water partition coefficient (logP), frac-

tion unbound (Fu), acid dissociation constant (pKa), and water solubility used in the developed PBPK models. Molecular weights are taken from DrugBank

[23], references for other properties were explicitly presented. In some cases, logP and Fu values were slightly adjusted to best describe the experimental

data. NAPQI, N-acetyl-p-benzoquinone imine; 6-MP, 6-mercaptopurine; ERY-PED, erythromycin ethylsuccinate.

ID Drug/

Metabolite

MW

[g/mol]

logP Reference Fu Reference Compound

type

pkA Reference Water Solubility

[mg/l]

Reference

1 APAP 151.16 0.33 [23] 0.81 [23] Acid 9.38 [23] 14000.00 [23]

1 APAP-cysteine 254.31 0.40 [23] 0.6 * [Acid, base] [1.93, 9.09] [23] 337.00 [23]

1 APAP-

glucuronide

327.29 -0.98 [23] 0.98 * Acid 3.17 [23] 27700.00 [23]

1 APAP-sulfate 231.23 -0.52 [23] 0.80 * [Acid, base] [-2.16,14.65] [24] 1540.00 [23]

1 NAPQI 149.15 0.1 [23] 0.02 [25] Neutral - [24] 987.00 [23]

2 AD 645.31 4.67 [26] 0.0032 [27] Base 6.56 [28] 4.76 [23]

3 6-MP 152.18 1.85 [29] 0.81 [23] [Acid, base] [9.50, 2.99] [23] 68500.00 [23]

3 AZA 277.26 0.10 [23] 0.70 [23] Base 7.87 [23] 1007.00 [23]

4 CPA 261.09 0.80 [23] 0.80 [23] Acid 6.00 [30] 30000.00 [23]

5 CSA 1202.61 3.88 [31] 0.09 [32] Base 11.83 [23] 5.81 [23]

6 DFN 296.15 4.10 [23] 0.0035 [33] Acid 4.15 [23] 2.37 [23]

7 ERY 733.93 3.06 [23] 0.18 [23] Base 8.88 [23] 2000.00 [23]

7 ERY-PED 862.06 3.84 * 0.18 [23] Acid 7.10 [34] 2000.00 *

8 2-hydroxy FT 292.21 2.08 [23] 0.028 [35] Acid 3.80 [23] 5.56 [23]

8 FT 276.21 3.05 [23] 0.052 [35] Base 13.17 [23] 9.45 [23]

9 HPL 375.86 3.60 [23] 0.06 [23] Base 8.66 [23] 14.00 [23]

10 Acetyl-INH 179.18 -0.90 [36] 0.90 * [Acid, base] [6.77, 3.02] [36] 1770.00 [36]

10 INH 137.14 -0.67 [23] 0.90 [23] [Acid, base] [13.61, 3.35] [23] 140000.00 [23]

11 PB 232.24 0.13 [23] 0.57 [23] Acid 7.30 [23] 1110.00 [23]

12 PHE 252.27 2.26 [23] 0.098 [37] Acid 8.33 [23] 32.00 [23]

13 RIF 822.94 2.93 [23] 0.195 [38] Acid 1.70 [23] 1400.00 [23]

14 SST 418.57 4.68 [23] 0.03 [39] Neutral - [40] 0.76 [40]

14 SST-acid 436.58 4.3 [36] 0.056 [23] Acid 4.31 [40] 11.00 [40]

15 Hydroxyl-VPA 160.21 1.42 [36] 0.04 * Acid 4.81 [36] 45100.00 [36]

15 VPA 114.21 1.85 [23] 0.04 [41] Acid 5.14 [23] 1300.00 [23]

15 VPA-β-

glucuronide

320.33 0.85 [36] 0.04 * Acid 3.41 [36] 22200.00 [23]

* adjusted/adopted from parent drug

doi:10.1371/journal.pcbi.1005280.t001
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Fig 3. Human PBPK models. Simulated concentration-time curves (lines) for all parent drugs (blue) were assessed with

experimental PK profiles (circles) used for developing reference (ref.) or validated (val.) human PBPK models. Drugs were

either administered orally (PO) or intravenously (IV). Additionally, renal (green) and biliary (dark yellow) excretion rates were

simulated. * Primary metabolites (red) 6-MP, 2-hydroxy-FT, acetyl-INH, and SST-acid; ‡ APAP-glucuronide (red), APAP-

sulfate (orange), APAP-cysteine (purple), and NAPQI (black); † Rapid metabolizer; $ Slow metabolizer; § Unbound plasma

concentrations (red).

doi:10.1371/journal.pcbi.1005280.g003
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In brief, the basic concept of PICD is the identification of in vivo doses such that the simu-

lated drug exposure in the interstitial space of the liver is equal to the in vitro drug exposure of

the assay. The identified in vivo doses were mapped to the in vitro toxicity data in order to

describe time-dependent in vivo drug responses at different dose levels (Fig 1) [20]. After

applying PICD, in vivo drug responses for humans induced by therapeutic and toxic doses

could be predicted for the considered key cellular processes.

Validation of predicted in vivo drug responses in rats

To validate the predictive accuracy of the PICD-based in vitro-in vivo translation, PICD was

next applied for rats, because in vivo data were only available for rats but not for humans [21].

Since PICD requires PBPK models as input at the organism level, rat PBPK models were devel-

oped by applying cross-species extrapolation thereby taking into account species-specific

differences to extrapolate PK profiles between humans and rats [42]. In vitro toxicity data mea-

sured in rat hepatocytes [21] were then translated to an in vivo situation by applying PICD on

rat PBPK models. For each drug, significantly perturbed key cellular processes for rats were

identified (S1 Dataset) and correspondent in vivo drug responses were subsequently predicted

for the relevant doses that have been administered in the in vivo rat study [21]. Finally, pre-

dicted drug responses were correlated with in vivo observations.

Correlation analyses between predicted and observed in vivo rat data revealed moderate

correlations (r = 0.27–0.76, p< 0.05, R2 = 0.07–0.58) (Fig 5) for all drugs apart from PB

(r = 0.03, p = 0.6, 95% confidence interval (95% CI) = [-0.07, 0.13], R2 = 9.4E-4) and APAP (r

= -0.05, p = 0.35, 95% CI = [-0.16, 0.06], R2 = 0.0025) (Fig 5). These correlations obtained in a

Fig 4. Therapeutic and toxic PK profiles. Plasma concentration-time profiles simulated for drug administration of the therapeutic

(blue) and the toxic (red) doses in humans (S3 Table, S8 Table).

doi:10.1371/journal.pcbi.1005280.g004
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preparatory proof-of-concept analysis in rats are mostly statistically significant albeit not that

strong in some cases.

Comparative toxicity analysis

In the comparative toxicity analysis, drug-induced hepatotoxicity was investigated within a

patient context to identify subsets of drugs, which share similar perturbation on key cellular pro-

cesses, functional classes of genes, as well as individual genes. Toxic changes reflecting the transi-

tion from desired drug effects to adverse events were therefore calculated for humans and were

compared among the set of fifteen hepatotoxic drugs (S1 Table). The application of PICD allowed

predicting time-dependent drug responses of therapeutic and toxic doses in an in vivo context

[20]. Note that all in vivo drug response values predicted for the toxic dose were higher than the

respective values predicted for the therapeutic dose, such that all toxic changes are positive.

Analysis of key cellular processes

In the first analysis, toxic changes calculated for humans were evaluated at three different time

points (2 h, 8 h, and 24 h) for key cellular processes that were significantly overrepresented in

at least one third of the drugs (Fig 6, S2 Dataset).

Fig 5. Validation of predicted drug response with in vivo measurements in rats. In vivo drug responses of significantly perturbed key cellular

processes (S1 Dataset) predicted for the three doses used in the in vivo rat study were compared to observations measured in vivo [21].

doi:10.1371/journal.pcbi.1005280.g005
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Fig 6. Comparative toxicity analysis of key cellular processes in humans. Toxic changes in perturbed key

cellular processes (S2 Table) were calculated for fifteen hepatotoxic drugs at 2 h, 8 h and 24 h. The drugs were

annotated with their respective DILI-potential, the BCS class and the target organ or system (S1 Table). The

A Comparative Analysis of Drug-Induced Hepatotoxicity in Clinically Relevant Situations
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Hierarchical clustering identified three major groups, which showed a clear separation

between the considered timepoints (Fig 6). This observation was also confirmed by applying a

principal component analysis (S2 Fig). Interestingly, low toxic changes were observed for SST,

DFN, and AD at all timepoints. In contrast, high toxic changes (e.g., for genes involved in liver

damage, liver hepatitis, liver steatosis, and liver proliferation) were found already at 2 h for

HPL, APAP, VPA, AZA, and INH. AZA and VPA further depicted a high impact on genes

involved in hepatocellular hypertrophy resulting in glutathione depletion (Fig 6). At 8 h, VPA

and APAP revealed substantially high activity on several key cellular processes in particular on

liver proliferation, liver damage, and liver hyperplasia (Fig 6). Furthermore, the regulation of

the cell cycle G2/M DNA damage checkpoint, on the one hand, as well as the activation of the

FXR/RXR and CAR/RXR heterodimers, on the other hand, were clearly perturbed after 8 h by

APAP and AZA, respectively (Fig 6). At 24 h, VPA primarily affected all considered key cellu-

lar processes (Fig 6).

Hierarchical clustering was next performed to classify the fifteen hepatotoxic drugs ac-

cording to similar hepatotoxic potential. Two main clusters could be identified where the first

cluster (SST, DFN, AD, ERY, FT, CSA, and PHE) basically showed a lower response on key cel-

lular processes than the second one (RIF, CPA, PB, INH, HPL, AZA, APAP, and VPA) (p =

9E-66, 95% confidence interval for the difference between the two groups (95% CI) = [0.079,

0.098], two-sample t-test). The low-responsive group was further subclustered into SST, DFN,

AD and ERY, on the one hand, and into FT, CSA and PHE, on the other hand. The high-

responsive group could be further subdivided into three smaller sub clusters: the first consists of

RIF, CPA, and PB; the second of AZA, HPL, and INH; the third only of APAP and VPA.

The hierarchical clustering results were further analyzed to test whether the low- and high-

responsive drugs could be attributed to (i) pharmacokinetic parameters, (ii) drug permeability

and solubility properties (BCS class) [43], (iii) their target organ or system (anatomical main

group), or (iv) their concern for causing DILI (DILI-potential) (S1 Table). Results from this anal-

ysis show that the low-responsive drugs were significantly higher bound to plasma proteins

(p = 0.0098, 95% CI = [0.15, 0.74], two-sample t-test), and were more lipophilic (p = 0.0013, 95%

CI = [1.24, 4.05], two-sample t-test) (Table 1). Investigating the solubility properties between

both groups revealed no significant difference (p = 0.21, 95% CI = [-16964.77, 63585.33], two-

sample t-test) (Table 1). Interestingly, toxic changes calculated for both groups were independent

from both the ratio of toxic and therapeutic doses (p = 0.33, 95% CI = [-1509.31, 3929.78], two-

sample t-test) (S3 Table, S8 Table) and from the ratio of correspondent area under the curve val-

ues (AUC0-24h: p = 0.35, 95% CI = [-2341.65, 5798.28], two-sample t-test) (Fig 4).

Comparison of both main clusters also showed no clear distinction of annotated DILI-

potentials (Fig 6) with regard to drug-specific characteristics, which was also observed for the

assigned severity scores (p = 0.7, 95% CI = [-2.12, 3.09], two-sample t-test) (Fig 6, S1 Table).

Contrarily, the drugs classified as BCS class 3 (low permeability, high solubility) and 4 (low

permeability, low solubility) tended to belong to the high-responsive drugs while the low-

responsive group was enriched with drugs annotated with BCS class 2 (low solubility, high per-

meability). Furthermore, drugs were not clearly separable based on their target organ or sys-

tem (Fig 6). Nevertheless, drugs acting on the cardiovascular system (SST and AD) or on the

musculo-skeletal system (DFN) were clustered together, while anti-infective and drugs acting

on the nervous system were rather assigned to the high-responsive group (Fig 6, S1 Table).

dendrograms were constructed using the Ward’s minimum variance algorithm. The color scale depicts

normalized toxic changes. The heatmap was visualized by use of the web tool ClustVis [76]. Row-normalization

is performed by subtracting the mean and by dividing the respective standard deviation.

doi:10.1371/journal.pcbi.1005280.g006
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Analysis of functional classes of genes

Next, toxic changes were analyzed at the functional level to quantitatively describe to what

extent single drugs or subset of drugs perturbed different functional classes of genes, such as

kinases or metabolic enzymes, associated to key cellular processes. Note that only the previ-

ously identified set of the high-responsive drugs and a subset of key cellular processes, which

were strongly induced by these drugs, were here considered in the following.

RIF, PB and VPA demonstrated a high impact on metabolic enzymes involved in the

NRF2-mediated oxidative stress response (Benjamini–Hochberg corrected p = 0.001, 95%

CI = [0.11, 0.36], two-sample t-test), in particular on cytochrome P450 enzymes and transfer-

ases (Fig 7A). VPA further affected transcription regulators (Benjamini–Hochberg corrected

p = 0.05, two-sample t-test, 95% CI = [0.06, 0.58]) particularly FOSL1 and KEAP1 (Fig 7A). A

significant toxic change on kinases by AZA and VPA was observed at 24 h when focusing on

processes of cell cycle G2/M DNA damage checkpoint regulation (Benjamini–Hochberg cor-

rected p = 0.0002, 95% CI = [0.19, 0.45], two-sample t-test) (Fig 7B). A high toxic change of

RIF, PB and VPA at 24 h was detected for metabolic enzymes involved in xenobiotic cyto-

chrome P450 metabolism (Benjamini–Hochberg corrected p = 0.003, 95% CI = [0.38; 1.36],

two-sample t-test) (S3A Fig), glutathione depletion induced by hepatocellular hypertrophy

(Benjamini–Hochberg corrected p = 0.069, 95% CI = [0.05; 0.78], two-sample t-test) (S3D

Fig), as well as in fatty acid metabolism (Benjamini–Hochberg corrected p = 0.0001, 95% CI =

[0.12, 0.30], two-sample t-test) (S3E Fig), and in the activation of the PXR/RXR heterodimer

(Benjamini–Hochberg corrected p = 0.001, 95% CI = [0.34, 1.02], two-sample t-test) (Fig 7C).

Moreover, PB, VPA and RIF strongly perturbed BAX (Benjamini–Hochberg corrected p =

0.0016, 95% CI = [0.24, 0.47], two-sample t-test), an apoptosis regulator that modulates the

mitochondrial permeability of the transporter VDAC [44] (Fig 7F). Investigating toxic changes

of biomarkers referred to primary glomerulonephritis revealed a substantial impact of APAP

on the heparin-binding growth factor HBEGF at 8 h (Benjamini–Hochberg corrected p =

0.0026, 95% CI = [0.42, 0.96], two-sample t-test) (Fig 7E).

Amongst others, a high impact of AZA and VPA on the regulation of the cell cycle G2/M

DNA damage checkpoint was found in this second analysis (Fig 7B). Building on this observa-

tion, the cellular response on cell cycle regulation induced by both drugs was analyzed in more

detail at the level of single genes and pathways in the following.

Comparative toxicity analysis of azathioprine and valproic acid in cell

cycle checkpoint regulation

The previous analysis of functional classes of genes revealed similar toxic behavior of AZA and

VPA in the regulation of the cell cycle G2/M DNA damage checkpoint (Fig 7F) despite a signifi-

cant pharmaceutical and chemical diversity (Table 1, S1 Table). We therefore considered the

toxic behavior between AZA and VPA at the gene level in an exemplary use case by individually

analyzing toxic changes of involved genes. The G2/M DNA damage checkpoint represents the

second checkpoint in the cell cycle and ensures that genomic stability is maintained by repairing

damaged DNA before entering the mitosis phase (Fig 8A) [45]. Hence, this pathway is crucially

involved in DNA replication, recombination, and repair, respectively, and is consequently

essential for cell viability [46]. A key role for the transition from the G2 phase to the M phase

forms the cyclin-dependent kinases and several transcription regulators (Fig 8A) [47].

To directly compare the toxic behavior between both drugs, the differences of toxic change

were calculated for all involved genes (Fig 8B). In this way, differentially responding genes

of AZA and VPA reflected by a positive or negative value, respectively, could be identified.

Analyzing differences in toxic changes revealed similar effects at 2 h for several genes (Fig 8B).
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Interestingly, only the p53 regulator MDM4, and the phosphatase PPM1D, the kinases CKS2

and CDC2 as well as the stress sensor GADD45, demonstrated high differences of toxic change

for VPA and AZA, respectively (Fig 8B). Furthermore, a set of similarly responding genes was

observed at 2 h, 8 h and 24 h (ATM, PLK1, p19Arf, RPRM, p300, 14-3-3(β,ε), CDC25B, WEE1

and CHEK1) (Fig 8B). Although these similarly responding genes showed only slight differ-

ences of toxic change, both drugs considerably affect ATM, CDC25B, WEE1 and CHEK1,

and in particular PLK1 and cyclin B1 and B2 (Fig 8B). In contrast to the findings at 2 h, differ-

ences in several genes were found at 8 h and 24 h such as CKS2, CDC2, and p53 for VPA and

p21Cip1, DNA-PK and BORA for AZA (Fig 8B).

The differentially responding genes were next used to build differential response pathways

at given timepoints (Fig 8C–8F). Note that none of these pathways could be found for AZA

and VPA alone at 2 h and 8 h, respectively, but can only be identified through a comparative

analysis. Exploring these pathways helps to compare dynamic changes between AZA and VPA

in the regulation of the cell cycle G2/M DNA damage checkpoint when switching from thera-

peutic to toxic dose administration.

Fig 7. Toxic changes predicted for functional classes of genes involved in key cellular processes. The toxic changes were predicted for

different functional classes of genes involved in the respective key cellular processes. All drugs belonging to the high-responsive group were

considered. The color scale depicts toxic changes that were normalized over each heatmap. Normalization for each key cellular process is

performed by subtracting the mean and by dividing the respective standard deviation.

A. ‘NRF-2 mediated oxidative stress response’.

B. ‘Cell cycle G2/M DNA damage checkpoint regulation’.

C. ‘PXR/RXR activation’.

D. ‘LPS/IL-1 mediated inhibition of RXR function’.

E. ‘Primary glomerulonephritis biomarker panel’.

F. ‘Aryl hydrocarbon receptor signaling’.

doi:10.1371/journal.pcbi.1005280.g007
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Analyzing differential response pathways of AZA at 2 h (Fig 8C) and VPA at 8 h (Fig 8E)

revealed that AZA highly perturbed GADD45 and CKS2, which regulates CDC2-cyclin B com-

plex, while VPA affected the same key complex by strongly perturbing p53 via HIPK2, on the

one hand, and p90RSK, Myt1, and CDK7, on the other hand. Interestingly, GADD45 and

CKS2 were involved in both pathways but in a time-shifted manner. In order to regulate key

processes of the cell cycle G2/M checkpoint at 24 h, BORA and DNA-PK were highly affected

by AZA (Fig 8D). In contrast, a significantly higher activity due to VPA administration was

observed at the same timepoint thereby regulating all major processes mostly via p53, MDM2

and CDC2 (Fig 8F).

The comparative analysis of similarly- and differentially responding genes might help to

identify either individually or commonly affected molecular biomarkers that reflect toxic drug

action, which is either exclusively induced by a single drug (e.g., BORA at 24 h for AZA) or

simultaneously by both drugs (e.g., cyclin B1 and B2 at 24 h). Genes that are simultaneously

affected by two drugs might also be a common target during drug co-administration as such

leading to an additive drug effect.

Analysis of individual genes

To conclude our analysis, toxic changes were calculated for individual genes that were involved

in the key cellular processes strongly affected by the high-responsive drugs (Fig 7, S3 Fig).

These gene-related toxic changes were then used to quantitatively explore which genes were

similarly perturbed by which drugs. This knowledge was finally used to identify individual and

common molecular biomarkers for single drugs and subset of drugs, respectively.

Molecular biomarkers play a key role in clinical risk assessment and the early prediction of

drug toxicity. To identify robust common molecular biomarkers within the cluster of high-

responsive drugs, a significant and similar toxic change (at least one and a half-fold increase

and less than half of the standard deviation) at a certain timepoint was required. To test

whether the common molecular biomarkers were sensitive, the respective toxic changes of an

identified biomarker were compared between the low- and high-responsive drugs.

In total, twelve common molecular biomarkers were detected for the set of high-responsive

drugs (Table 2). Nine genes demonstrated statistical significant changes (Benjamini–Hochberg

corrected p< 0.05): the metabolizing enzymes EPHX1, CYP2C9, SULT1A2, and GSTP1, the

transporter ABCA1, as well as the kinases PRKACA and MAP3K14, and the ligand-dependent

nuclear receptors AHR and NR0B2 (Table 2). These biomarkers are involved in key cellular

processes such as in the activation of the PXR/RXR heterodimer, in the LPS and IL-1 mediated

inhibition of the RXR function, or in the aryl hydrocarbon receptor signaling (Table 2). In

contrast, the transcription regulator ELF3, the growth factor TGFB2 and the kinase PKMYT1

were not found to be significant (Benjamini–Hochberg corrected p� 0.05, two-sample t-test)

indicating that these genes show similar toxic change for both the high- and the low-respon-

sive drugs (Table 2).

Fig 8. Comparison of toxic changes between AZA and VPA and differential response pathways at different timepoints. The color bar

depicts differences of toxic changes between both drugs. Genes with high toxic changes for both drugs were explicitly marked in red.

A. Pathway of ‘cell cycle G2/M DNA damage checkpoint regulation’.

B. Comparison of toxic changes for involved genes between AZA and VPA.

C. AZA, 2 h.

D. AZA, 24 h.

E. VPA, 8 h.

F. VPA, 24 h.

doi:10.1371/journal.pcbi.1005280.g008
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To identify individual molecular biomarkers for each of the high-responsive drugs, a very

strong toxic change (at least seven-fold increase compared to mean toxic change) was required.

The majority of the individual molecular biomarkers belong to the cytochrome P450 family,

transcription regulators, or they are transporters (S3 Dataset). These drug-specific molecular

biomarkers were finally analyzed to identify potential DDIs between the high-responsive

drugs in the case of co-administration. To this end, a potential DDI between two drugs was

assumed, if both drugs share at least one biomarker (S4 Dataset). The consequently identified

pairs of drugs were then compared with known DDIs from DrugBank [23] and from Drugs.

com (Fig 9). Strikingly, the prediction of DDIs reaches an accuracy of 68% and a precision of

71% with respect to DDIs known from the literature (Fig 9). The number of correctly pre-

dicted DDIs and non-DDIs was found to be 75% and 58%, respectively. Analyzing all potential

DDIs, 35 out of the 42 DDIs were identified based on high toxic changes on cytochrome P450

enzymes for both drugs (S4 Dataset). Interestingly, in 72% of these cases predicted cytochrome

P450 enzymes are in accordance with literature data [23] supporting the potential validity of

the approach.

Discussion

In this article, a comparative study of drug-induced hepatotoxicity was presented, which

enables the investigation and evaluation of the hepatotoxic potential of several drugs within a

Table 2. Common molecular biomarkers. Common molecular biomarkers were identified in different key cellular processes at different timepoints for the

drugs of the high-responsive group. Benjamini-Hochberg corrected p-values p were calculated by comparing the correspondent toxic changes between the

low and high-responsive group. Functional types were taken from QIAGENs Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.com/

ingenuity).

Gene Functional type p-value Key cellular processes (timepoint)

EPHX1 peptidase 0.001* - xenobiotic metabolism signaling (24 h)

- NRF-2 mediated oxidative stress response (24 h)

CYP2C9 enzyme 0.003* - cytochrome p450-substrate is a xenobiotic (8 h)

- PXR/RXR activation (8 h)

- CAR/RXR activation (8 h)

ABCA1 transporter 0.003* - LPS/IL-1mediated inhibition of RXR function (24 h)

GSTP1 enzyme 0.004* - xenobiotic metabolism signaling (24 h)

- aryl hydrocarbon receptor signaling (24 h)

- LPS/IL-1 mediated inhibition of RXR function (24 h)

- NRF-2 mediated oxidative stress response (24 h)

SULT1A2 enzyme 0.004* - xenobiotic metabolism signaling (24 h)

- LPS/IL-1mediated inhibition of RXR function (24 h)

AHR ligand-dependent nuclear receptor 0.005* - xenobiotic metabolism signaling (24 h)

- aryl hydrocarbon receptor signaling (24 h)

PRKACA kinase 0.008* - PXR/RXR activation (24 h)

MAP3K14 kinase 0.016* - xenobiotic metabolism signaling (24 h)

NR0B2 ligand-dependent nuclear receptor 0.022* - PXR/RXR activation (24 h)

- aryl hydrocarbon receptor signaling (24 h)

- LPS/IL-1 mediated inhibition of RXR function (24 h)

TGFB2 growth factor 0.086 - aryl hydrocarbon receptor signaling (24 h)

PKMYT1 kinase 0.186 - cell cycle G2/M DNA damage checkpoint regulation (24 h)

ELF3 transcription regulator 0.212 - primary glomerulonephritis biomarker panel (8 h)

* Benjamini–Hochberg corrected p < 0.05

doi:10.1371/journal.pcbi.1005280.t002
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patient context. Toxic changes reflecting time-resolved cellular responses induced by oral drug

administration of therapeutic and toxic doses in humans were thereby predicted to study

changes in key cellular processes, functional classes of genes, and individual genes, as well as to

identify molecular biomarkers and potential DDIs. Notably, toxic changes describe the transi-

tion from therapeutic drug response to adverse events and thus allow a quantitative represen-

tation of clinically relevant situations within a patient context.

By applying PICD (Fig 1) [20], in vitro toxicity data obtained in primary human hepato-

cytes from Open TG-GATEs [21] could be contextualized to predict in vivo drug response pat-

terns of key cellular processes for the simulated therapeutic and toxic PK profiles (Fig 4, Fig 6).

As input for PICD, drug-specific human PBPK models were developed and validated with dif-

ferent dosage regimens used in previous clinical studies (Fig 3, S3 Table). This validation step

ensures reliable predictions of PK profiles for a wide range of in vivo doses since potential

non-linearity’s are explicitly taken into account. Therapeutic and toxic drug concentrations

over time were then simulated (Fig 4). The toxic doses were identified from clinical cases for

which toxic events occurred (S8 Table). Two large databases as well as literature were screened

to reasonably cover a wide range of toxic doses (S8 Table). Moreover, it should be noted that

the in vivo doses considered here reflect the range of drug exposure occurring in clinical prac-

tice (S3 Table, S8 Table).

When evaluating the toxic behavior between the fifteen hepatotoxic drugs, no significant

toxic change was observed in the case of SST, AD or DFN (Fig 6). However, it is known that

these drugs may still have a high hepatotoxic potential [48,49,50]. Notably, these three drugs

are highly bound to plasma proteins in vivo and are rapidly metabolized such that high in vivo

doses are necessary to reach the in vitro exposure when applying PICD [20]. The identified

Fig 9. Potential DDIs between the high-responsive drugs. The total number of identified biomarkers for each drug is

shown on the diagonal. The biomarkers were ranked according to the absolute differences of toxic change between both

considered drugs. Measures of the performance were additionally calculated by comparing predicted DDIs with known DDIs

from literature: accuracy = 68%, sensitivity = 75%, specificity = 58%, and precision = 71%.

doi:10.1371/journal.pcbi.1005280.g009
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toxic in vivo doses are therefore probably higher than those provided in the literature (S8

Table). As a consequence, the drug responses predicted by PICD for the toxic doses may be

very low. Hence, a future application of drug-specific pharmacokinetics in in vitro assay design

might improve the in vivo relevance of certain in vitro outcomes. To validate predicted drug

response profiles of all considered drugs, in vivo rat data from Open TG-GATEs were used

[21]. In a preparatory proof-of-concept analysis, correlation results in rats demonstrated that

PICD-based predictions were generally in concordance with in vivo observations (Fig 5).

Although uncertainties were observed in some cases, it can still be assumed that the predicted

drug responses in humans have in vivo relevance since such uncertainties are almost unavoid-

able due to (i) the high variability of physicochemical properties and pharmacological diversity

of the considered drugs, (ii) the several differences potentially influencing the response data

observed in vitro and in vivo (e.g. different plasma protein binding and enzyme and trans-

porter activity, crosstalk between relevant tissues and organs in the in vivo situation), (iii) the

time-dependent interpolation that was necessary to make the predictions comparable to the in

vivo observations [21].

In the first analysis of the comparative toxicity study, toxic changes in significantly per-

turbed key cellular processes were compared between the fifteen hepatotoxic drugs (Fig 6).

One objective of this study was to investigate whether subsets of drugs exist, which share simi-

lar perturbations of key cellular processes, and whether these subsets have common pharma-

cokinetic parameters or drug-specific characteristics such as DILI-potential, solubility and

permeability properties, and the target organ or system, respectively. Surprisingly the analyses

showed that the low-responsive drugs primarily belong to the BCS class 2 (high permeability,

low solubility), except PHE (class 1: high permeability, high solubility). In contrast, high-

responsive drugs were rather less permeable with statistically significant differences for lipo-

philicity but not for water solubility. This finding might imply that a low permeability plays an

important role in the hepatotoxic potential of the considered drugs in contrast to the results of

other studies that showed a correlation between high lipophilicity and toxicological outcomes

[51,52]. This could be due to the fact that in our multiscale approach additional drug proper-

ties such as plasma protein binding or doses applied in vivo are implicitly taken into account

in the whole-body PBPK models and set in relation to actual in vitro omics data for known

hepatotoxicants. Also, it could be hypothesized that hydrophilic drugs tend to have more polar

functional groups and thus are more prone to enzyme-mediated adverse chemical modifica-

tions since these drugs present several potential interaction targets within the cell. Statistically

significant differences between both groups were identified for the plasma protein binding but

not for the ratio of toxic and therapeutic area under the curves and dose levels, respectively.

The latter result is important, since it demonstrates that the hepatotoxic potential is not af-

fected by the selection of the therapeutic and toxic dose levels and the resulting concentration-

time courses. Interestingly, the low-responsive drugs tend to have a narrow therapeutic index

(defined as the ratio between toxic and therapeutic dose) (Fig 4, S8 Table) [53], which increases

the risk of adverse reactions following high drug exposure due to overdosing or idiosyncrasy.

Next, the toxic changes between the high-responsive drugs were predicted in terms of func-

tionally-related genes involved in key cellular processes. In this way, toxic changes of func-

tional classes (e.g., phosphatases or transcription regulators) that are mainly contributing to a

certain key cellular process could be identified. For instance, a high toxic change of growth

factors at 8 h was found for APAP, which highly increases the risk of renal impairment as

described in previous studies [54,55] (Fig 7E). In the case of AZA and VPA, a high toxic

change in kinases was found at 24 h, which were involved in the regulation of the cell cycle

G2/M DNA damage checkpoint (Fig 7B). This is in striking accordance with previous studies

[56,57,58,59] where both drugs were also reported to have a substantial impact on the cell
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cycle regulation. The hepatotoxic potential of AZA and VPA in this crucial pathway was hence

exemplarily investigated in more detail to compare toxic changes of involved genes. Focusing

on the cyclins B1 and B2 or the kinase PLK1, for instance, revealed similar toxic changes and

especially high drug responses at 24 h for both drugs. This suggests a potential key role of these

genes in the drug-induced hepatotoxicity of AZA and VPA. In contrast, differentially respond-

ing genes for both drugs could be found at different timepoints (Fig 8B). Interestingly, AZA and

VPA similarly perturbed central biological processes of the G2/M DNA damage checkpoint

(Fig 8). However, the initiation of these processes is complementary and preferably occurred by

DNA-PK, GADD45 and BORA for AZA, and CDC2, p53 and MDM2 for VPA (Fig 8).

Finally, the calculated toxic changes were used to discover common and individual molecu-

lar biomarkers for the high-responsive drugs. A set of nine common molecular biomarkers

could be identified, which showed significant differences to the low-responsive drugs indicat-

ing a high sensitivity of the identified biomarkers (Table 2). Moreover, individual molecular

biomarkers mostly enzymes of the cytochrome P450 family, were found and further used to

detect potential DDIs. Here, the identification of potential DDIs was based on high toxic

changes reflecting differences between therapeutic and toxic drug response. Known DDIs

from literature could be predicted with a precision of 71% (Fig 9). In some cases, known DDIs

from literature (e.g., between RIF and INH) were not identified as such, (Fig 9), which might

indicate that these interactions are only significant after therapeutic drug administration. In

contrast, predicted DDIs not found in literature might present newly discovered drug interac-

tions, which only occur under toxic conditions. The consideration of more toxic and non-

toxic drugs in a future extension of our analysis could further improve the identification and

validation of molecular biomarkers and DDIs discovered in an in vivo situation. Moreover, it

is also conceivable to apply the workflow on a set of candidate drugs during early drug devel-

opment. In this regard, measured time-series gene expression profiles could be contextualized

in human PBPK models parametrized based on molecular modeling to identify potential toxic

and non-toxic compounds before entering the clinical phases.

To conclude, the hepatotoxic potential of a set of known hepatotoxic drugs was studied and

compared by predicting toxic changes for humans, which reflect the transition from therapeu-

tic drug response to toxic reactions. We therefore analyzed primary human hepatocytes at the

cellular level, and developed human PBPK models at the organism level and coupled both lev-

els by the application of the recently developed approach called PICD (Fig 1). Hence, the anal-

ysis of toxic changes allows a quantitative evaluation of clinically relevant situations within a

patient context. Altogether, toxic changes after 2 h, 8 h and 24 h in significantly affected key

cellular processes could be analyzed thereby identifying a low-responsive (SST, DFN, AD,

ERY, FT, CSA and PHE) and a high-responsive group (RIF, CPA, PB, INH, HPL, AZA, APAP

and VPA) (Fig 6). For the latter, molecular biomarkers and potential DDIs could be identified.

An accuracy, specificity, sensitivity, and precision of 67%, 58%, 75%, and 71%, respectively,

has been reached when comparing the potential DDIs with known DDIs from literature.

Notably, 72% of the predicted cytochrome P450 enzymes could be identified in known drug-

enzyme association for both drugs involved in the specific DDI [23]. This article provides a

systematic analysis of drug-induced hepatotoxicity by coupling in vitro toxicity data measured

in primary human hepatocytes [21] with in vivo pharmacokinetics, and thus allows an in-

vestigation of differences in drug response following oral administration of therapeutic and

toxic doses in humans. Drug-induced hepatotoxicity could be hence analyzed within a patient

context to investigate drug effects between therapeutic and toxic conditions and to discover

molecular biomarkers as well as potential DDIs for several hepatotoxic drugs. The results of

our study might help to improve clinical risk assessment and patient safety during a drug

development process in the future.

A Comparative Analysis of Drug-Induced Hepatotoxicity in Clinically Relevant Situations

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005280 February 2, 2017 19 / 28



Materials and Methods

Development of whole-body PBPK models

The whole-body PBPK models of the fifteen considered drugs (S1 Text) were built by use of the

software PK-Sim (version 6.0) and MoBi (version 3.4) (Bayer Technology Services, GmbH, Lever-

kusen, Germany) [60,61], which are freely available for academic use. PBPK models describe

ADME processes based on prior information about the physicochemical properties of a drug and

the physiology and anatomy of the organism [61]. In the PBPK model structure, relevant tissues

and organs are represented by compartments and are connected by blood flow (S4 Fig). These

compartments are usually subdivided into plasma, red blood cells, interstitial and intracellular

space. Distribution models describing mass transfer are parameterized based on physicochemical

drug properties and are used to determine partition coefficients as well as cellular permeability

values between these compartments [62,63,64,65]. The best-performing calculation methods pro-

vided in the modeling software were used in the developed PBPK models (S7 Table).

A reference PBPK model for intravenous administration was first developed and assessed

by comparing simulated drug concentrations with experimental data from literature. For fluta-

mide, only a reference PBPK model for oral administration of 250 mg was developed, since

this is the major therapeutic dose level and administration route. The Michaelis-Menten con-

stant (Km) and the maximal velocity (vmax) representing the kinetic behavior of active pro-

cesses were mainly fitted to best describe the experimental data used for model establishment.

However, experimentally measured Km values for several metabolic reactions could be identi-

fied in literature and were used unchanged in the model structure (S4 Table). In the PBPK

model of INH, two different vmax values were estimated for the enzymatic reaction catalyzed

by NAT2 to characterize fast and slow metabolizer, for which clinical data were available

[66,67]. Note that NAT2 polymorphism may extensively influence the pharmacokinetic and

pharmacodynamic behavior of INH for specific patient subgroups. To describe the elimination

of the drugs and their metabolites, renal and biliary clearance processes were incorporated

into the PBPK models (S5 Table) In the case of AZA, 6-MP, AD and CSA, renal elimination

was not considered since negligible amounts were found in urine [23,68].

Once a sufficient model quality was reached, a reference PBPK model for oral administra-

tion was developed thereby using all parameters identified for the intravenous reference PBPK

model. Only the intestinal permeability was adjusted in some cases to best describe the absorp-

tion phase after oral drug intake (S6 Table). In general, an endothelial barrier between the

plasma and the interstitial space is assumed for large molecules like proteins but not for small

molecules [69]. In the PBPK model of DFN, however, the rate of permeation through this

endothelial barrier was limited in all organs except in the liver (brain: 0.004 cm/s, other

organs/tissues: 0.04 cm/s), since DFN is highly bound to plasma proteins (Table 1).

The established reference PBPK models for both administration routes were further validated

dependent on the availability of experimental data from other clinical studies. Since APAP and

SST are mostly administered orally, only one administration route was considered in the specific

PBPK models (Fig 2). In the case of ERY, erythromycin ethylsuccinate (ERY-PED) [70], an ester

of the base form, was orally administered. In the validation step, all parameters of the specific ref-

erence PBPK model were left unchanged, except parameters characterizing the specific individu-

als and the dosage regimen. In the validated PBPK model established for intravenous and oral

administration of 200 mg and 300 mg of CPA, respectively, (Fig 2, S3 Table), kidney plasma

clearance was reduced to 5.1 ml/h/kg for renally-impaired patients [71,72].

Finally, a normalized root-mean-square deviation (RMSD) as well as the coefficient of

determination (R2) identified after linear regression were calculated for all human PBPK mod-

els to assess the model quality [20].
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To develop rat PBPK models used for the validation cross-species extrapolation was

applied. Thereby, pharmacokinetics were extrapolated from humans to rats by taking into

account physiological and anatomical differences between both species [42].

Prediction and validation of in vivo drug responses

The integrative multiscale approach called PICD allows a time-resolved description of

drug-induced in vivo response at the patient level by integrating in vitro toxicity data (S1

Text) into whole-body PBPK models [20]. Here, PICD was applied on the fifteen hepato-

toxic drugs to predict in vivo drug responses of key cellular processes, functional classes of

genes, and individual genes, induced by oral administration of therapeutic and toxic doses

in humans (S1 Text). When applying PICD, bioavailability values calculated from the devel-

oped human PBPK model were used to consider oral administration (S9 Table). In the case

of AZA, the bioavailability found in literature was used since the difference between the lit-

erature value and the calculated value was significantly high [73]. In vivo drug responses

after 2 h, 8 h and 24 h for therapeutic and toxic dose administration (S1 Text) were then cal-

culated by computing the mean gene response level (gene response is defined as absolute

log2 fold change) of all genes assigned to a specific key cellular process (S2 Table). In the

case where in vitro data [21] only exist for 8 h and 24 h, the predicted response patterns

were interpolated to determine response values at 2 h. When analyzing functional classes of

genes, in vivo drug responses were predicted for the different functional classes of genes

involved in a specific key cellular process by calculating the mean gene response level of all

genes assigned to a certain functional category.

To validate PICD in rats, significantly enriched key cellular processes (Benjamini-Hochberg

corrected p< 0.01) were first identified for each drug (S1 Dataset) and correspondent in vivo

drug responses were then predicted following oral administration of the three doses applied in

the in vivo rat study [21]. Here, the highest dose was identified in a 4-week toxicity study [21].

According to [20], predictions were subsequently compared to in vivo observations by calcu-

lating the Pearson correlation coefficient r, the coefficient of determination R2 and corre-

sponding confidence intervals (CI) between predicted drug response profiles and

measurements obtained in rat livers [21]. Predicted drug response profiles were linearly inter-

polated to be comparable to time-matched in vivo measurements (3 h, 6 h, 9 h, and 24 h).

Identification of significantly perturbed key cellular processes

In the first analysis of the comparative toxicity study, a set of strongly perturbed key cellular

processes was extracted by considering all processes that were found to be significantly over-

represented (Benjamini-Hochberg corrected p< 0.01) in the in vitro experiment [21] by at

least one third of the hepatotoxic drugs, irrespectively of the timepoints (S2 Dataset). In the

second analysis, a toxic change of at least 10%, on average, was required to identify a set of key

cellular processes significantly affected at certain timepoints by the high-responsive drugs but

not by the low-responsive drugs. At this threshold, no key cellular process was perturbed at

any timepoint by the low-responsive drugs.

Calculation of toxic changes

In the comparative toxicity analysis (Fig 2), toxic changes were calculated at different time-

points (2 h, 8 h and 24 h) for key cellular processes, functional classes of genes within a key cel-

lular process, and single genes. Here, a toxic change at a timepoint t for a drug d is defined as
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follows:

toxic changet;x;d

¼ in vivo drug response ðtoxicÞ t;x;d � in vivo drug response ðtherapeuticÞt;x;dð1Þ

where x denotes a key cellular process, a functional class within a key cellular process, or a sin-

gle gene. In vivo drug responses induced by therapeutic and toxic dose administration were

predicted by calculating gene response levels (defined as absolute log2 fold change) for single

genes, and by calculating the mean gene response level of all genes assigned to a key cellular

process or to a functional class within a key cellular process, respectively [20]. In order to com-

pare the toxic behavior of AZA and VPA in cell cycle checkpoint regulation, differences of

toxic changes for all involved genes were calculated between both drugs and were mapped

onto the pre-defined pathway ‘cell cycle G2/M DNA damage checkpoint regulation’ taken

from QIAGEN’s Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.

com/ingenuity). Note that differentially responding genes (absolute difference of toxic

change> 0.15) of AZA and VPA are reflected by a positive and a negative value, respectively.

All differentially responding genes as well as genes with toxic changes higher than 15% for

both drugs were finally used to build differential response pathways.

Prediction of molecular biomarkers and potential DDIs

All genes involved in the strongly affected key cellular processes analyzed in the functional

analysis were considered to identify potential molecular biomarkers and DDIs. A gene g was

marked as common molecular biomarker for all high-responsive drugs if the following condi-

tion was fulfilled:

meanðtoxic changeÞg > 1:5 �meanðtoxic changeÞ AND stdðtoxic changeÞg
< 0:5 � stdðtoxic changeÞ ð2Þ

In contrast, a gene g was marked as individual molecular biomarker for only a single drug d

if the more stringent requirement was fulfilled:

ðtoxic changeÞd;g > 7 �meanðtoxic changeÞ ð3Þ

Several thresholds deviating from ±5% of the used thresholds above did not significantly

alter the number of identified common molecular biomarkers (±14%) or individual molecular

biomarkers (±4%). All common molecular biomarkers were additionally compared between

the low and high-responsive drugs by evaluating the correspondent toxic changes between

both groups. All individual molecular biomarkers were used to identify potential DDIs.

Thereby, a potential DDI was assumed, if at least one individual molecular biomarker was

identified for both drugs. These DDIs were then compared with known DDIs from DrugBank

[23] and from Drugs.com [Accessed 2016 March 3rd] by calculating the accuracy, sensitivity,

specificity and the precision that were formulated as follows:

Accuracy ¼
TPþ TN

TPþ FPþ TNþ FN
ð4Þ

Sensitivity ¼
TP

TPþ FN
ð5Þ
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Specificity ¼
TN

TNþ FP
ð6Þ

Precision ¼
TP

TPþ FP
ð7Þ

where TP represents true positive, TN represents true negative, FP represents false positive,

FN represents false negative.

Types of DDIs (‘pharmacokinetic interaction’ and ‘pharmacodynamic interaction’) were

assigned according to [74], if the interaction type was not unknown. The BioInteractor tool

from DrugBank was used to confirm predicted drug-enzyme associations for two correspond-

ing drugs involved in a potential DDI [23].

Supporting Information

S1 Fig. PBPK model assessment. Simulated concentration-time profiles of parent drugs and

their metabolites were compared to experimental PK data. Observed vs. predicted plots includ-

ing the RMSD value and the coefficient of determination (R2) were generated for all reference

and validated PBPK models. All p-values calculated for the R2 values were lower than 0.0001.

(PDF)

S2 Fig. Principal component analysis. Principal component analysis was applied on all toxic

changes predicted at 2 h (blue), 8 h (green), and 24 h (red). Percentage of explained variance of

principal components one (PC1) and two (PC2) are shown in brackets. Ellipses around the dif-

ferent groups are generated with a confidence level of 0.95. Results of principal component

analysis were visualized by use of the web tool ClustVis [76].

(PDF)

S3 Fig. Toxic changes predicted for functional classes of genes involved in key cellular pro-

cesses. The toxic changes were predicted for different functional classes of genes involved in

the respective key cellular processes. All drugs belonging to the high-responsive group were

considered. The color scale depicts toxic changes that were normalized over each heatmap.

Normalization for each key cellular process is performed by subtracting the mean and by

dividing the respective standard deviation.

A. ‘Cytochrome P450 –substrate is a xenobiotic’.

B. ‘CAR/RXR activation’.

C. ‘Xenobiotic metabolism signaling’.

D. ‘Glutathione depletion–hepatocellular hypertrophy’.

E. ‘Fatty acid metabolism’.

(PDF)

S4 Fig. Schematic representation of a multiscale whole-body PBPK model. Schematic

representation of a multiscale whole-body PBPK model including 15 different tissues and

organs that are connected by blood flow. Sub-compartmentalization into blood cells, blood

plasma, interstitial and intracellular space is exemplarily presented for a default compartment.

(Reproduced with permission [20], https://creativecommons.org/licenses/by/4.0/)

(PDF)
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S2 Table. Toxicity lists. Seventy-four toxicity lists representing key cellular processes were
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(DOCX)

S3 Table. Experimental conditions. Administration route (intravenous (iv), or oral (po)),

respective doses, number of subjects and health state. The experimental PK data were either

used for establishment of the reference PBPK model (Reference) or for model validation (Vali-

dation).

(DOCX)

S4 Table. Active drug transport and metabolic processes. Metabolic and active drug trans-

port processes either consist of the metabolic enzyme and the corresponding metabolite or of

the transporter and the corresponding transporter type (efflux, influx). Kinetic parameters Km

and vmax were used to characterize the kinetic behavior of active processes. A liver plasma

clearance of 11.5 ml/min/kg was estimated for the clearance of 2-hydroxy-FT. For INH, NAT2

polymorphism was considered by estimating two different vmax values to best describe clinical

data available for fast and slow metabolizer [66,67].

(DOCX)

S5 Table. Renal and biliary clearance processes. Renal and biliary clearance processes of the

developed PBPK models.

(DOCX)

S6 Table. Intestinal permeability values. Intestinal permeability values for all drugs and their

metabolites. Some intestinal permeability values originally provided by the modeling software

[60] (Initial intestinal permeability) were slightly adjusted (Intestinal permeability used in

model) to best describe the experimental data for oral administration.
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