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Simple Summary: Anthrax is a globally distributed, neglected, underreported, soil-borne zoonotic
disease. In West Africa, the disease is hyper-endemic, severely affecting the livestock sector. Many
challenges exist to control the disease in this region, particularly constraints on financial and human
resources. Therefore, methods that can be utilized to improve reporting, guide and prioritize surveil-
lance and control activities and rationalize the allocation of limited resources are crucial. In this study,
we showed how to optimize the use of fragmented, heterogeneous and limited precise reporting
data of anthrax in Burkina Faso, Ghana, Togo, Benin and Niger to understand risk periods as well
as identify and predict risk areas. To achieve this, we used anthrax data from different databases in
combination with environmental and climate variables and geospatial remote sensing techniques.
Our study demonstrated that the number of anthrax outbreaks by month increase with the increasing
monthly rates of change in precipitation and normalized difference vegetation index (NDVI) during
the transition period from the dry to the wet season. Livestock density, precipitation, NDVI and
alkaline soils were the main predictors of anthrax suitability in the region. Our findings on anthrax
seasonality and ecological suitability can inform surveillance, prevention and control programs
undertaken by animal and public health authorities and enhance collaborative One Health strategies.

Abstract: Anthrax is hyper-endemic in West Africa affecting wildlife, livestock and humans. Predic-
tion is difficult due to the lack of accurate outbreak data. However, predicting the risk of infection
is important for public health, wildlife conservation and livestock economies. In this study, the
seasonality of anthrax outbreaks in West Africa was investigated using climate time series and
ecological niche modeling to identify environmental factors related to anthrax occurrence, develop
geospatial risk maps and identify seasonal patterns. Outbreak data in livestock, wildlife and humans
between 2010 and 2018 were compiled from different sources and analyzed against monthly rates of
change in precipitation, normalized difference vegetation index (NDVI) and land surface temperature.
Maximum Entropy was used to predict and map the environmental suitability of anthrax occurrence.
The findings showed that: (i) Anthrax outbreaks significantly (99%) increased with incremental
changes in monthly precipitation and vegetation growth and decremental changes in monthly tem-
perature during January–June. This explains the occurrence of the anthrax peak during the early
wet season in West Africa. (ii) Livestock density, precipitation seasonality, NDVI and alkaline soils
were the main predictors of anthrax suitability. (iii) Our approach optimized the use of limited and
heterogeneous datasets and ecological niche modeling, demonstrating the value of integrated disease
notification data and outbreak reports to generate risk maps. Our findings can inform public, animal
and environmental health and enhance national and regional One Health disease control strategies.
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1. Introduction

Anthrax is a neglected, underreported, soil-borne zoonotic disease caused by the Gram-
positive, spore-forming bacterium Bacillus anthracis. It mainly affects wild and domestic
herbivores such as cattle, sheep and goats. It occurs globally, and remains enzootic in many
regions of the world, particularly sub-Saharan Africa, Central and South-western Asia, and
Central and South America [1,2]. Though vaccines are available for veterinary use, they
are rarely sought. The overall disease burden and economic impact of anthrax in livestock
are not fully known; however, epizootics occur every year and result in the deaths of
hundreds to thousands of animals, with subsequent negative socio-economic consequences
and impacts on food security. Significant outbreaks in wildlife have been also reported
in many regions of the world [3–8]. Humans most often contract cutaneous anthrax from
contact with infected animals, their carcasses, or by handling the meat, hides, bones, and
other materials from those animals, or gastrointestinal anthrax from consuming meat from
infected animals. Inhalation anthrax is less common but may represent an occupational
hazard in mills and tanneries processing wool/hair, skins and hides from infected animals.
An estimated 2000 to 20,000 human anthrax cases occur annually worldwide [9].

The primary reservoir for anthrax is the environment—soil—and previous studies
have shown that B. anthracis spores are mainly concentrated in the upper few centimeters
of ‘suitable’ soils, in low lying depressions or eroded shallow and deep rich alluvial soils,
particularly alkaline soils (pH = 6–8), characterized by high calcium and organic matter
content [10–12]. The spores can persist in the soil under extreme environmental and cli-
matic conditions for long periods of time, and be a source for re-emergence of disease
when conditions become favorable, contributing to disease persistence [6,13,14]. Livestock
and wildlife likely contract the disease while grazing and ingesting forage or soil contami-
nated with B. anthracis spores, browsing on vegetation contaminated by carrion flies, or
by percutaneous exposure from biting flies, and possibly spore inhalation [1,10,15]. Car-
nivorous and omnivorous animals can also become infected, usually by scavenging on the
carcasses of infected animals. Vegetative bacilli are shed in blood and other discharges from
infected animals that are dying or dead, and those bacilli then sporulate at temperatures
between 9 and 12 ◦C and contaminate surrounding soil and water, where they complete
this cycle of infection [1]. Factors associated with the occurrence of outbreaks around these
contaminated foci can be both natural (i.e., heavy rains and floods during the wet season,
followed by a drought; landslides) and anthropogenic (land-use change, i.e., agricultural
encroachment into pastoral areas; land excavation such as for irrigation, digging canals,
roads or houses).

Temperature and precipitation patterns are considered the main constraints to anthrax
sporulation and for the onset of anthrax outbreaks, which varies among locations [16]: it
may be observed after prolonged periods of hot, dry weather that follow heavy rains and
flooding, or with the onset of rains ending a period of drought [1,5,10,17–19]. Vegetation
growth (spring green-up) has been associated with anthrax seasonality [5]. However,
few studies have demonstrated or measured this directly [20]. Other factors favoring
the occurrence and spread of anthrax outbreaks include high livestock density [21], and
movement and grazing such as transhumance population movement and trade [18,22].
Nevertheless, the transmission mechanisms, as well as the environmental and climatic
risk factors associated with anthrax outbreaks and its seasonality, require more investiga-
tion for better understanding disease dynamics and devising appropriate prevention and
control measures.

Anthrax is a significant problem in West Africa, where many countries in the region
frequently experience outbreaks. At the end of the 20th century, the region was considered
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the largest hyper-endemic and epidemic anthrax area in the world due to widespread civil
unrest and the resultant breakdown of veterinary health care systems, and the ecological
and socio-economic factors present [10]. Anthrax remains a devastating disease in the
region, especially in rural areas where livestock farming is a primary occupation and where
capacities of veterinary services are weak. Lack of awareness, beliefs and behaviors, such as
consumption of diseased animals, slaughtering of sick animals and eating or handling meat
from infected animals, and dumping of dead carcasses in the open area, are some of the
compounding factors of the persistence of anthrax in many countries of the sub-region [23].
As with many countries with poorly resourced public and animal health services, the
disease is likely underreported: anthrax surveillance is often limited, and frequently animal
outbreaks are detected only when human cases are identified [17,18]. There are few data or
literature reports that accurately describe the occurrence of anthrax in either humans or in
livestock and wildlife, areas of risk, and anthrax epidemiology in these countries [17,18].
However, this information is crucial to better prevent and control disease occurrence
and inform surveillance. Ecological niche modeling [24] is increasingly used for disease
mapping in order to develop risk maps, and to identify temporal patterns and specific
environmental factors that may be used to predict when outbreaks may occur [25]. The
ecological suitability for anthrax occurrence has been predicted using a genetic algorithm
for rule-set prediction (GARP) [22], random forest [26], boosted regression trees [7] and the
Maximum Entropy (MaxEnt) [27–31] methods.

In this study, we analyzed the seasonality and modeled the ecological niche of anthrax
in West Africa in order to develop risk maps that can inform surveillance, prevention and
control strategies undertaken by veterinary and public health authorities. The study area
included Benin, Burkina Faso, Ghana, Niger and Togo, which was the area of focus for
an FAO regional workshop on anthrax prevention and control in 2015 (http://www.fao.
org/africa/news/detail-news/en/c/332755/ accessed on 19 July 2019). This region is
frequently affected by anthrax cases and outbreaks in livestock and humans [1,7]. The
objectives of this study were to: (a) test whether the outbreaks increased with incremental
changes in climate variables (precipitation, NDVI and temperature) during the early wet
season as suggested by anecdotal evidence of field observations; (b) identify ecological risk
factors; and (c) apply MaxEnt in combination with limited and heterogeneous datasets on
anthrax occurrences to generate risk maps.

2. Materials and Methods
2.1. Study Area

The study area was located between 8◦0′ N and 15◦25′ N and 5◦50′ W and 7◦25′ E in
West Africa across the climatic and ecological transition area between the Saharan zone
in the north and the Guinean zone in the south. It included northern Togo, Ghana, Benin,
Burkina Faso and southern Niger (Figure 1). Three main eco-climatic and agro-ecological
zones can be identified in this study region from the north to the south, based on average
annual rainfall and vegetation types [32]: (1) the Sahelian zone—an arid belt characterized
by average rainfall between 250 and 500 mm and the steppe/open savannah, i.e., grassland
with scattered acacia trees, including the northern and southern region of Burkina Faso and
Niger, respectively; (2) the Sahelo-Sudanian zone—a semi-arid belt with an average annual
rainfall of 500–900 mm and open tree to wooded savannah, including mostly Burkina Faso
as well as the northern region of Ghana, Togo and Benin; (3) the Sudano-Guinean zone—a
sub-humid belt characterized by average annual rainfall between 900 and 1100 mm and
wooded savannah to open woodlands. This zone includes the central region of Ghana,
Togo and Benin.

http://www.fao.org/africa/news/detail-news/en/c/332755/
http://www.fao.org/africa/news/detail-news/en/c/332755/
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Figure 1. Study area and anthrax outbreak locations before (black triangle) and after (red dots) 
filtering spatial auto-correlated records (point location data source: EMPRES-i, GIMD and FAO 
workshop). The dashed polygons are anthrax-affected districts (adm02 level) for which geo-
locations of outbreaks are missing (polygon data source: OIE-WHAIS). 

The main livestock production systems in the study region are pastoralism and agro-
pastoralism mixed with subsistence agriculture, with significant livestock movement 
along short and long-range migration routes. The seasonal movement of livestock herds 
is mainly transhumant to access the seasonal availability of water and forage resources 
during the dry season in the south and during the wet season in the north. Pastoralism 
mainly occurs in the Sahelian zone [33]. 

2.2. Anthrax Outbreak Occurrence Data 
Data available from open information sources on anthrax cases and outbreaks in 
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Figure 1. Study area and anthrax outbreak locations before (black triangle) and after (red dots)
filtering spatial auto-correlated records (point location data source: EMPRES-i, GIMD and FAO
workshop). The dashed polygons are anthrax-affected districts (adm02 level) for which geo-locations
of outbreaks are missing (polygon data source: OIE-WHAIS).

The main livestock production systems in the study region are pastoralism and agro-
pastoralism mixed with subsistence agriculture, with significant livestock movement along
short and long-range migration routes. The seasonal movement of livestock herds is mainly
transhumant to access the seasonal availability of water and forage resources during the
dry season in the south and during the wet season in the north. Pastoralism mainly occurs
in the Sahelian zone [33].

2.2. Anthrax Outbreak Occurrence Data

Data available from open information sources on anthrax cases and outbreaks in do-
mestic livestock, wildlife and humans that occurred between January 2010 and November
2018 were collected, georeferenced and mapped. Data sources included: (a) official periodic
disease incidence and outbreak data reported by countries to the World Organization for
Animal Health (OIE) and available from the World Animal Health Information System
(OIE-WAHIS); data are reported by year and by month or semi-annual reporting period,
disease presence or specific outbreak occurrence at the first or second (regional/provincial)
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administrative level, and may include number of animal cases and susceptible population;
(b) FAO Global Animal Disease Information System (EMPRES-i), which contains data on
confirmed anthrax outbreaks in livestock, wildlife and humans collected and provided by
FAO field officers and field mission reports, and additionally data on confirmed outbreaks
obtained from national authorities and media reports; (c) Global Incident Map Database
(GIMD; http://outbreaks.globalincidentmap.com/ accessed on 19 July 2019), which reports
disease event information on: date of the event, location (country name and city), animal
species infected, and a hyperlink to the source of information including geographical coor-
dinates and the number of infected/dead people or animals (domestic or wildlife); anthrax
outbreak event data for the study area in West Africa were manually entered for analysis;
(d) data (presence records) acquired from reports, presentations and maps provided by the
official authorities involved in the 2015 FAO regional anthrax workshop (hereafter named
FAO workshop). Locations were georeferenced but information on date and animal species
infected were missing. The disease data were collated in a single database and checked for
duplication and inconsistency based on their spatial and temporal information. Records
with the same coordinates and date were considered duplicates because they were related
to the same event.

Two sets of data were generated: (1) point location data (i.e., EMPRES-i, GIMD and
FAO workshop) that were used for training and validation of the prediction model and
(2) polygon data (i.e., OIE-WAHIS) that were used for validation purposes as well as for
analyzing and understanding the seasonality of anthrax in the region (Figure 1).

2.3. Anthrax Seasonality

The OIE data were used to estimate a monthly median number of anthrax outbreaks
by administrative units and by country. The decadal median time series of precipi-
tation (RFE2; 0.1-degree spatial resolution; years: 1995–2016), Normalized Difference
Vegetation Index (eModis NDVI C6, 250 m spatial resolution; 2007–2016) and land sur-
face temperature (Modis LST, 0.05-degree spatial resolution; years; 2002–2016) aggre-
gated by administrative units were downloaded from the USGS FEWS NET Data Portal
(https://earlywarning.usgs.gov/fews accessed on 19 July 2019) for each of the OIE ad-
ministrative units reporting anthrax occurrences. Then, the median monthly precipitation
(mm), NDVI and temperature (◦C) were calculated at the national level and for the whole
study area to obtain monthly profiles of the environmental variables. We hypothesized
that anthrax outbreaks were related to incremental changes in monthly precipitation and
vegetation growth and decremental changes in monthly temperature during the early wet
season (i.e., the transition period between the dry and the wet season). To identify the
month of key climatic and phenological transitions (rate of change), first derivative analysis
was applied to the temporal profiles of precipitation, NDVI and temperature [34]. Because
we calculated those changes between two subsequent months from January to June, the
rate of change (first derivative) of the climate variable profiles (CV) was calculated by
subtracting the median precipitation (or NDVI, temperature) value at month t + 1 from the
median precipitation (or NDVI, temperature) value at month t (e.g., median precipitation
for February—median precipitation for January) for each couple of subsequent months
during the period of study. Large positive rates indicate the rapidity of monthly incremental
change in the climate variable time series.

FDCV = (CV(t+1) − CV(t))/∆month, (1)

where FDCI is the first derivative value of CV (precipitation, NDVI or temperature) between
the month t and t + 1, CV(t) is the CV value at the month t, CV(t+1) is the CV value at the
month t + 1 and ∆month equals 1 as the interval.

We also calculated the second derivative of the climate variable time series to find the
local maximum and minimum rates of change [34].

Then the median number of anthrax occurrences by month was regressed against
the first and second derivatives (rates of change) of precipitation, NDVI and temperature.

http://outbreaks.globalincidentmap.com/
https://earlywarning.usgs.gov/fews
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The monthly median anthrax occurrences, precipitation, NDVI and temperature were
standardized to a mean of zero and a standard deviation of one prior to conducting the
statistical analysis [26]. The statistical analysis was performed in R 3.1.0.

2.4. Ecological Niche Modelling

Predictor variables. The predictor variables selected to model the ecological niche
for B. anthracis in this West African region were grouped in 4 categories (bioclimatic,
vegetation, topography and livestock) and included: 19 bioclimatic variables describing
temperature and precipitation obtained from the Worldclim database (http://worldclim.
org accessed on 19 July 2019) [35]; 24 classes of soil obtained from the Digital Soil Map
of the World [36]; 2 topographic variables (elevation and slope) from the Shuttle Radar
Topography Mission [37]; 2 land surface variables (landform, Topographic Position Index)
from the USGS Africa Land Surface Forms database [38]; species-specific (cattle, sheep
and goat) livestock density (Gridded Livestock of the World v02, FAO 2010, [39]) and total
livestock (FAO Africa Ruminants Tropical Livestock Units v1.0; 2015); a set of 16 vegetation
indices (NDVI, a measure of vegetation greenness derived from multi-spectral remote
sensing images) including monthly NDVI as well as the annual mean, minimum, maximum
and standard deviation, and 12 NDVI maps representing the rate of change (i.e., first
derivative), i.e., NDVI difference from montht+1 to montht1, as well as their descriptive
statistics (e.g., maximum, minimum, median and standard deviation of the monthly rates
of change). The vegetation indices were calculated from 16 years of a 10-day period of
the satellite SPOT-Vegetation time series (1998–2014; http://www.vito-eodata.be/PDF/
portal/Application.html#Home accessed on 19 July 2019). The predictor variables and
their properties are listed in Table S1. Predictor variables were standardized to a mean of
zero with a standard deviation of one, prior to performing the statistical analysis, as their
values were different physical quantities and on different scales of magnitude [40]. Spatial
analysis was performed in ArcGIS 10.0 (ESRI).

Modeling approach and evaluation. For the purpose of this study, a maximum entropy
algorithm [27] implemented in the MaxEnt software package (version 3.3.3 k) was chosen
to model anthrax suitability across the study area. MaxEnt has been widely used to model
geographic suitability for many zoonotic infectious diseases, including anthrax [29,30]. It
is robust and provides settings and parameters to deal with small sample sizes [41–46]
and can handle categorical and continuous predictors interactively [46,47]. Briefly, MaxEnt
inherently deals with, and is not sensitive to, spatial autocorrelation [48]. The probabilities
of species (disease) presence are calculated without assumptions about the distribution
of either species or predictors. In addition, MaxEnt generates response curves of each
continuous predictor and bar graphs of categorical predictors, essential in interpreting
model performance [49]. We explored different parameters and different combinations of
response types [31]. In this study, the goodness-of-fit of the model was assessed by the
Area under the Curve (AUC), which varies from no-better-than-random (0.5) to perfect (1).
The relative contribution of a predictor to the model was assessed by the ‘heuristic estimate’
(percentage) and the Jackknife method calculated by MaxEnt. The least contributing
predictors were removed stepwise, until the most parsimonious number of predictors
resulting at least in an AUC > 0.80 was reached [46]. Parsimony in the number of predictors
reduces the risk of overfitting and removes collinear variables [46].

We first removed highly intercorrelated (Pearson correlation coefficient computed by
ArcGIS 10; absolute threshold > 0.7) variables within each group of predictors (bioclimatic,
vegetation, topography and livestock) because multicollinearity may violate statistical
assumptions and may alter model predictions [48].

Because presence-only methods are sensitive to sampling biases [27,50,51], the out-
break locations, which were mainly concentrated in Northern Togo, were first inspected
for spatial autocorrelation using the Moran’s I statistic and then filtered using a threshold
of 5 km [26,31] to improve model performance and avoid overfitting [52]. Specifically, the
rarefy tool in the SDM ArcTool [52] was used to remove spatially autocorrelated occur-

http://worldclim.org
http://worldclim.org
http://www.vito-eodata.be/PDF/portal/Application.html#Home
http://www.vito-eodata.be/PDF/portal/Application.html#Home
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rences by reducing multiple occurrence records (clusters of points) to a single (filtered)
record within the specified distance. In addition, a bias file based on the Minimum Convex
Polygons of the rarefied (filtered) outbreaks was used to reduce background sampling
bias [52]. An averaged final model was then produced by entering the selected predictors
into the MaxEnt program and by empirically setting the number of a random seed, and ten
subsample runs (replicates). The Standard Deviations (SD) of the AUC of the ten replicates
were calculated to assess the robustness of the model.

We followed Araújo and Guisan [53] to classify model accuracy: 0.6–0.7 poor,
0.7–0.8 average, 0.8–0.9 good and 0.9–1 excellent.

3. Results
3.1. Anthrax Outbreak Data

The number of reported outbreaks between 2010 and 2018 varied among the different
data sources by month and year as well as in terms of different spatial units. Table S2
summarizes these data by country and data sources, while the spatial distribution is shown
in Figure 1.

3.1.1. Point Location Data

Because no spatial and temporal overlap was observed among the outbreak point
locations acquired from the GIMD (n = 7) and EMPRES-i (n = 13) databases, the data were
considered independent (i.e., no duplicates). The point data acquired during the FAO
workshop (n = 78) were also not coincident with the other point data and were pulled
together in a single database (the outbreak point location dataset) to build the ecological
niche model (n = 98) (Figure 1). The anthrax point data were available for Togo (83%),
Ghana (11%), Benin (3%), Burkina Faso (2%) and Niger (1%) (Table S2).

3.1.2. Polygon Data

OIE-WHAIS periodical data (n = 387), which were only available at a sub-national level
(i.e., regional/provincial) reported information on date, species and number of anthrax
cases for each country. According to these data, the study area was most heavily af-
fected during 2010, 2012, 2013 and 2017 (17%, 13%, 18% and 13%, respectively) (Figure 2a).
Niger and Burkina Faso were highly affected (Figure 2b; Table S2), but only three ge-
olocations were available from the outbreak point location dataset for the spatial risk
modeling (Figure 1).

3.2. Seasonality of Anthrax Occurrence

The outbreaks occurred in the study area throughout the year but were higher during
the transition period from the dry to the wet season, particularly in April/May, when
precipitation and vegetation increase, and the temperature starts decreasing after having
reached the maximum values (45 ◦C) (Figure 3a–c). This pattern was observed in each
country, except for Niger where the higher number of outbreaks was observed in July.
Detailed charts of each country are reported in Figure S1. For the whole study area, the
standardized median rainfall and NDVI were, respectively, higher in August/September
and September/October, several months later than the peak of the standardized median
number of anthrax outbreaks (Figure 3a,b). The standardized median temperature was
higher in March, a month earlier than the anthrax peak (Figure 3c). On the contrary, the
lowest numbers of outbreaks were observed during the wettest months (July to September),
when the temperature was lowest, while the rainfall and vegetation reached the highest
values. These patterns and periodicity are shown in Figure 4.



Animals 2022, 12, 1146 8 of 19Animals 2022, 12, x  8 of 20 
 

 
Figure 2. Number of anthrax outbreaks by year across the study area (a) and by country (b) between 
January 2010 and November 2018 (OIE-WHAIS data). 

3.2. Seasonality of Anthrax Occurrence  
The outbreaks occurred in the study area throughout the year but were higher during 

the transition period from the dry to the wet season, particularly in April/May, when 
precipitation and vegetation increase, and the temperature starts decreasing after having 
reached the maximum values (45 °C) (Figure 3a–c). This pattern was observed in each 
country, except for Niger where the higher number of outbreaks was observed in July. 
Detailed charts of each country are reported in Figure S1. For the whole study area, the 
standardized median rainfall and NDVI were, respectively, higher in August/September 
and September/October, several months later than the peak of the standardized median 
number of anthrax outbreaks (Figure 3a,b). The standardized median temperature was 
higher in March, a month earlier than the anthrax peak (Figure 3c). On the contrary, the 
lowest numbers of outbreaks were observed during the wettest months (July to 
September), when the temperature was lowest, while the rainfall and vegetation reached 
the highest values. These patterns and periodicity are shown in Figure 4. 

 

Figure 2. Number of anthrax outbreaks by year across the study area (a) and by country (b) between
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The standardized median number of outbreaks by month was significantly and posi-
tively related to the rate of change (first derivative) of standardized median precipitation
by month during the period from January to June (linear regression, b = 1.8, t = 2.6, p = 0.05,
adjusted R2 = 0.54). The peak of the standardized median number of outbreaks occurred in
April–May, matching the period with the highest increment in precipitation (March–April),
i.e., increased rate of change in standardized median precipitation by month (Figure 5a).
During the same period (January–June), the standardized median number of outbreaks by
month was positively related to the rate of change (first derivative) of standardized median
NDVI by month (linear regression, b = 1.7, t = 5.5, p = 0.005, adjusted R2 = 0.85). The highest
increase in vegetation growth occurred between April and May, fully matching the period
with the highest number of anthrax occurrences (Figure 5b) and the maximum increase in
precipitation rate. The relationship between the standardized median number of anthrax
outbreaks and the second derivative of standardized median rainfall as well as the second
derivative of standardized median NDVI by month was not significant (for both linear
regressions, p > 0.05). There was also no significant relationship between the standardized
median number of anthrax outbreaks and the standardized median temperature and its
first and second derivatives by month (p > 0.05).
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standardized median number of outbreaks by month was positively related to the rate of 
change (first derivative) of standardized median NDVI by month (linear regression, b = 
1.7, t = 5.5, p = 0.005, adjusted R2 = 0.85). The highest increase in vegetation growth occurred 
between April and May, fully matching the period with the highest number of anthrax 
occurrences (Figure 5b) and the maximum increase in precipitation rate. The relationship 
between the standardized median number of anthrax outbreaks and the second derivative 
of standardized median rainfall as well as the second derivative of standardized median 
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Figure 5. Standardized median number of anthrax outbreaks (orange line) against (a) first derivative
of standardized median precipitation (blue bars) by month and (b) first derivative of standardized
median NDVI (green bars) by month. The inset of each chart shows that the number of outbreaks
increases with incremental change in precipitation and NDVI during January–June.

Between the period January and June, the relation between the standardized me-
dian number of anthrax outbreaks, the first derivative of standardized median rainfall
and the first derivative of standardized median NDVI by month explained 97% of the
variance in anthrax outbreaks (linear regression, adjusted R2 = 0.97, p = 0.003, F = 77.26,
y = 0.37 + 1.28 NDVI1st_derivative + 0.86 RFE1st_derivative) (Figure S2). The variance increased
to 99% when the standardized median temperature by month was also included in the
regression (Table 1). Indeed, the first derivative of standardized median NDVI was expo-
nentially related to the first derivative of standardized median precipitation by month from
January to June (adjusted R2 = 0.95, p = 0.003, F = 36.93, Figure S2).
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Table 1. Results of the linear regression between standardized median number of anthrax outbreaks:
first derivative of standardized median rainfall, first derivative of standardized median NDVI and
standardized median temperature by month during the period January–June.

Variable Estimate Standard Error t Value p-Value

Intercept 0.43 0.03 13.24 0.005

zMedianNDVI (first derivative) 1.12 0.08 13.7 0.005

zMedianRFE (first derivative) 1.08 0.11 10.3 0.009

zMedianTemperature −0.16 0.04 −4.02 0.05

Residual standard error: 0.05 on 2 degrees of freedom (DF). Adjusted R-squared: 0.99. F-statistic: 316.8 on 3 and 2.
DF p-value: 0.003.

3.3. MaxEnt Ecological Predictive Niche Model

The anthrax point locations were spatially autocorrelated (Moran I = 1.31, expected
I= −0.012 n = 98 p = 0.04). After filtering, 59 independent and uncorrelated point locations
were obtained for the ecological niche model (Figure 1). The predictors (continuous vari-
ables) that were not significantly correlated (Person correlation coefficient <0.7 and >−0.7
p < 0.05) are shown in Table 2.

Table 2. Uncorrelated predictors based on the results of the correlation matrix. Total number of
analyzed predictors in brackets. Legend and acronyms as of Table S1.

N Uncorrelated Variable Name

Bioclimatic 10 (out of 19) Bio1, Bio2, Bio9, Bio11, Bio13, Bio14, Bio15, Bio18

Vegetation 17 (out of 32)

NDVI rate of change max, NDVI rate of change min, NDVI rate of change
med, NDVI rate of change SD, NDVI rate of change between: June and

May, Sept and Aug, Nov and Oct
NDVI 03, NDVI 04, NDVI 07, NDVI 10, NDVI 11, NDVI 12, NDVI min,

NDVI max, NDVI mean, NDVI SD
Topography 2 (out of 2) Elevation and slope

Livestock density 1 (out of 4) LTU
Soil and landform All categories

GlobCover All categories

The MaxEnt modeling analysis was performed using 59 outbreaks (45 for training
and 14 for testing, selected using a random seed) and the uncorrelated predictors listed
in Table 2. The final MaxEnt averaged spatial prediction model of the anthrax suitability
niche was based on nine uncorrelated, parsimonious predictors: bio2, bio11, bio15, bio18,
LTU, soil, landform, elevation and NDVI 10. The average training AUC for the replicate
runs was 0.93 and the standard deviation was 0.01, indicating a highly accurate model. The
predicted anthrax suitability map and the standard deviation (measure of uncertainty) are
shown in Figure 6a,b. In descending order, the most important variables selected by the
model were: livestock density (LTU: 22.2% of contribution), precipitation seasonality (bio15:
19.3%), NDVI in October (NDVI 10: 18.8%), Mean Diurnal Range (Bio2: 10.7%) and mean
temperature during the coldest three months of the year, i.e., August–October (bio11: 8.5%).
Elevation and landform contributed to about 7% each, while soil and precipitation in the
warmest quarter, i.e., February–April (bio18) contributed to about 6% together. The order of
importance was also confirmed by the permutation analysis (Table 3). The environmental
variable with the highest gain when used in isolation was NDVI 10 (for October). The
variable that decreases the gain the most when it is omitted is livestock density, which
therefore appears to have the most information that is not present in the other variables.
Another important variable was the mean diurnal range (bio2), which reflects temperature
fluctuations. The response curves of the anthrax ecological niche models and their statistics
are shown in Figure S3. The soil categories mostly contributing to the model were: Lithosols,
Dystric Nitosols, Luvic Arenosols and Solodic Planosols. Except for the nitosols (pH = 5.5),



Animals 2022, 12, 1146 12 of 19

these soil types are alkaline with a pH between 6 and 7. Regarding the landform, irregular
plains and breaks contributed the most. Large suitable areas for anthrax occurrence were
mainly located in northern and central Togo (i.e., Savanes and Kara regions), northern
Ghana (i.e., Upper East and Upper West regions), as well as in north-eastern (Atakora
region) and western Benin (i.e., Borgou region), reflecting the distribution of the anthrax
training data. In Burkina Faso, large suitable areas were located in the south-eastern side of
the country (i.e., Sud-Ouest, Cascades and Hauts-Bassins regions) and small, fragmented
areas in the central (i.e., Centre-Ouest and Centre-Sud regions) and eastern side (i.e., Est
region). In Niger, anthrax suitability was limited to the south-eastern side (Dosso and
Tilaberi regions), between the borders with Burkina Faso, Benin and Nigeria.
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Table 3. Contribution of the predictors to the MaxEnt model (averages over 10 replicates).

Predictors Percent Contribution Permutation Importance

LTU 22.2 29.7
Bio15 19.3 22.5

NDVI 10 18.8 8.5
Bio2 10.7 6.9

Bio11 8.5 9.8
Elevation 7.1 17.6
Landform 6.7 1.2

Soil 3.3 1.4
Bio18 3.3 2.4

4. Discussion

Anthrax is a globally distributed neglected disease that is often underreported, partic-
ularly in Africa. For this reason, data on the occurrence of disease are often unavailable
or limited, fragmented and incomplete, and our study was not an exception. This may
be related to the limited availability of digital data collection and reporting tools, and the
lack of sustainable data systems and human resources. However, accurate information
on anthrax occurrences is crucial to determine, predict and forecast the spatiotemporal
distribution of the disease occurrence in order to enhance prevention and control measures
in animal and public health, and to guide targeted surveillance strategies.

Our study optimized the use of limited available data to provide a better understand-
ing of the spatiotemporal dynamics of anthrax in West Africa, and to predict areas at
potential risk and environmental and climatic risk factors for the occurrence of anthrax.
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The OIE reporting dataset should include all known anthrax events in a country but is
accurate to only the first- or second subnational administrative level and so does not include
accurate geolocation data on the anthrax occurrences. This dataset was used to analyze
the spatiotemporal patterns of anthrax outbreaks and seasonality at the sub-national and
regional levels. The other datasets (EMPRES-i, GIMD, and FAO workshop) contained
geolocation information for anthrax occurrences, but were missing temporal information
that was used to train and test the ecological suitability model in MaxEnt.

In particular, the spatiotemporal approach based on the analysis of incremental
changes in precipitation and NDVI (first derivative) and temperature confirmed our hy-
pothesis on anthrax seasonality and its association with environmental and climatic risk
factors in West Africa, providing a scientific explanation for the evidence of anthrax during
the early wet season [16]. Regional studies of climate variable profiles are necessary to fully
understand the ecology of anthrax and inform activities to protect the animal, public and
environmental health [20]. In previous literature reports, outbreaks in grazing herbivores
occurred in seasonal or weather conditions along a spectrum from drought to hot-dry
seasons often following years of unusually high rainfall, to transition periods between
dry-wet or wet-dry conditions and wet season outbreaks [1,5,10,17–19]. Recent studies
have shown an association between anthrax occurrence and vegetation green-up [5,20]. So
far, two main climatic/ecological hypotheses on the seasonality of anthrax occurrence [16]
were formulated and focused on: (1) heavy rainfall and very wet conditions (e.g., wet
season) could unearth buried spores and/or move spores from soil to vegetation, as well as
transport and concentrate spore-contaminated water in low-lying areas in the landscapes,
or increase habitat suitability for arthropod-vectors [10]; (2) dry conditions could increase
congregation/density of animals in high-risk areas due to reduced resources availabil-
ity, as well as increase herbivores’ exposure to contaminated vegetation, soil and dust;
and various stressors during droughts could also lead to reduced host resistance [16]. In
Namibia, anthrax outbreaks were associated with soil ingestion by herbivores during the
wet season [16], while in Tanzania outbreaks were associated with prolonged droughts
or rains [54]. In our study, we demonstrated that anthrax occurrences were associated
with increased monthly precipitation and vegetation growth during the early wet season,
which were calculated as the rate of change (first derivative) of the precipitation and NDVI
time series.

Although the region was characterized by outbreaks of anthrax throughout the year,
the analysis revealed that the peak occurs in April, i.e., in the early wet season, when the
incremental change in precipitation is highest. April also represents the month with the
highest increase in vegetation growth. The larger the amount of precipitation increase from
one month to the next during the early wet season, the higher the increase in vegetation
growth and the higher the number of outbreaks during that month. This is in line with
the hypothesis that anthrax spores become increasingly available with increasing rainfall
and vegetation. As shown in Figures 3 and 4, at the end of the dry season and during the
transition period between the dry and the wet season, the vegetation is poorly available,
and the grass height is very low (low NDVI values). However, as shown by the exponential
relation between precipitation and NDVI in Figure S2, the vegetation response to rainfall
and, therefore, water availability is extremely rapid.

The vegetation grows fast during the first period of the wet season, potentially carrying
with it the spores that then become available to the grazing livestock. Because the grass
height during this period is still short, the grazing animals do likely ingest soil and, hence,
potentially anthrax spores. This confirms the study by [18,26] that reported the occurrence
of anthrax outbreaks in northern Togo and Ghana mainly during the hot-humid period of
the year. In our model, vegetation growth and rainfall increase by month explained 97%
of the variance in anthrax occurrence during the period January–June, and reached 99%
of variance when the temperature was included. Indeed, the peak in anthrax outbreaks
occurs immediately after the hottest period of the year, when the temperature is high but
lower than the maximum values and precipitation and NDVI increase. This period is
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also characterized by high evapotranspiration, which is an important predictor of anthrax
occurrence [30,55]. In Bangladesh, high temperature and heavy rains during the wet season
in areas with high Ca content (prone to anthrax) were the main contributors to anthrax
occurrence [56]. More research is needed to investigate the patterns of environmental
variables and their rate of change during the transition periods from the dry to the wet
season and vice versa.

The anthrax ecological niche was highly accurate (AUC = 0.93) and was generated
by nine parsimonious variables, confirming that the method is well suited to investi-
gate the distribution of infectious diseases [57–59], including anthrax [28–31]. Livestock
density was the main predictor of anthrax suitability, confirming the results of previous
studies [21,30,55]. Cattle and small ruminants are the species most affected in the re-
gion [18]. This corroborates our results on livestock density and highlights the importance
of accurate and timely available livestock data in spatial modeling. The data used in this
study (Gridded Livestock of the World v02) are publicly available and regularly updated
and can be used for the Anthrax suitability model. In line with the studies conducted in
Africa [4,28,29,31,55] and elsewhere [60,61], the environmental variables that contributed
the most to the predictions of anthrax occurrence were precipitation, NDVI and soil type.
In particular, our study identified precipitation seasonality (bio15) as the second most
important predictor after livestock density. Bio15 is a measure of the variation in monthly
precipitation totals over the course of the year. Since species distributions can be strongly
influenced by variability in precipitation, this index provides a percentage of precipitation
variability where larger percentages represent greater variability of precipitation. The
MaxEnt model revealed that the predicted probability of anthrax occurrence is negatively
associated with precipitation variability, suggesting that the disease follows predictable
seasonal patterns as also shown by our seasonal analysis. NDVI is a measure of vegetation
greenness and was found to be a strong positive predictor of anthrax suitability in the
study area, corroborating the results of other studies [4,7,26,28,29,60]. The soil types most
suitable for anthrax occurrence were alkaline and those with a pH between 5.5 and 7,
therefore confirming the results of previous studies in the region [26] and other areas of
the world [56,60]. Soil alkalinity and high soil calcium levels in the environment promote
bacterial sporulation and survival [20]. The annual mean diurnal range (bio2), which is a
measure of daily temperature fluctuation, showed a positive relationship suggesting that
the predicted suitability for anthrax presence may be affected by large fluctuations of daily
temperature [7]. Anthrax suitability was negatively related to elevation. Low-lying areas in
the landscapes may facilitate the concentration of anthrax spores [18].

A limit of his study was that the model was not able to extrapolate the suitability
outside of the training data. Large suitable areas for anthrax occurrence were mainly
located in south-east Burkina Faso, north and central Togo, northern Ghana and eastern
Benin, thus reflecting the observed anthrax training and validation data, including the
data available at the subnational level. In Ghana, the eastern corridor of the northern area,
which is considered a hotspot for Anthrax [62], was correctly identified by our model as a
suitable area, in line with the study by [26]; in addition, other areas in the central region
were correctly identified as unsuitable [62].

However, the model failed to predict the northern side of the study area, which is also
affected by the disease. This could be explained by the lack of training and testing data on
the northern side of Burkina Faso and Niger, which may have limited the extrapolation and
prediction power of the model in the Sahelian zone. These countries were highly affected,
but only three geolocations were available for the spatial risk modeling (Table S2). The
Sahelian zone is very arid as compared with the Sahelo-Sudanian and Sudano-Guinean
zones, where the majority of anthrax point locations were located. Other variables, such as
human practices, vaccination practices and pastoral movement, not considered in our study,
may explain the anthrax occurrence in the northern region of the study area. In Zambia,
the outbreaks appeared to be associated with human practices, e.g., land preparation
and plowing, rather than climate variables [63]. In Togo, the outbreaks occur during the
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transhumance period, thus enhancing the risk of disease spread [18]. These variables
should be considered in the future development of the anthrax suitability model.

Application to Animal Health Management

Many challenges exist, particularly constraints on financial and human resources,
which can hamper the implementation of control programs for anthrax in countries where
the disease is endemic. Therefore, methods that can be utilized to guide and prioritize
control activities and the allocation of limited resources will be exceptionally useful to
both the animal and human health authorities in such countries as they attempt to control
anthrax. This study demonstrates the use of limited precise reporting data, in combination
with anthrax reporting data at the first or second administrative level, to predict both
regions at risk and identify seasonal periods of increased risk; most countries will have
this latter data available both as part of their reporting to OIE, and in historical or research
records. The other data elements found to contribute the most to the final model in this
study are available from other sources (NASA, FAO, etc.), which may be adaptable to other
national or regional settings.

The results of this study will help to inform animal health and anthrax control pro-
grams across multiple countries and eco-climatic and agro-ecological zones within the
West African region and may be adaptable to other regions. The study identifies both
regions at risk and temporal relationships to meteorological events, such as substantial
rainfall as predictors for seasonal periods of increased risk. In particular, it identifies the
rate of change in the primary environmental constraints on anthrax outbreaks, precipitation
and temperature, as key predictors, and indicates that real-time analysis of data on these
variables can be used to identify escalating risk for anthrax emergence or re-emergence.

This information can inform differential or risk-based disease prevention and control
strategies that can be adapted to, and make the best use of, limited resources for disease
prevention and control. For example, if resource restrictions limit widespread preventive
anthrax vaccination in all areas with a history of, or potential for, outbreaks, vaccination-
based strategies may be implemented in selected zones and in seasonal time periods
identified as being of increased risk, and vaccination campaigns can be timed and targeted
to optimize vaccination and ensure delivery prior to the onset of “anthrax seasons”. In areas
with low to medium risk, control strategies may focus on disease awareness campaigns,
improving surveillance including media surveillance and active surveillance, and the
establishment and training of response teams for the rapid identification, confirmation and
response to any outbreaks [64]. Additionally, the identification of at-risk areas and periods
can indicate when and where to direct efforts to increase awareness in communities and
among health providers, and to implement effective surveillance in animal and human
populations. This can include the allocation of potentially limited laboratory diagnostic
resources to ensure rapid and accurate diagnostics are available in these areas, or ensuring
transport networks are in place to provide specimen transport to supporting diagnostic
laboratories. These activities should be One Health in nature to ensure detection, diagnosis
and reporting of suspect animal and human cases, as detection of human cases is frequently
the first indicator for animal anthrax outbreaks.

The importance of transhumant populations and their livestock in anthrax surveillance
and control in these areas has previously been identified [18]. Areas identified as at risk
for anthrax outbreaks, which include transit corridors for pastoralist or transhumant
populations, could indicate the need for outreach and provision of preventive veterinary
services to these populations; the areas and times of increased risk can be identified to
ensure that the animals transiting these areas are protected by vaccination in advance of
their movement, or that the animal herders are warned against introducing their animals
to those areas and during those periods if they are not vaccinated due to owner practices,
financial or other factors.

The information from analyses such as these can also help to guide and improve the
anthrax surveillance picture in the countries across the region, as education and awareness
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programs and training for health providers can be provided in zones that are identified as
suitable environments, ecologically, for anthrax and increase the likelihood of detection
and confirmation of new cases as they occur, adding to the robustness of the data for
risk mapping. Novel approaches such as the use of sentinel serosurveys in domestic or
peridomestic canines have been developed that could be utilized to further investigate
the presence of anthrax in these regions [65,66]. Additionally, focused efforts to improve
surveillance and laboratory capacity to detect and confirm anthrax cases in at-risk regions
will help improve the ability to characterize circulating B. anthracis strains. This can inform
anthrax vaccination strategies, including addressing the extent of potential circulation of
anthrose-deficient B. anthracis strains that have been previously identified in the region, and
which could persist in the face of current livestock vaccines [22,67], throughout the region.

5. Conclusions

This study optimized the use of limited available data to provide a better understand-
ing of the spatiotemporal dynamics of anthrax in West Africa, and to predict areas at
potential risk and also environmental and climatic risk factors for the occurrence of anthrax.
Our findings on anthrax seasonality and ecological suitability can inform surveillance,
prevention and control programs undertaken by animal and public health authorities and
enhance national and regional multi-sectoral One Health collaborations.
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