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Bioinformatics analysis based on DNA methylation data identified 
in lung adenocarcinoma subgroups with different immune 
characteristics and clinical outcomes
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Background: DNA methylation can be used to predict clinical outcomes and improve the classification 
of tumors. The present study aimed to develop a new lung adenocarcinoma (LUAD) classification system 
according to the immune cell gene-related methylation sites and to reveal the survival outcomes, clinical 
characteristics, immune cell infiltration, stem cell characteristics, and genomic variations of each molecular 
subgroup.
Methods: The DNA methylation sites of LUAD samples collected from The Cancer Genome Atlas (TCGA) 
database were analyzed, and the prognosis-related differential methylation sites (DMS) were screened. 
Consistent clustering of the samples was conducted using ConsensusClusterPlus, and the classification 
results were verified by principal component analysis (PCA). The survival and clinical results, immune cell 
infiltration, stemness, DNA mutation, and copy number variation (CNV) of each molecular subgroup were 
analyzed. 
Results: A total of 40 DMS were obtained by difference and univariate COX analyses, and the TCGA 
LUAD samples were divided into three subgroups: cluster 1 (C1), cluster 2 (C2), and cluster 3 (C3). Among 
these subgroups, the overall survival (OS) of C3 was significantly higher than that of C1 and C2. Compared 
with C1 and C3, C2 had the lowest innate immune cell and adaptive immune cell infiltration scores; the 
lowest stromal score, immune score, and iconic immune checkpoint expression; and the highest expression of 
messenger RNA (mRNA) expression-based stemness indices (mRNAsi), DNA methylation-based stemness 
index (mDNAsi), and tumor mutational burden (TMB). 
Conclusions: In this study, we proposed a LUAD typing system based on DMS, which was closely 
related to the survival, clinical features, immune characteristics, and genomic variations of LUAD, and may 
contribute to the development of personalized therapy for new specific subtypes.
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Introduction

Lung cancer is the most common cause of malignancy-
related death. Its prognosis is poor, with 75% of patients 
diagnosed at an advanced stage (1). Lung cancer is the result 
of multi-stage carcinogenesis, and the underlying molecular 
basis involves the complex interaction between genetic and 
epigenetic factors of significant diversity. These factors 
induce the activation of key oncogenes and the inactivation 
of tumor suppressor genes in a cancer tissue-specific way (2).  
In recent years, advances in molecular strategies and 
analysis platforms, including genomics, epigenomics, and 
proteomics, have been observed, which make it possible to 
accurately classify lung cancer subtypes and analyze their 
detailed mechanisms (3).

An enormous field of lung cancer molecular landscape is 
determined by epigenetic changes (1). Epigenetic changes, 
such as DNA methylation, histone modification, and small 
non-coding RNA, are heritable and reversible (4). DNA 
methylation is a particular focus of human cancer research, 
which leads to chromosome instability through global 
hypomethylation and abnormal gene expression by changing 
the methylation level of the promoter cytosine-guanine 
(CpG) island (5). Scientific research has been conducted on 
the existence of significant biomarkers of DNA methylation 

and their clinical association with lung cancer (6).  
Although research on single-gene methylation and the 
methylation profile of lung cancer has progressed (7),  
only 14 of these biomarkers have been converted into 
commercially available clinical products, including 
adenomatous polyposis coli protein (APC), glutathione 
S-transferase P (GSTP1), methylated-DNA-protein-
cysteine methyltransferase (MGMT), ras association 
domain-containing protein 1 (RASSF1), septin-9 (SEPT9), 
short stature homeobox protein 2 (SHOX2), N-myc 
downregulated gene 4 (NDRG4), bone morphogenetic 
protein 3 (BMP3), orthodenticle homeobox 1 (OTX1), 
twist-related protein 1 (TWIST1), one cut domain 
family member 2 (ONECUT2), branched-chain-amino-
acid aminotransferase, cytosolic (BCAT1), and DNA-
binding protein Ikaros (IKZF1) (8). It is reported that 
the expression and function of methyltransferases are 
responsible for immune regulation to some extent and 
may have an impact on DNA methylation modification 
patterns in human cancers (9). Choi et al. showed that a 
DNA methyltransferase inhibitor (DNMTi) attenuated 
graft-versus-host disease without compromising the graft-
versus-leukaemia effect by converting effector T cells into 
regulatory T cells (10).

For the treatment of lung cancer, previous clinical 
studies have shown that the DNMTis targeting DNMT 
also represents an epigenetic drug for lung cancer. 
DNMTis 5-Azacytidine (5-AzaC) and its analogue, 5-Aza-
2'-deoxycytidine (5-Aza-CdR), act by demethylating tumor 
suppressor genes to inhibit tumors. However, 5-Aza-CdR 
also has a risk of poor specificity and improper dosing, 
which may lead to tumor metastasis (11). In addition to 
predicting clinical outcomes, differential DNA methylation 
can also be used to distinguish tumor subtypes, indicate 
treatment responsiveness, and determine treatment 
strategies (12). Therefore, it is necessary to study DNA 
methylation in lung cancer.

In this study, we proposed a novel lung adenocarcinoma 
(LUAD) typing system based on 782 immune cell marker 
gene-related methylation sites and revealed the survival 
outcomes, clinical features, immune cell infiltration, 
stem cell characteristics, and genomic variations of each 
molecular subgroup. Our work demonstrated the different 
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states of molecular subgroups defined by the immune-
related methylation sites, which may be helpful for the 
personalized management and monitoring of LUAD in 
practice. We present the following article in accordance 
with the STREGA reporting checklist (available at https://
jtd.amegroups.com/article/view/10.21037/jtd-23-494/rc).

Methods

Acquisition and preprocessing of research data

RNA-sequencing (RNA-seq) data, DNA methylation 
data generated by Illumina Infinium HumanMethylation 
450 BeadChip array, copy number variation (CNV) data 
(Masked Copy Number Segment, affymetrix snp 6.0), 
single nucleotide variant (SNV) data (MuTect2. Variant0. 
Maf), and LUAD clinical follow-up pathological data were 
downloaded from The Cancer Genome Atlas (TCGA) 
(https://portal.gdc.cancer.gov/). The expression profile data 
was changed from fragments per kilobase million (FPKM) 
to transcripts per million (TPM) and transformed into 
log2. The processing of DNA methylation data involved 
the use of the k-nearest neighbors (KNN) algorithm to 
complete the missing values and retrograde, the removal of 
cytosine-guanine (CpG) sites with cross-reflection, and the 
exclusion of methylation sites on X and Y chromosomes. 
The stemness index was derived from Malta et al. (13). 
messenger RNA (mRNA) expression-based stemness 
indices (mRNAsi) was calculated based on the expression 
profile data, while DNA methylation-based stemness 
index (mDNAsi) was calculated based on the methylation 
data. The immune cell biomarkers gene set was obtained 
from the article of Charoentong et al. (14), which includes 
782 genes. The workflow of this study is summarized in 
Figure S1. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Screening of the differential methylation sites of immune 
markers

For the methylation data after preprocessing, only the 
methylation sites related to the 782 immune cell marker 
genes were retained. The differential methylation sites 
(DMS) of normal and LUAD samples were screened using 
the dmpFinder function of Minfi R package (V1.34.0) (15). 
P<0.05 and | deltabeta | >0.15 was used as the threshold for 
filtering. A deltabeta methylation site >0.15 was considered 
hypermethylation, while that <−0.15 was considered 

hypomethylation.

Consensus clustering analysis

The coxph function of R packet survival was used to analyze 
the DMS by univariate cox analysis based on the survival 
data. P<0.05 was used as the critical value to screen the 
DMS related to the prognosis of LUAD. The D2 clustering 
algorithm in R packet ConsensusClusterPlus was used to 
consistently cluster the TCGA-LUAD samples according 
to the prognosis-related DMS, in which the parameters 
were set as follows: reps =100, pItem =0.8, pFeature =1, and 
distance = “pearson”. The stability of the classification was 
verified by principal component analysis (PCA).

Single-sample gene set enrichment analysis (ssGSEA)

The immune infiltration of 28 immune cells was evaluated 
by R package “GSVA” and GSEABase. The 28 immune 
cells included two types: innate immune cells [myeloid-
derived suppressor cells (MDSCs), natural killer T cells, 
natural killer cells, monocytes, eosinophils, plasmacytoid 
dendritic cells, immature dendritic cells, CD56 dim natural 
killer cells, CD56 bright natural killer cells, macrophages,  
activated dendritic cells, neutrophils, and mast cells], and 
adaptive immune cells (memory B cells, type 1 T helper 
cells, gamma delta T cells, activated B cells, type 2 T helper 
cells, regulatory T cells, central memory CD4 T cells, 
effector memory CD4 T cells, immature B cells, type 17 T 
helper cells, activated CD4 T cells, central memory CD8 
T cells, effector memory CD8 T cells, activated cluster 
of differentiation (CD)8 T cells, and T follicular helper 
cells). The relative abundance of each immune cell in each 
cluster was expressed by the enrichment score calculated 
by ssGSEA analysis and compared between clusters by the 
Kruskal-Wallis test.

Infiltration analysis of immune cells provided by CIBERSORT

CIBERSORT is a tool used for the deconvolution of the 
expression matrix of human immune cells based on the 
principle of linear support vector regression, which provides 
a gene expression signature set for 22 immune cells (16). 
Using CIBERSORT, the immune infiltration of 22 immune 
cell species was quantified based on a known reference set. 
Then, the Kruskal-Wallis test was used to evaluate the 
immune infiltration scores between the clusters.

https://jtd.amegroups.com/article/view/10.21037/jtd-23-494/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-23-494/rc
https://portal.gdc.cancer.gov/
https://cdn.amegroups.cn/static/public/JTD-23-494-supplementary.pdf
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Extrapolation of the tumor microenvironment (TME) by 
ESTIMATE

ESTIMATE provides an algorithm to evaluate the 
presence of stromal cells and immune cell infiltration in 
tumor samples based on the expression characteristics of 
specific genes associated with stromal cells and immune 
cell infiltration (17). Using this method, the stromal and 
immune scores of each tissue sample were calculated using 
the public network station SourceForge software repositor 
(https://sourceforge.net/projects/estimateproject/).

SNV and CNV analysis

The most common mutation genes in LUAD were selected, 
and the mafTools (V2.4.05) software package (18) was 
applied to analyze and visualize the mutation pattern and 
frequency of the selected genes in the clusters, and the 
Chi-square test was used to test the mutation distribution 
in the cluster. Genomic Identification of Significant 
Targets in Cancer (GISTIC) was also used to determine 
the copy number amplification and deletion of genes in 
LUAD. Regions with a log2 ratio >0.2 were considered 
to be amplified, while those with a log2 ratio <0.2 were 
considered to be missing. The CNV patterns between 
clusters were compared by the chi-square test.

Statistical analysis

Statistical analysis in this study was performed in R software 
(version 3.6.3, https://www.r-project.org/ ver. 3.6.3). The 
Kaplan-Meier method and logarithmic rank test were 
used to examine the overall survival (OS) of the subtypes 
defined by DNA methylation sites using the “survival” and 
“survminer” R packets. The clinical sample information of 
clusters based on the DNA methylation site was analyzed by 
the chi-square test. For all statistical tests, significance was 
defined as P<0.05. 

Results

Identification of three DNA methylated molecular 
subgroups by consensus clustering

A total of 6,199 methylation sites related to immunocyte 
marker genes were obtained. By analyzing the difference in 
methylation sites between the normal and LUAD samples, 
336 DMS were identified, including 159 low DMS and 177 
high DMS (Figure 1A). Next, univariate Cox regression 

analysis of DMS was performed to obtain 40 DMS 
associated with LUAD prognosis (Table S1). According to 
the consensus matrix obtained by consensus clustering of 
the 40 DMS, the LUAD samples in TCGA were divided 
into three subgroups: cluster 1 (C1), cluster 2 (C2), and 
cluster 3 (C3) (Figure 1B). 

The heat map showed 40 DMS methylation levels 
per subgroup. Most of the methylation sites were not 
abundant in each sample of C1. The methylation level of 
C3 was higher than that of C1 but less than C2 (Figure 1C).  
PCA was performed to verify the results of the consensus 
clustering analysis. The two-dimensional score scatterplot 
also showed that the classification result of the consensus 
clustering analysis was reasonable (Figure 1D). The 
methylation level of the immune gene methylation site 
of each subgroup was quantified and compared between 
groups. It was observed that the methylation level of the 
immune gene of C2 was significantly higher than that of 
the other two subgroups, meanwhile the methylation level 
of C3 was significantly higher than that of C1 (Figure 1E). 
In terms of immune gene expression, C2 was obviously the 
lowest, and the expression of C3 was significantly higher 
than that of C2 (Figure 1F).

Survival and clinical characteristics of three subgroups

We analyzed the clinical features of each subgroup. The 
most obvious differences observed between C2 and the 
other two subtypes were a high proportion of death 
samples, a high proportion of current smokers (3), a higher 
T stage (T2–T4), a later N stage (N1–N2), and a relatively 
high proportion of late samples. For C3, the proportion of 
surviving patients was the highest, most of the samples were 
female, in the early stage of N stage and American Joint 
Committee on Cancer (AJCC) stage, and the proportion 
of current reformed smokers for more than 15 years was 
higher (Figure 2A). The prognostic results of the three 
subgroups were also estimated. Kaplan-Meier curve showed 
that the OS of C3 was significantly higher than that of C1 
and C2, but there was no significant OS difference between 
C1 and C2 (Figure 2B-2E).

Immune cell infiltration in the different DNA methylation 
molecular subgroups

The infiltration of 28 immune cells in the different subgroups 
was studied by ssGSEA. By generating the immune cell 
enrichment score of each sample to draw the heat map, we 

https://sourceforge.net/projects/estimateproject/
https://cdn.amegroups.cn/static/public/JTD-23-494-supplementary.pdf
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Figure 1 Consensus clustering analysis based on DMS. (A) For DMS of immune genes in normal and LUAD samples, hypermethylation 
sites are represented by blue wave dots and hypomethylation sites are represented by red wave dots. (B) A consensus matrix of LUAD 
was obtained by consensus clustering of 40 DMS. (C) Heat maps of 40 DMS methylation levels for each subgroup. (D) Two-dimensional 
score scatterplot of PCA. (E) Methylation levels of immune gene methylation sites in the three subgroups. (F) Violin picture showing the 
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found that among the three subgroups, C2 had the lowest 
immune cell infiltration score (Figure 3A). Meanwhile, the 
Kruskal-Wallis test was used to compare the immune cell 
infiltration scores of 28 immune cells in the three subgroups, 
and the results showed that all of the immune cell infiltration 
scores were significantly different among the three 
subgroups, and the most congenital and adaptive immune 
cells had the lowest scores in C2 (Figure 3B). 

The innate and adaptive immunity scores of the three 
subgroups were separately considered, both of which had 

the lowest level in C2 (Figure 3C). The scores of 16 of 
the 22 immune cells calculated by CIBERSORT showed 
significant differences between the three subgroups  
(Figure 3D). In addition, ESTIMATE was applied to 
calculate stromal, immune, and ESTIMATE scores to 
evaluate the level of infiltrating matrix, immune cells, 
and tumor purity in the three subgroups. The C2 cluster 
had the lowest stromal, immune, and ESTIMATE scores 
among the three subgroups, indicating that this subgroup 
may contain the least infiltrating matrix or immune cell 
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Figure 2 Analysis of survival and clinical characteristics of the three subgroups. (A) The proportion of survival status, age, gender, smoking 
status, T stage, N stage, M stage, and AJCC stage in three subgroups. A score of 1 in the smoking status represents a lifelong non-smoker 
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components (Figure 3E).
Immune checkpoint expression is often required before 

the treatment of tumors with immune checkpoint inhibitors, 
which is also an important immune indicator. The expression 
analysis of immune checkpoints in the three subgroups 
showed that six of the eight immune checkpoints exhibited 
significantly different expression levels among the three 
subgroups, including CD274 [programmed death ligand 
1 (PD-L1)], cytotoxic T-lymphocyte-associated protein 4 
(CTLA4), and programmed cell death 1 [PDCD1 (PD1)], 
which are often used as targets of immunotherapy, and 

they all had the lowest expression level in C2 (Figure 3F).  
These results indicated that C2 has weak antitumor 
immunity. 

To provide evidence for this conclusion, the enrichment 
scores of nine antitumor immune reaction-related 
indicators in three subgroups [antigen-presenting cell 
(APC) co-inhibition, APC co-stimulation, endothelial cells, 
fibroblasts, human leukocyte antigen (HLA), inflammation-
promoting, MHC class I, Type I interferon response, and 
Type II interferon response] (19,20) were analyzed. The 
results were consistent with our inference that all nine 
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indexes related to the anti-tumor immune response of C2 
were the lowest among the three subgroups (Figure 4).

Stemness indices of different DNA-methylated molecular 
subgroups

In the process of tumorigenesis and development, various 
differentiation phenotypes disappear rapidly and acquire 
progenitor and stem-cell-like characteristics. Considering 
the close relationship between tumor stem cells and tumor 
progression, the performances of mRNAsi and mDNAsi in 
three subgroups were analyzed. The mRNAsi of the three 

subgroups was significantly different, and the mRNAsi of C2 
was significantly higher relative to C1 and C3 (Figure 5A).  
In addition, the mDNAsi of C2 was also the highest among 
the three subgroups (Figure 5B). Both mRNAsi and mDNAsi 
were lowest among C3 samples with the best prognosis.

Relationship between the DNA methylation molecular 
subgroups and six pan-cancerous immune subtypes

We explored the associations between six pan-cancerous 
immune subtypes [C1: wound healing, C2: interferon 
(IFN)-γ dominant, C3: inflammatory, C4: lymphocyte 
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depleted, C5: immunologically quiet, C6: transforming 
growth factor (TGF)-β dominant] (21) and the three 
immune subtypes identified in this study. The majority of 
LUAD patients in TCGA belonged to the C1, C2, and 
C3 immune subtypes (about 90.6%), and the C5 immune 
subtype was not present (Figure 5C). 

The prediction of pan-cancer immune subtypes to OS 
in patients with LUAD showed that there were significant 
differences in survival trends among the five immune 
subtypes. The prognosis of pan-cancer immune subtypes C1 
and C6 was poor, while that of C3 was the best (Figure 5D). 
There were also significant differences in the composition 
of five immune subtypes among the three DNA-methylated 
molecular subgroups. The DNA-methylated molecular 
subgroup C2 contains more C1 and C2 immune subtypes, 
and C3 immune subtypes account for the largest proportion 
of molecular subgroup C3 samples with the best prognosis 
(Figure 5E). Therefore, our LUAD classification based 
on DMS was consistent with the pan-cancer immune 
classification.

Genomic characteristics in the different DNA methylation 
molecular subgroups

The mutation patterns and rates of 23 common mutant 
genes were analyzed in different DNA-methylated molecular 
subgroups samples. The genes with the highest mutations 
in C1 and C2 were TP53, CSMD3, and RYR2, but their 
mutation patterns in the two DNA-methylated molecular 
subgroups were different. Although the mutation rate of 
TP53 in C1 was higher than that in C2, TP53 had more 
missense mutations in C2. The main mutation mode of 
CSMD3 in C1 was missense mutation, while that in C2 
included both missense and multi-hit mutations. The 
most frequently mutated gene in C3 was KRAS, and the 
overall mutation rate of the 23 genes in the first two DNA-
methylated molecular subgroups was higher than that in C3 
(Figure 6A). The tumor mutational burden (TMB) of C2 was 
also significantly higher than that of C1 and C3 (Figure 6B).

CNV analysis of three DNA-methylated molecular 
subgroups showed that CNV was most common in C2, 
and different genes had different CNV frequencies in the 
three DNA-methylated molecular subgroups. The main 
CNV of RYR2, EGFG, CSMD3, RPAF, NF1, MET, 
ERBB2, and ALK in C2 was amplification, while that of 
STK11, SMARCA4, SMARCA4, KEAP1, RB1, CDKN2A, 
TP53, CTNNB1, and ROS1 in C2 was deletion. CNV 
deletion was the main change in C3 (Figure 6C). According 

to the distribution of the aforementioned genes on all 
chromosomes, the CNV of three genes was observed 
on chromosomes 7, 17, and 19, and the high-frequency 
deletion region was found on chromosome 18 (Figure 6D).

Discussion

Differences in methylation patterns have been observed in 
the subtypes of lung cancer, mutation status of cancer-driven 
genes, and various epidemiological factors (22). Therefore, 
the identification of methylation sites of cancer-specific 
genes may be helpful to molecular classification and disease 
stratification (23). The field of DNA methylation analysis 
is rapidly shifting toward genome-wide representation, 
rather than studying the methylation of individual genes in  
tumors (24). TCGA includes a large number of Infinium 
Human Methylation 450 BeadChip arrays of tumor samples, 
which provides available bioinformatics data for the study of 
tumor DNA methylation. Based on the DNA methylation 
data of cancers in TCGA, several studies have classified a 
variety of malignancies, such as biliary tract (25), breast (26), 
cervical (27), and esophageal (28) cancers. In this study, the 
transcriptome and DNA methylation data of LUAD were 
downloaded from TCGA. Three molecular subgroups of 
LUAD were defined based on 782 immune cell-related 
DMS. The clinical differences, immunocyte infiltration, and 
molecular differences between them confirmed the necessity 
of the detailed classification of LUAD.

Among the three DNA methylated molecular subgroups, 
C3 had the best prognosis, and the most striking difference 
between this subgroup and the two subgroups was that the 
proportion of surviving patients was the highest, most of the 
samples were female, in the early stage of N stage and AJCC 
stage, and the proportion of current reformed smokers for 
more than 15 years was higher, which was consistent with a 
better prognosis. Unlike C3, C2 had a high proportion of 
death samples, a higher proportion of current smokers (3),  
a higher T stage, a later N stage, and a relatively high 
proportion of late samples, which are external indicators of 
poor prognosis.

The control of DNA methylation is not only essential 
for regulating gene transcription; its broader effects include 
maintaining genome integrity and immune response 
regulation (12). In our work, we found heterogeneity in 
the pattern of immune cell infiltration and the anti-tumor 
immune response of molecular subgroups, as defined by 
DMS. According to a previous study, hypermethylated 
subgroups had lower immune cell infiltration rates in 
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cutaneous melanoma and breast cancer (29). Our results 
showed that most of the innate and adaptive immune cells 
had the lowest infiltration score in C2, and the infiltrating 
stromal and immune scores representing stromal and 
immune cells in this subgroup were also the lowest. The 
immune checkpoints related to anti-tumor immune 
response, especially PD-L1, CTLA4, and PDCD1, also 
exhibited the lowest expression level in C2. Furthermore, 
nine indexes related to the anti-tumor immune response 
of C2 showed the lowest level. Therefore, the anti-tumor 
immunity of C2 was weak. C2 also exhibited the most 
common TMB and CNV frequencies, indicating that the 
C2 genome was the least stable. According to a previous 
study, high stemness is associated with a tumor progression 
phenotype, poor prognosis, and genomic instability in 
LUAD (30). In this study, C2 showed the highest levels of 
mRNAsi and mDNAsi, which has been confirmed as the 
worst prognostic and genomically unstable phenotype.

The most advantages and disadvantages of the LUAD 
typing system is could predict prognosis, and immune 
status, and lack of experimental verification, respectively. 
Thus, in future, we considered the basic experiment and 
clinical validation.

Conclusions

In short, according to the 40 DMS, LUAD was divided into 
three molecular subgroups with specific DNA mutation and 
CNV patterns, exhibiting different clinical features, immune 
cell infiltration, immune and matrix scores, immune 
checkpoint expression, anti-tumor immune response, and 
stemness. Our results may provide potential strategies for 
the scientific study of different epigenetic subtypes.

Contribution to the field statement

In this study, a total of 40 DMS were obtained by difference 
and univariate COX analyses, and the LUAD samples of 
TCGA were divided into three subgroups: cluster 1 (C1), 
cluster 2 (C2), and cluster 3 (C3). Among these subgroups, 
the overall survival (OS) of C3 was significantly higher 
than that of C1 and C2. Compared with C1 and C3, C2 
had the lowest innate immune cell and adaptive immune 
cell infiltration scores; the lowest stromal score, immune 
score, and iconic immune checkpoint expression; and the 
highest expression of mRNA expression-based stemness 
indices (mRNAsi), DNA methylation-based stemness 
index (mDNAsi), and tumor mutational burden (TMB). 

We proposed a LUAD typing system for DMS, which was 
closely related to the survival, clinical features, immune 
characteristics, and genomic variations of LUAD, and may 
contribute to the development of personalized treatment 
for new specific subtypes.
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