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Abstract The detection of foreign antigens in vivo has relied on fluorescent conjugation or

indirect read-outs such as antigen presentation. In our studies, we found that these widely used

techniques had several technical limitations that have precluded a complete picture of antigen

trafficking or retention across lymph node cell types. To address these limitations, we developed a

‘molecular tracking device’ to follow the distribution, acquisition, and retention of antigen in the

lymph node. Utilizing an antigen conjugated to a nuclease-resistant DNA tag, acting as a combined

antigen-adjuvant conjugate, and single-cell mRNA sequencing, we quantified antigen abundance in

the lymph node. Variable antigen levels enabled the identification of caveolar endocytosis as a

mechanism of antigen acquisition or retention in lymphatic endothelial cells. Thus, these molecular

tracking devices enable new approaches to study dynamic tissue dissemination of antigen-adjuvant

conjugates and identify new mechanisms of antigen acquisition and retention at cellular resolution

in vivo.

Introduction
Depending on the route of infection, vaccination mode, and ability of antigens to traffic, different

dendritic cell (DC) subsets are required to initiate T cell priming. Upon subcutaneous immunization,

small soluble proteins and virus particles pass through the lymphatics to the lymph node (LN), where

LN-resident DCs acquire and present antigen (Manolova et al., 2008; Gerner et al., 2017). For

larger antigens and/or pathogens that are too large to pass through the lymphatic capillaries, dermal

DCs migrate to the LN for presentation of processed antigens to naive T cells (Manolova et al.,

2008; Bonneau et al., 2006; Hampton and Chtanova, 2019). Most adaptive immune responses

require antigen processing and presentation by conventional DCs in either the draining LN or at the

site of infection or vaccination (migratory cutaneous or dermal DCs) (Eisenbarth, 2019).

Previous studies have shown that viral antigens persist in the LN beyond the time frame of infec-

tious virus (Jelley-Gibbs et al., 2005; Kim et al., 2010; Kim et al., 2011; Takamura et al., 2010;

Woodland and Kohlmeier, 2009; Zammit et al., 2006). We recently found that lymphatic endothe-

lial cells (LEC) store antigens from viral infection and vaccination (Kedl et al., 2017; Kedl and Tam-

burini, 2015; Tamburini et al., 2014). Using a vaccine formulation that elicits robust cell-mediated
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immunity comprising antigen, a Toll-like receptor (TLR) agonist, and an agonistic aCD40 antibody

(TLR/aCD40 vaccination) or viral infection (Ahonen et al., 2004; Ahonen et al., 2008;

Badovinac et al., 2002; Corbin and Harty, 2004; Kaech and Ahmed, 2001; Kurche et al., 2010;

Kurche et al., 2012; Lucas et al., 2018; McWilliams et al., 2010; Sanchez and Kedl, 2012;

Sanchez et al., 2007; Tamburini et al., 2012), we discovered that antigens were durably retained in

the LN (Kedl et al., 2017; Kedl and Tamburini, 2015; Tamburini et al., 2014). Antigen storage was

dependent on the presence of a TLR agonist (e.g. polyI:C alone [TLR3/MDA5/RIGI or Pam3cys

(TLR1/2)+ aCD40]), but also occurred with antigen conjugated to a TLR agonist (e.g. 3M019 [TLR7])

[Tamburini et al., 2014]. We named this process ‘antigen archiving’ and showed it is important to

poise memory T cells for future antigenic encounters (Tamburini et al., 2014).

Prior to these studies, the only non-hematopoietic cell type thought to retain antigens were follic-

ular DCs, which harbor antigens in antigen-antibody complexes for extended periods of time and

for the benefit of B cell memory (Zammit et al., 2006; Heesters et al., 2013). Fibroblasts and non-

endothelial stromal cells (SCs) comprise a large portion of the LN stroma and are capable of present-

ing peripheral tissue antigens, but their capacity to acquire and present foreign antigens is not yet

well understood (Fletcher et al., 2010; Fletcher et al., 2011; Turley et al., 2010). We were unable

to detect antigen archiving by blood endothelial cells (BECs) or fibroblasts in our initial studies

(Kedl et al., 2017; Kedl and Tamburini, 2015). While LECs have been shown to present antigens in

the absence of inflammation to induce T cell tolerance (Cohen et al., 2010; Cohen et al., 2014;

Nichols et al., 2007; Rouhani et al., 2015; Tewalt et al., 2012; Dubrot et al., 2014; Hirosue et al.,

2014; Lund et al., 2012), we showed that presentation of archived antigen occurs only after

exchange of the archived antigen from an LEC to a migratory DC; changing the stimulus from

eLife digest The lymphatic system is a network of ducts that transports fluid, proteins, and

immune cells from different organs around the body. Lymph nodes provide pit stops at hundreds of

points along this network where immune cells reside, and lymph fluid can be filtered and cleaned.

When pathogens, such as viruses or bacteria, enter the body during an infection, fragments of their

proteins can get swept into the lymph nodes. These pathogenic proteins or protein fragments

activate resident immune cells and kickstart the immune response. Vaccines are designed to mimic

this process by introducing isolated pathogenic proteins in a controlled way to stimulate similar

immune reactions in lymph nodes.

Once an infection has been cleared by the immune system, or a vaccination has triggered the

immune system, most pathogenic proteins get cleared away. However, a small number of

pathogenic proteins remain in the lymph nodes to enable immune cells to respond more strongly

and quickly the next time they see the same pathogen. Yet it is largely unclear how much protein

remains for training and how or where it is all stored. Current techniques are not sensitive or long-

lived enough to accurately detect and track these small protein deposits over time.

Walsh, Sheridan, Lucas, et al. have addressed this problem by developing biological tags that can

be attached to the pathogenic proteins so they can be traced. These tags were designed so the

body cannot easily break them down, helping them last as long as the proteins they are attached to.

Walsh, Sheridan, Lucas et al. tested whether vaccinating mice with the tagged proteins allowed the

proteins to be tracked. The method they used was designed to identify individual cell types based

on their genetic information along with the tag. This allowed them to accurately map the complex

network of cells involved in storing and retrieving archived protein fragments, as well as those

involved in training new immune cells to recognize them.

These results provide important insights into the protein archiving system that is involved in

enhancing immune memory. This may help guide the development of new vaccination strategies

that can manipulate how proteins are archived to establish more durable immune protection. The

biological tags developed could also be used to track therapeutic proteins, allowing scientists to

determine how long cancer drugs, antibody therapies or COVID19 anti-viral agents remain in the

body. This information could then be used by doctors to plan specific and personalized treatment

timetables for patients.
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tolerizing to immunostimulatory (Kedl et al., 2017; Kedl and Tamburini, 2015). Soluble antigens

are exchanged via two distinct mechanisms: (i) direct exchange between LECs and migratory DCs

and (ii) LEC death. Antigen transfer from LECs to both migratory conventional (c)DC1s and cDC2s is

required for archived antigen presentation to antigen-specific memory T cells (Kedl et al., 2017;

Kedl and Tamburini, 2015). After viral infection, archived antigen is transferred to Batf3-dependent

migratory DCs as a result of LEC death during LN contraction (Kedl et al., 2017).

Limitations of current approaches have precluded sensitive and quantitative measures of antigen

levels across cell types, providing only a glimpse of the cell types and molecular mechanisms that

control antigen acquisition, processing, and retention in the LN. Studies of antigen in the LN and

peripheral tissues have mainly relied on antigen-fluorophore conjugates or indirect measurement of

antigen uptake and presentation (Gerner et al., 2017; Jelley-Gibbs et al., 2005; Kim et al., 2010;

Zammit et al., 2006; Kedl et al., 2017; Tamburini et al., 2014; Jelley-Gibbs et al., 2007), which

defined antigen acquisition by specific DC subsets and trafficking of antigens using live imaging

(Gerner et al., 2017). However, antigen archiving has been difficult to study because antigen-fluoro-

phore conjugates suffer from low microscopic detection sensitivity, yielding weak signals that dimin-

ish over time. Moreover, detection of antigen in the LN and other tissues has relied on flow

cytometric analysis using cell surface markers, restricting analysis to specific cell types. To address

these limitations and better understand antigen archiving, we developed a new approach to track an

antigen-phosphorothioate DNA. The phosphorothioate DNA contained a tracking device for detec-

tion using single-cell mRNA sequencing and initiated a robust immune response when conjugated to

the protein antigen. Here, we outline the tissue distribution in vivo of this antigen-DNA conjugate by

utilizing the conjugated phosphorothioate DNA as an adjuvant and tracking device.

Results

Generation, validation, and immunogenicity of antigen-DNA conjugates
To quantify the dissemination and uptake of antigen in the draining LN after vaccination, we devel-

oped a vaccination strategy to measure antigen levels using single-cell mRNA sequencing. Many

prior studies have used the model antigen, ovalbumin (ova), conjugated to a fluorophore to track

antigen in vivo. Here, we conjugated ova to DNA oligonucleotides with barcodes suitable for analy-

sis by single-cell mRNA sequencing (Figure 1a). The ~60 nt DNA tag contains a unique sequence

barcode and PCR primer binding sites, similar to CITE-seq tags (Stoeckius et al., 2017; Figure 1—

source data 1). We measured the stability of unconjugated DNA and ova-DNA conjugates in which

the conjugated DNA either had normal phosphodiester linkages (pDNA) or was protected through-

out by phosphorothioate linkages (psDNA). Quality control of these conjugates indicated a 1:1 stoi-

chiometry of protein to DNA (Figure 1b). To measure the stability of the antigen-DNA conjugate,

we added antigen-DNA conjugates to cultures of bone marrow-derived dendritic cells (BMDCs) and

quantified the amount of DNA in cell lysates and media over time using the PCR handle to detect

the DNA by quantitative PCR. Amount of DNA was quantified as a ratio of DNA detected relative to

the amount of protein acquired from the cell lysate. We found significantly higher levels of ova-

psDNA in cells relative to ova-pDNA (approximately fourfold at day 1; p=0.002

and approximately sevenfold at day 3; p=0.004), indicating that psDNA is more stable than pDNA

(Figure 1c). In addition, ova conjugation was required for phagocytosis by BMDCs as we detected

limited amounts of unconjugated pDNA or psDNA (values <1 at days 1–7) (Figure 1c). To determine

if the BMDCs had both the ova and DNA within each cell, we used flow cytometry and immunofluo-

rescence using an antibody to detect ova and streptavidin to detect the biotinylated DNA tag. We

detected both ova and DNA within the same cells by flow cytometry (Figure 1d, Figure 1—figure

supplement 1a) and co-localization by immunofluorescence (Figure 1e). We also measured conju-

gate stability in mouse LECs, a cell type that retains foreign proteins for long periods

(Tamburini et al., 2014), and found that ova-psDNA conjugates were stable over 7 days of culture,

whereas ova-pDNA was rapidly degraded (Figure 1f). In the endothelial cells, we detected both the

ova protein and the barcode within the same cell and co-localized to same location (Figure 1—fig-

ure supplement 1b, c). Furthermore, the ova-psDNA retention within the LECs was similar to a vac-

cine strategy using an ova protein-fluorophore conjugate with polyI:C and anti-CD40, which we

previously demonstrated induces antigen archiving (Tamburini et al., 2014; Figure 1—figure
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Figure 1. Antigen-psDNA conjugates undergo normal processing and presentation. (a) Schematic of ovalbumin (PDB code 1ova) antigen conjugation

to barcoded DNA with phosphodiester and phosphorothioate DNA linkages and a 30 biotin label (circle with B inside). Sulfur replaces a non-bridging

oxygen to create a DNA phosphorothioate linkage. List of oligo sequences used can be found in Figure 1—source data 1. (b) Conjugation of

oligonucleotides to ovalbumin. Purified conjugate was analyzed by 10% TBE native PAGE stained with GelRed for DNA (left) followed by Coomassie

Figure 1 continued on next page
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supplement 1d–f). Using a more phagocytic cell, bone marrow-derived macrophages, we observed

nearly all macrophages phagocytosed the ova-psDNA at day 1 and found the ova and psDNA within

the same cell (Figure 1—figure supplement 1g). In macrophages given ova-psDNA 7 days prior, we

detected only ova protein (Figure 1—figure supplement 1g), potentially resulting from high levels

of endonucleases found within the lysosome of macrophages (Krieser et al., 2002; Nagata, 2007).

To determine whether conjugation of psDNA to ova affected ova processing and presentation,

we measured BMDC presentation of ova-derived SIINFEKL peptide by co-culture with SIINFEKL-spe-

cific OT1 T cells. BMDCs given ova-psDNA induced significantly more proliferation of OT1 T cells

than unconjugated ova (Figure 1g, h), suggesting enhanced activation of BMDCs upon encounter

with ova-psDNA conjugates. Furthermore, we detected pDNA and psDNA in BMDC culture media

at 1 day after addition but not at later time points, confirming that ova-psDNA conjugates are proc-

essed and not released by BMDCs after phagocytosis (Figure 1—figure supplement 2a, b). Finally,

ova-psDNA conjugates led to increased OT1 proliferation relative to ova plus psDNA (unconju-

gated), showing that ova-psDNA conjugates are immunostimulatory (Figure 1g, h) and consistent

with studies showing conjugation of antigens to RNA or DNA induce TLR7 (RNA) or TLR9 (DNA) sig-

nals that lead to prolonged antigen presentation (Xu and Moyle, 2018). Addition of polyI:C and

anti-CD40 to BMDCs with ova also elicited robust OT1 proliferation, demonstrating that TLR activa-

tion on the BMDCs is required for efficient cross-presentation to T cells (Figure 1—figure supple-

ment 2c).

We next asked whether vaccination with ova-psDNA conjugates elicits a T cell response in vivo.

We compared antigen-specific T cell responses in mice vaccinated with a mixture of ova-psDNA and

polyI:C/aCD40 to its individual components (ova, psDNA, polyI:C, and polyI:C/aCD40; Figure 2a,

Figure 2—figure supplement 2a, b) and—consistent with the differences in OT1 proliferation we

saw in vitro—found that T cell responses to ova-psDNA were greater than either ova with polyI:C,

ova with polyI:C/aCD40, or a mixture of unconjugated ova and psDNA (Figure 2b). Interestingly,

ova-psDNA conjugate combined with polyI:C/aCD40 did not significantly enhance the T cell

response beyond ova-psDNA alone (Figure 2b). T cells stimulated by ova-psDNA produced signifi-

cantly more IFNg than any other vaccination strategy even in the absence of ex vivo SIINFEKL pep-

tide stimulation, indicating prolonged and active presentation of ova-psDNA (Figure 2c, d).

Together, these data show that ova-psDNA conjugates elicit antigen-specific T cell responses inde-

pendent of polyI:C/aCD40. These findings are consistent with TLR9-dependent immune responses

Figure 1 continued

staining for protein (right). DNA-TCO: 61 nt barcoded oligonucleotide with 50-trans-cyclooctene (TCO); ova-mTZ: ovalbumin functionalized with

methyltetrazine (mTZ); ova-DNA: DNA-conjugated ovalbumin product with oligonucleotide attached. (c) Bone marrow-derived dendritic cells (BMDCs)

were treated with pDNA, psDNA, ova-pDNA, or ova-psDNA (5 mg) by addition to the culture media. After 1, 3, and 7 days, cells were washed, released,

lysed, and analyzed for pDNA or psDNA by qPCR. Values are displayed as fold-change relative to the negative control (cells alone). Asterisks denote

sample significant amounts relative to the negative control (p<0.01; Wilcoxon rank-sum test). Error bars represent standard error of the mean (SEM). 3–

5 wells were evaluated per group on 2–3 independent occasions. (d) Flow cytometric analysis of ova-psDNA conjugates acquired by BMDCs after 1 day

or 7 days. Cells were washed 1 day after ova-psDNA treatment. Harvested BMDCs were stained with anti-ovalbumin made in rabbit and a secondary

anti-rabbit conjugated to Phycoerythrin (PE) and then stained with streptavidin conjugated to brilliant violet 421 to visualize the 30 biotin label on the

psDNA. Shown are average and ± standard error. Experiment was performed three times with three technical replicates. (e) As in (d) except cells were

plated onto glass coverslips and treated with ova-psDNA for 24 hr prior to staining with either anti-ovalbumin and a secondary conjugated to PE (red)

followed by streptavidin conjugated to Fluorescein Isothiocyanate (FITC) (green). Co-localization is shown in yellow. Scale bar is 10 mm. Imaging was

repeated three independent times. Approximately 100 cells were visualized with a similar frequency of double-positive cells as observed in (d). No

single-positive cells were detected. (f) Analysis of DNAs as in (c) using murine lymph node lymphatic endothelial cells. (g) BMDCs were incubated with

ova-psDNA (conjugated), ova plus psDNA (unconjugated), or PBS for 1, 3, and 7 days prior to adding OT-1 T cells labeled with violet proliferation dye.

T cells and BMDCs were co-cultured at a ratio of 1:10 for 3 days. (h) Quantification of (g) using the percent divided calculation described in the

Materials and methods. Experiments were performed three times with 3–5 wells per sample with similar results. Error bars represent SEM. Asterisks

denote sample significant amounts relative to the negative control (p<0.05 Wilcoxon rank-sum test). Exact p-values are as follows: day 1 psDNA:ova-

psDNA p=0.008, psDNA:untreated p=0.016, ova-psDNA:untreated p=0.016; day 3 psDNA:ova-psDNA p=0.008, psDNA:untreated p=0.016, ova-

psDNA:untreated p=0.016; day 7 psDNA:ova-psDNA p=1, psDNA:untreated p=0.400, ova-psDNA:untreated p=0.400. n.d.: none detected.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Antigen tags and other oligonucleotide sequences used in qPCR and single-cell experiments.

Figure supplement 1. Visualization of antigen and DNA in different cell types.

Figure supplement 2. DNA barcode is not retained in cell media over time.
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elicited by psDNA (Baek et al., 2001; Coffman et al., 2010; Vollmer et al., 2004), similar to DC

presentation of conjugates of ova demonstrated with other TLR agonists (van Montfoort et al.,

2009) and other subcutaneously administered ova-TLR conjugate vaccine platforms (Xu and Moyle,

2018).

We previously showed that a vaccination strategy comprising soluble antigen and vaccinia virus

(VV; Western Reserve) induced robust antigen archiving that lasts longer than those using polyI:C/a

CD40 adjuvant (Kedl et al., 2017). To evaluate antigen-psDNA performance during an active infec-

tion, we determined T cell responses after vaccination by comparing individual components with

mixtures of ova, VV, ova-pDNA, or ova-psDNA. Subcutaneously administered ova-psDNA alone

again elicited a T cell response (Figure 2, Figure 2—figure supplement 2a), and addition of VV to

ova-psDNA conjugate moderately increased T cell responses compared to ova-psDNA alone, similar

to what we observed with ova-psDNA/polyI:C/aCD40 (Figure 2, Figure 2—figure supplement 2b).

Finally, we examined the cell-type specificity of ova-psDNA dissemination in vivo. Mice were vacci-

nated with mixtures of (i) ova-psDNA and VV or (ii) ova-psDNA and polyI:C/aCD40, and levels of

ova-psDNA were quantified by PCR in both leukocytes and SCs (fractionated by CD45 expression) in

the draining LNs. We found that CD45- SCs had high amounts of ova-psDNA, but not ova-pDNA,

corresponding to increased inflammation (Tamburini et al., 2014), whereas CD45+ leukocytes had

very low levels of ova-psDNA or ova-pDNA 7 days after vaccination (Figure 2—figure supplement

2c). These data recapitulate our previous demonstration of durable antigen retention by CD45- SCs

Figure 2. Antigen-psDNA conjugates elicit a robust immune response in vivo. (a) Mice were immunized in the footpad with ovalbumin (ova) alone or

ova-psDNA with or without polyI:C/aCD40 or polyI:C. After 7 days, draining popliteal lymph nodes (LNs) were harvested and cells were stained and

gated as B220-, CD3+, CD8+, CD44+, and OVA257 Kb SIINFEKL-specific tetramer to measure antigen-specific CD8 T cell responses. (b) Quantification

of SIINFEKL-specific CD8 T cells within the LN (data from a). Experiment was performed three times; shown is combined data from at least three mice

per group, per experiment. p-Values were calculated using a two-stage step-up method of Benjamini, Krieger, and Yekutieli and did not assume

consistent standard deviation. Error bars represent standard error of the mean (SEM). (c) As in (a) and (b) except cells were restimulated with SIINFEKL

peptide for 6 hr ex vivo in the presence of brefeldin A, then stained for IFNg and IL-2. (d) Quantitation of IFNg-positive CD8+ T cells with or without

peptide stimulation in the draining LN. Experiment was performed three times; shown is combined data from at least three mice per group, per

experiment. p-Values were calculated using a two-stage step-up method of Benjamini, Krieger, and Yekutieli and did not assume consistent standard

deviation. Error bars represent SEM.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Gating strategies.

Figure supplement 2. Vaccinia plus ovalbumin (ova)-DNA conjugate induces ova-specific T cell response and archiving.
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(Kedl et al., 2017; Tamburini et al., 2014), confirming that ova-psDNA, but not ova-pDNA, is a

faithful tracking device for antigen archiving in vivo.

Molecular tracking of antigen during the immune response to
vaccination
Given the ability of the antigen-psDNA conjugates to induce a robust immune response in vivo (Fig-

ure 2) and our ability to use the psDNA as a measure of protein antigen levels (Figure 1), we used

the antigen-psDNA conjugate as a ‘molecular tracking device’ to understand the distribution of the

protein antigen in the LN following this vaccination. To determine whether we could identify if cells

acquire and archive (Tamburini et al., 2014) antigens following antigen-psDNA, we vaccinated mice

subcutaneously with an equimolar mixture of uniquely barcoded ova-psDNA conjugate, unconju-

gated psDNA, and unconjugated pDNA (unprotected phosphodiester backbone) with VV (as in Fig-

ure 2—figure supplement 2c), and evaluated antigen distribution (via psDNA abundance) in the LN

at early (2 days) and late (14 days) time points. At each time point, single-cell suspensions were pre-

pared from draining popliteal LNs and divided into SC (by depleting CD45+ cells) or lymphocyte

populations (by flow sorting for CD11c, CD11b, and B220 markers; Figure 2—figure supplement

1b). To enrich for myeloid cell populations but maintain representation of other cell types, CD11c+,

CD11b+, B220+, and ungated live cells were mixed at a 4:4:1:1 ratio, respectively. These cell popu-

lations were analyzed by single-cell mRNA sequencing, measuring both mRNA expression and the

quantity of psDNA in each cell using unique molecular identifiers (Islam et al., 2014; Figure 3).

We recovered a total of 800 cells in the CD45- fraction and 8187 cells in the CD45+ fraction at

the 2-day time point. We recovered more CD45- cells (6372 CD45-; 4840 CD45+) at the 14-day time

point likely due to expansion and proliferation of the LN stroma (Tamburini et al., 2014;

Lucas et al., 2018; Lucas and Tamburini, 2019). We classified cell types using an automated

approach (Fu et al., 2020), comparing measured mRNA expression patterns to reference data sets

for DCs (Brown et al., 2019; Miller et al., 2012), fibroblastic reticular cells (FRC)s (Rodda et al.,

2018), and LECs (Fujimoto et al., 2020; Kalucka et al., 2020; Xiang et al., 2020; Figure 3—source

data 1). As expected, the CD45+ fraction contained DCs, monocytes, T cells, and B cells (Figure 3a,

b, d, e), while the CD45- fraction contained SCs, including LECs, BECs, epithelial cells, and fibro-

blasts (Figure 3g , h, j, k). We did not recover VV mRNAs in cells at either time point, possibly due

to viral clearance or a failure to recover infected, apoptotic cells in the live/dead selection (Fig-

ure 2—figure supplement 1b).

We first examined the dynamic changes of myeloid populations in the LN. We detected conven-

tional DCs, including cDC1 and cDC2 (Figure 3a–c), which develop from a common DC precursor

upon expression of FMS-like tyrosine kinase 3 ligand (Flt3L) (Guilliams et al., 2014). LN-resident and

migratory cDCs can be distinguished by expression of cell-type-specific transcription factors includ-

ing basic leucine zipper transcription factor (Batf3) and interferon regulatory factor (IRF8) (cDC1)

(Aliberti et al., 2003; Hildner et al., 2008; Tsujimura et al., 2003) or IRF4 and Notch (cDC2)

(Lewis et al., 2011; Schlitzer et al., 2013). These cDC types are also typically classified based on

expression of CD11c, Zbtb46, and chemokine XC receptor 1 (cDC1 are XCR1+, cDC2 are XCR1-)

(Guilliams et al., 2014; Bachem et al., 2012). cDC2s are further categorized as either Tbet-depen-

dent and anti-inflammatory (cDC2A) or RORgt-dependent and pro-inflammatory (cDC2B)

(Brown et al., 2019).

As expected, at day 2 we identified a large population of LN-resident cDC2B (cDC2 Tbet-) cells

harboring ova-psDNA (Brown et al., 2019). However, we did not find any cDC2A (cDC2 Tbet+)

cells, consistent with their role in anti-inflammatory processes (Brown et al., 2019). The myeloid

populations contained CCR7hi cDCs (n = 3432; 42% of total), which we classified as migratory DCs.

This migratory DC population included Langerhans cells (n = 285; 3.5% of total), migratory cDC1s

(n = 593; 7.2% of total), and migratory cDC2s (n = 2554; 31% of total) (Miller et al., 2012), migrating

from the dermis (Figure 3b). At day 14, we identified a population of LN-resident cDC2 Tbet+ cells

(Figure 3e) consistent with resolution of the immune response (Brown et al., 2019). As cDC2 Tbet+

cells are thought to be anti-inflammatory, these data suggest that the immune response is being

quelled (Figure 3e). We also found a group of Siglec-H+ DCs, a cDC progenitor population

(Brown et al., 2019; Figure 3d, e).

Using unique barcodes, we quantified the amount of ova-psDNA, psDNA, and pDNA across cell

types. Levels of ova-psDNA molecules spanned four orders of magnitude, ranging up to 104 unique
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Figure 3. Dynamic acquisition of antigen-psDNA conjugates in lymph node tissue. (a, d, g, j) Uniform manifold approximation and projections (UMAPs)

are shown for dendritic cells (DCs) (a, d), lymphatic endothelial cells (LECs) (g), and fibroblastic reticular cells (FRC)s (j) at day 2 (a) and day 14 (d, g, j).

(b, e, h, k) Relative ovalbumin (ova) signal was calculated by dividing antigen counts for each cell by the median antigen counts for T and B cells.

Signals are plotted on log10 scale; black dots indicate median values, and vertical lines denote quartiles. Statistical comparisons between each pair of

Figure 3 continued on next page

Walsh, Sheridan, Lucas, et al. eLife 2021;10:e62781. DOI: https://doi.org/10.7554/eLife.62781 8 of 29

Tools and resources Cell Biology Immunology and Inflammation

https://doi.org/10.7554/eLife.62781


molecules and depending on the cell types and time point (Figure 3c, f, i, l). In contrast to the large

range of ova-psDNA across cell types, unconjugated psDNA and pDNA were largely undetectable,

indicating that antigen conjugation is required for cell acquisition (Figure 3—figure supplement 1).

Consistent with our previous studies (Kedl et al., 2017), we did not detect antigen-psDNA at appre-

ciable levels in T cells or B cells (Figure 3), and because these cell types were captured in both our

CD45- and CD45+ samples, we used their median antigen levels to normalize antigen counts in

other cell types across captures. We considered the trivial case wherein variation in antigen levels is

explained by total mRNA abundance; these variables are uncorrelated in SC types and weakly corre-

lated in cDC subtypes, possibly reflecting activation status (Figure 3—figure supplement 2).

At the early day 2 time point, LN-resident cDC2s contained high levels of antigen-psDNA, consis-

tent with studies of antigens administered with alum (Gerner et al., 2017; Figure 3b, c). In addition,

we found significantly higher levels of antigen in cDC2 Tbet-, migratory CCR7hi cDC2s, and migra-

tory CCR7hi cDC1s (Figure 3b, c, Figure 3—source data 1), with an average

of approximately sevenfold more antigen than T/B cells. At the later time point, migratory cDC1 cells

contained the most antigen, consistent with previous studies (Kedl et al., 2017; Figure 3e). In addi-

tion, Tbet- and CCR7hi migratory cDC2s contained moderate levels of antigen, up to threefold more

than T/B cells, but had lower amounts of antigen relative to day 2 (Figure 3b, c, e, f, Figure 3—

source data 1). At the late time point, we did not detect significant amounts of antigen in LN-resi-

dent cDC1s, Tbet+ cDC2s, Siglec-H+ cells, or monocytes (Figure 3e).

We next examined antigen levels in the LN SC populations (Figure 3g–l, Figure 3—source data

1). Endothelial cells in the LN are classified by their association with blood or lymphatic vasculature;

both are required for circulation and trafficking of immune cells to the LN. The blood vasculature cir-

culates naive lymphocytes to the LN, and the lymphatic vasculature transports immune cells from the

peripheral tissue including dermal DCs and memory T cells. We used an automated approach

(Fu et al., 2020) that uses correlation between reference and measured gene expression profiles to

assign unknown cell types to subtypes defined by previous studies. While strong correlation reflects

a good match between reference and query profiles, high correlation between multiple reference

LEC subtypes (Fujimoto et al., 2020; Kalucka et al., 2020; Xiang et al., 2020) and changes in

expression induced by antigen acquisition made definitive cell-type assignments challenging (Fig-

ure 3—figure supplement 3a–c). Notwithstanding these issues, we classified LEC subsets based on

the highest correlation values to reference cell types (Figure 3—figure supplement 3d, e;

Xiang et al., 2020) and identified three LEC subtypes (Fujimoto et al., 2020; Kalucka et al., 2020;

Xiang et al., 2020) including Ptx3 LECs, ceiling LECs, and Marco LECs with high levels of antigen at

the early time point (Figure 3—figure supplement 3). At the late time point, expansion and prolifer-

ation of LN SCs contributed to larger populations of cells including floor LECs, collecting LECs, ceil-

ing LECs, Ptx3 LECs (Kalucka et al., 2020), and BECs (Figure 3h; Malhotra et al., 2012).

At the day 14 time point, several LEC subtypes maintained high antigen levels (Figure 3h, Fig-

ure 3—source data 1). Floor LECs had uniformly high amounts of antigen. Median levels of ova-

psDNA were detected in collecting, Ptx3, and ceiling LEC populations that were significantly higher

than B/T cells; however, cells in these groups contained a range of antigen with both high and low

populations. We hypothesized that this variability stems from the physical location of the LECs within

the LN and their access to trafficking antigen. Using a fluorescently labeled ova with polyI:C/a

CD4012, we confirmed that fluorescent antigen amounts are highest on subcapsular LECs as identi-

fied by surface expression of PD-L1 and ICAM1 2 weeks after immunization, similar to ova-psDNA

Figure 3 continued

groups are available in Figure 3—source data 1. (c, f, i, l) unique moleular identifier (UMI)-adjusted antigen counts are displayed on UMAPs for each

cell type.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Comparison of relative ovalbumin (ova) signal for cell types shown in Figure 3—figure supplements 3, 4b, and 5b.

Figure supplement 1. Detection of DNA barcode requires conjugation to ovalbumin (ova).

Figure supplement 2. Antigen counts were independent of total mRNA counts.

Figure supplement 3. Lymphatic endothelial cell (LEC) types associated with high antigen counts 2 days after vaccination.

Figure supplement 4. Antigen is held by PD-L1/ICAM1 high lymphatic endothelial cells (LECs).

Figure supplement 5. FRC cell types with high antigen counts at day 2 post vaccination.
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vaccination (Lucas et al., 2018; Cohen et al., 2014; Figure 3—figure supplement 4). Together, our

findings suggest that antigen first passes through the sinus followed by the cortex and medulla.

These data also suggest that populations of LECs with less antigen could be a result of how the anti-

gen travels through the LN or mechanisms of antigen release over time.

Similar to the endothelial cell population, the number and types of non-endothelial SCs increased

at the later time point after immunization. Non-endothelial SCs in the LN are classified by their loca-

tion in the LN into T-zone reticular cells (TRC), marginal reticular cells (MRCs), follicular dendritic cells

(FDCs), and perivascular cells (PvCs) (Rodda et al., 2018). Recently, additional subsets were identi-

fied including Ccl19lo TRCs located at the T-zone perimeter, Cxcl9+ TRCs found in both the T-zone

and interfollicular region, CD34+ SCs found in the capsule and medullary vessel adventitia, indole-

thylamine N-methyltransferase+ SCs found in the medullary chords, and Nr4a1+ SCs (Rodda et al.,

2018).

At the early time point, the Cxcl9+ TRCs and CD34+ SCs (Rodda et al., 2018) had high amounts

of antigen (~10-fold relative to T/B cells) (Figure 3—figure supplement 5). At the late time point,

we detected CD34+ SCs, Nr4a1+ SCs, FDCs, and PvCs (Figure 3k). Only the CD34+ and Nr4a1+

SCs contained significant amounts of antigen (Figure 3k, Figure 3—source data 1). Interestingly,

the CD34+ SCs are adjacent to ceiling LECs and the Nr4a1+ SCs are found in the medullary chord

and medullary sinus, which are lined by medullary LECs. These findings may suggest potential anti-

gen exchange mechanisms between LECs and SCs that have yet to be defined. We found little anti-

gen in PvCs or FDCs (Figure 3k, Figure 3—source data 1).

Finally, these data provided insight into antigen transfer between SCs and DCs, a process impor-

tant for enhanced protective immunity (Kedl et al., 2017; Tamburini et al., 2014). We previously

showed that archived antigen obtained from the polyI:C/anti-CD40-based vaccine is transferred

from LECs to migratory Batf3-dependent cDC1s 2 weeks after infection (Kedl et al., 2017). Here,

we confirm that with the ova-psDNA vaccine CCR7hi migratory cDC1s had the highest amount of

antigen 2 weeks after vaccination (Figure 3e, Figure 3—source data 1; Kedl et al., 2017).

Together, these data validate the use of molecular tracking devices by corroborating previous stud-

ies of antigen trafficking with other vaccination strategies and identify new cells types that dynami-

cally acquire antigen during infection.

Gene expression signatures associated with antigen acquisition by DCs
We next leveraged the variation in antigen levels across cell types (Figure 3b, e, h, k) to identify

gene expression signatures associated with high levels of antigen that would validate our approach.

We classified cells as ‘antigen-high’ and ‘antigen-low’ using a two-component mixture model and

identified marker genes associated with each class (Figure 4a, b). To validate this approach, we eval-

uated the DC populations as genes associated with phagocytosis and activation have been estab-

lished (Miller et al., 2012; Breuilh et al., 2007; Bune et al., 2001; Figueiredo et al., 2018;

Gschwandtner et al., 2019; Hirano et al., 2007; Jin et al., 2020; Lämmermann and Kastenmüller,

2019; Mancardi et al., 2008; PrabhuDas et al., 2017; Sinclair, 1999). DC populations generally

contained lower antigen levels that were variable across subtype (Figure 3). We classified antigen-

low and antigen-high cells for each subtype. Among the subtypes with significant amounts of anti-

gen, Tbet- cDC2 cells had the highest antigen levels and largest differences in gene expression (277

genes in antigen-high cells, Figure 4, Figure 4—source data 1), consistent with cDC2s acting as the

primary cell type of antigen uptake following protein (Gerner et al., 2017).

At the early time point, genes upregulated in antigen-high DCs confirmed DC activation (Fig-

ure 4—source data 1). Antigen-high cDC2 Tbet- cells upregulated genes Ccl2 and Cxcl2 (consistent

with active recruitment of inflammatory cells; Gschwandtner et al., 2019; Lämmermann and Kas-

tenmüller, 2019), Msr1 (consistent with antigen scavenging; PrabhuDas et al., 2017), as well as

Pkm, Lgals3, and Mif (consistent with DC-T cell responses and DC differentiation during inflamma-

tion; Breuilh et al., 2007; Figueiredo et al., 2018; Jin et al., 2020; Figure 4c, d).

At the late day 14 time point, the highest antigen counts were found in the migratory cDC1 pop-

ulation, consistent with a role for migratory cDC1s in archived antigen acquisition from LECs

(Kedl et al., 2017; Figure 3e, f). Among the genes highly expressed by the antigen-high CCR7hi

migratory cDC1 population were Ccl5 and Fscn1 (Figure 4—source data 1). Consistent with these

DCs being involved in archived antigen presentation, Ccl5 (also known as RANTES) regulates CD8 T

cell responses during chronic viral infection (Crawford et al., 2011) and Fscn1, an actin binding
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Figure 4. Antigen-based classification of dendritic cells (DCs) and validation of genes associated with DC activation. (a, e) Day 2 (a) and day 14 (e)

cDC2 Tbet- cells containing low and high antigen counts were identified using a two-component mixture model. A uniform manifold approximation

and projection (UMAP) is shown for ovalbumin (ova)-low and ova-high cells. Cell types not included in the comparison are shown in white (other). (b, f)

The distribution of ova antigen counts is shown for ova-low and ova-high cDC2 Tbet- cells. Dotted lines indicate the mean counts for each population.

Figure 4 continued on next page
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protein, regulates cell migration of mature DCs via podosome formation (Yamakita et al., 2011).

Similar to the day 2 time point, among subtypes with significant amounts of antigen, Tbet- cDC2

populations showed the greatest differences in gene expression between antigen-high and -low cells

(230 genes in antigen-high cells; Figure 4e, f, Figure 4—source data 1). Genes upregulated in anti-

gen-high Tbet- cDC2s included Fcgr4, which is involved in phagocytosis, antigen presentation, and

proinflammatory cytokine production (Hirano et al., 2007; Mancardi et al., 2008), and CD72 and

Acp5, which are important for the inflammatory response and pathogen clearance (Bune et al.,

2001; Sinclair, 1999; Figure 4g, h). Collectively, these genes evoke specific processes in DC subsets

required for the immune response; it remains to be determined whether they are specifically associ-

ated with LEC-DC antigen exchange or storage of antigens within DCs.

Gene expression signatures associated with antigen archival by LECs
We next evaluated the LEC population to determine whether our classification approach could iden-

tify genes involved in antigen archiving. We applied the classifier to LECs as a population and found

large numbers of antigen-high-floor, collecting, and ceiling LECs (Figure 5c). Ptx3 LECs comprised a

mixture of antigen-low and antigen-high cells, but there was a larger fraction of Ptx3 LECs with low

antigen (Figure 5c). There were less antigen-low LECs compared to antigen-high LECs overall (34%

of total), suggesting that antigen archiving may be specific to LECs in general rather than attribut-

able to a specific LEC subset (Figure 5).

Using this classification approach, we identified 142 mRNAs that were significantly changed in

antigen-high or antigen-low LECs (Figure 5—source data 1). Prox1, while expressed by all LECs

identified, was highly expressed in antigen-high LECs, independent of the LEC type (Figure 5d, e).

Prox1 is a transcription factor required for LEC differentiation from BECs and defines LEC identity

via regulation of Vegfr3, Pdpn, and Lyve-1 (Harvey et al., 2005; Hong et al., 2002; Wigle and Oli-

ver, 1999). Prox1 upregulation in antigen-high LECs indicates it may also transcriptionally regulate

processes involved in antigen archiving.

Upregulation of Cavin1 and Cavin2 by antigen-high LECs suggested that caveolar endocytosis

may contribute to antigen acquisition by LECs, consistent with LEC dynamin-mediated transcytosis

in vitro (Triacca et al., 2017; Figure 5d, e). Cavin2 appears more specific to LECs than Cavin1, which

is also upregulated by BECs, suggesting that Cavin2 mediates endocytosis specifically in endothelial

cells of the lymphatic lineage. Based on Cavin2 gene expression, it appears that this process may be

most active in ceiling LECs (Figure 5e). To confirm this finding, we asked whether inhibition of the

caveolin pathway with nystatin impaired endocytosis of fluorescent antigen in mice vaccinated with

polyI:C/aCD40. We found a significant decrease in antigen acquired by LECs in the nystatin treat-

ment group 24 hr after administration of fluorescent antigen with this vaccine regimen (Figure 5f),

affirming the utility of molecular tracking devices for identifying genes involved in the process of

antigen acquisition or archival that are not necessarily specific to antigen-psDNA conjugates.

Finally, expression of Stabilin-1 (Stab1) and Stabilin-2 (Stab2) is increased in antigen-high LN

endothelial cells, suggesting that scavenging pathways are required for the acquisition of antigen-

psDNA conjugates after vaccination. Stab2 is uniquely expressed by LECs in the LN and not by BECs

(Malhotra et al., 2012), and Stab1 and Stab2 act as receptors for internalization of antisense oligo-

nucleotides with phosphorothioate linkages in liver endothelial cells and Kupffer cells (Miller et al.,

2016). However, we did not find significant amounts of unconjugated psDNA in LECs (Figure 3—

figure supplement 1), indicating that Stab1/Stab2 are upregulated as part of an antigen scavenging

or trafficking program initiated in LECs upon antigen acquisition during infection.

Figure 4 continued

Identification of genes associated with ova-low and ova-high for each cell type is available in Figure 4—source data 1. (c, g) UMAPs show the

expression (log-normalized counts) of top markers associated with ova-high cDC2 Tbet- cells. (d, h) Expression (log-normalized counts) of antigen-high

markers in each cell type.

The online version of this article includes the following source data for figure 4:

Source data 1. Genes associated with ovalbumin (ova)-high cells for dendritic cell (DC), FRC, and lymphatic endothelial cell (LEC) subtypes.
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Figure 5. Antigen-based classification of lymphatic endothelial cells (LECs) and identification of marker genes. (a) Day 14 LECs were classified into

antigen-high and antigen-low using a two-component Gaussian mixture model. A uniform manifold approximation and projection (UMAP) is shown for

antigen-low and antigen-high cells. T cells, B cells, and epithelial cells are shown in white (Other). (b) Distribution of antigen counts for antigen-low

(light blue) and antigen-high (dark blue) cells. Dotted lines indicate mean counts for each population. Identification of genes associated with

ovalbumin (ova)-low and ova-high for each cell type is available in Figure 5—source data 1. (c) The fraction of cells belonging to each LEC type for

antigen-low and antigen-high populations. (d) UMAPs show expression of genes significantly enriched in the antigen-high population (scale is log-

normalized counts). (e) Expression (log-normalized counts) of antigen-high markers in each cell type. (f) Mice were injected in the footpad with nystatin

(dose) and 1 hr later ova488/polyI:C/aCD40. After 24 hr, mice were euthanized and draining popliteal lymph node (LN) removed, stained for LEC

markers (CD45, PDPN, CD31, PDL1), and gated as in Figure 3—figure supplement 4. Shown are representative flow plots and quantification of

Figure 5 continued on next page
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Discussion
Our development of a ‘molecular tracking device’ enabled tracking of antigen throughout the LN to

specific cell types that acquire and archive antigens following subcutaneous immunization. Previous

studies used canonical surface markers to track antigen by microscopy and flow cytometry; instead,

our approach simultaneously defines cell type by gene expression and quantifies the acquired anti-

gen. The molecular tracking device includes phosphorothioate DNA conjugation, which provides a

combined TLR-antigen delivery system to study antigen distribution at time points beyond the life-

time of antigen-fluorophore conjugates and provided a map of cell types involved in antigen-psDNA

acquisition and retention.

Our approach expands upon our previous studies with other vaccine regimens that induce anti-

gen archiving and cell types that enhance protective immunity. Both here and in our previous stud-

ies, we found that whereas LECs archive antigen, migratory DCs passing through the lymphatic

vasculature are required to retrieve and present archived antigen to memory CD8 T cells derived

from the initial infection or immunization (Eisenbarth, 2019). Using an antigen/polyI:C/aCD40 vac-

cine regimen, we determined that antigen exchange from LECs to DCs and subsequent DC presen-

tation yields memory CD8 T cells with robust effector function during infectious challenge. The

studies included here predict the same outcome as both LECs and migratory DCs were detected

with ova-psDNA at the late time point. Several recent reports defined LEC and non-endothelial SC

subsets within the LN (Rodda et al., 2018; Fujimoto et al., 2020; Kalucka et al., 2020;

Xiang et al., 2020). By combining our molecular tracking device with these reference cell types, we

found that non-endothelial SC types acquire foreign antigens including CD34+ SCs, which neighbor

subcapsular sinus LECs in the tissue (Rodda et al., 2018). These findings suggest that the interstitial

pressure created by subcutaneous vaccination allows antigens to pass through the tissue directly to

the LN capsule, bypassing the lymphatic capillaries. Intriguingly, bypass of lymphatic capillaries may

still lead to LEC acquisition of antigens from the CD34+ SCs via SC-LEC exchange. Such a mecha-

nism would encourage future LEC-DC interactions and provide a benefit to protective immunity.

Molecular tracking devices provide a measure of cell state orthogonal to gene expression, which

we leveraged to identify candidate pathways involved in antigen-psDNA acquisition (Figure 4). We

show that the caveolin pathway is upregulated in antigen-high LECs and demonstrate this pathway

is involved in antigen acquisition in vivo following vaccination with fluorescent ova/polyI:C/aCD40

via pharmacological inhibition of caveolar endocytosis (Figure 4f). Genes uniquely expressed by

LECs such as Prox1, Cavin2, and Stab2 (Miller et al., 2012; Heng et al., 2008; Malhotra et al.,

2012) represent targets for further manipulation of antigen archiving by LECs.

The psDNA component of the tracking device elicits an immune response similar to other TLR-

antigen conjugate vaccines (Oh and Kedl, 2010; Oh et al., 2012), likely due to antigen-psDNA sta-

bility within DCs that causes prolonged antigen presentation in the cells that acquire the antigen

(van Montfoort et al., 2009; Xu and Moyle, 2018). This effect is illustrated by increased IFNg pro-

duction in the absence of ex vivo peptide stimulus (ova-psDNA compared to unconjugated ova; Fig-

ure 2). Prolonged antigen presentation better replicates an infection wherein levels of viral or

bacterial antigen rise over the duration of infection. However, in other applications it may be helpful

to limit the immunoreactivity of the antigen-psDNA via cytosine methylation (Hemmi et al., 2000) or

backbone modification (Lange et al., 2019). While many of the experiments we performed with the

ova-psDNA were consistent with our experiments using antigen-TLR conjugates or TLR/CD40-based

vaccines, it is likely that this type of vaccine interacts with different cell types and utilizes different

mechanisms for antigen acquisition and retention. These mechanisms are currently under active

investigation and may be more generalizable in the absence of TLR9.

Figure 5 continued

geometric mean fluorescence intensity (gMFI) from naive (black bar), vehicle control (red bar), and nystatin treated (blue bar). Three mice per group

were evaluated, and experiment was performed three independent times with similar results. Nystatin treatment reduces ova488 signal in LECs relative

to vehicle (p=0.02; Wilcoxon rank-sum test). Error bars indicate standard error of the mean (SEM).

The online version of this article includes the following source data for figure 5:

Source data 1. Genes associated with ovalbumin (ova)-low and ova-high cells for dendritic cells (DCs), FRCs, and lymphatic endothelial cells (LECs).
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A caveat of our studies concerns the dynamic stability of molecular tracking devices in tissue. Mul-

tiple detection methods showed that the protein and DNA components of our conjugates co-local-

ize in LECs (Figure 1f, Figure 1—figure supplement 1c) and bone marrow-derived DCs (Figure 1c,

d, g, h), and unconjugated psDNA was untrackable both in vitro or in vivo (Figure 1c, f, Figure 3—

figure supplement 1), indicating that psDNA is not readily taken up by cells. However, flow cytome-

try analysis of conjugates in BMDM indicates that DNA degradation may precede protein degrada-

tion (Figure 1—figure supplement 1g). With that said, it remains possible that acquisition of

molecular tracking devices by certain cell types leads to decoupling of the individual

components after which they could be independently transferred to other cells via trogocytosis or

other mechanisms of membrane transfer (Alegre et al., 2010). Closer evaluation of the protein-DNA

complex in vivo over time will be important to determine how accurately detection of the DNA via

single-cell sequencing reflects the movement of the protein-DNA complex. Future experiments will

address the dynamics of conjugate stability across multiple cell types to quantify the low levels of

unconjugated components and better define the limitations of molecular tracking devices in study-

ing protein degradation intermediates.

Molecular tracking devices will enable new approaches to study molecular dissemination in vivo.

To date, protein-DNA conjugates have been deployed in single-cell mRNA sequencing experiments

for ex vivo staining applications (e.g., CITE-seq; Islam et al., 2014). Our study lays the groundwork

for molecular tracking devices involving protein, antibody, drug, or pathogens conjugated to nucle-

ase-resistant, barcoded oligonucleotides that are stable during transit through mouse tissues. The

approach naturally extends to understanding how multiple different antigens might be processed

(using unique DNA barcodes) and enables new studies to manipulate antigen archiving to improve

vaccines, vaccine formulations, and prime-boost strategies. Moreover, the oligonucleotide portion of

the tracking device should enable analysis of its distribution in cells by in situ hybridization or intact

tissue by spatial transcriptomics (Eng et al., 2019; Rodriques et al., 2019; Ståhl et al., 2016), obvi-

ating the need for antibody-mediated detection of antigen.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-mouse
CD40 (Rat monoclonal)

BioXcell Cat#BE0016-2

Antibody Anti-ovalbumin
(rabbit monoclonal)

Abcam Ab181688 1:100

Antibody Anti-rabbit IgG PE
(Donkey polyclonal)

Biolegend Cat# 406421
RRID:AB_2563484

1:100

Antibody Anti-mouse CD45 BV510
(Rat monoclonal)

Biolegend Cat#103138
RRID:AB_2563061

1:300

Antibody Anti-mouse CD45 PE
(Rat monoclonal)

Biolegend Cat#103106
RRID:AB_312971

1:300

Antibody Anti-mouse podoplanin
APC (Hamster
monoclonal)

Biolegend Cat#127410
RRID:AB_10613649

1:200

Antibody Anti-mouse CD31
PerCP-Cy5.5 (Rat
monoclonal)

Biolegend Cat#102420
RRID:AB_10613644

1:200

Antibody Anti-mouse PD-L1
BV421 (Rat monoclonal)

Biolegend Cat#124315
RRID:AB_10897097

1:200

Antibody Anti-mouse CD8a
APC-Cy7
(Rat monoclonal)

Biolegend Cat#100714
RRID:AB_312753

1:400

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-mouse CD44
PerCP-Cy5.5 (Rat
monoclonal)

Biolegend Cat# 103032
RRID:AB_2076204

1:400

Antibody Anti-mouse B220/
CD45R BV510 (Rat
monoclonal)

Biolegend Cat# 103248
RRID:AB_2650679

1:300

Antibody Anti-mouse B220/
CD45R PE (Rat
monoclonal)

Biolegend Cat# 103208
RRID:AB_312993

1:300

Antibody Anti-mouse CD11c
APC Cy7 (Hamster
monoclonal)

Biolegend Cat#117324
RRID:AB_830649

1:400

Antibody Anti-mouse
CD11b PE-Cy7
(Rat monoclonal)

Biolegend Cat#101216 1:300

Peptide,
recombinant
protein

Streptavidin BV421 Biolegend Cat#405226 1:1000

Peptide,
recombinant
protein

Streptavidin AF488 Thermo Fisher
Scientific

Cat#S11223 1:1000

Chemical
compound,
drug

PolyI:C Invivogen Cat#Vac-PIC

Chemical
compound,
drug

Nystatin Sigma Aldrich Cat#N4014

Chemical
compound,
drug

Violet proliferation dye BD Biosciences Cat#562158

Chemical
compound,
drug

CFSE BD Biosciences Cat#565082

Strain, strain
background
(Mus musculus)

WT: C57BL/6 Charles River Labs C57BL/6 (B6)
Mouse Inbred 027

Strain, strain
background
(M. musculus)

OT1: C57BL/6-Tg
(TcraTcrb)
1100Mjb/J

Jackson Labs JAX: 003831

Cell line (M. musculus) SVEC4-10 ATCC ATCC CRL2181

Primary cells (M. musculus) mLEC Cell Biologics C57-6092

Mice
5-6 week-old mice were purchased from Charles River or Jackson Laboratory, unless otherwise

stated, bred and housed in the University of Colorado Anschutz Medical Campus Animal Barrier

Facility. Wild type and OT1 mice were all bred on a C57BL/6 background. OT1 mice are a TCR trans-

genic strain specific to the SIINFEKL peptide of ova (OVA257-264) in the context of H-2Kb. All animal

procedures were approved by the Institutional Animal Care and Use Committee at the University of

Colorado.

Phosphorothioate and phosphodiester oligonucleotides
Oligonucleotides were synthesized by Integrated DNA Technologies (IDT) and contained a 5’ amine

for conjugation, primer binding site, barcode, 10x Genomics Gel Bead Primer binding site for cap-

ture sequence 2, and a 3’ biotin. Phosphorothioate oligonucleotides contained a phosphorothioate
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modification at every linkage. All oligonucleotide sequences can be found in Figure 1—source data

1.

Conjugation of oligonucleotides to protein
Oligonucleotides were conjugated to ova by iEDDA-click chemistry (van Buggenum et al., 2016).

Oligonucleotides were derivatized with trans-cyclooctene (TCO) in 10� borate buffered saline (BBS;

0.5 M borate, 1.5 M NaCl, pH 7.6; sterile filtered). Dilution of this buffer to 1� results in a final pH of

8.5. A reaction containing 40 nmol of amine-modified oligo (0.5 mM), 1� BBS, 10% DMSO, 8 mL of

100 mM TCO-PEG4-NHS in DMSO (10 mM final; Click Chemistry Tools, A137), pH 8.5 was rotated

at room temperature for 15 min. A second aliquot containing the same amount of TCO-PEG4-NHS

in DMSO was added, and the reaction was rotated at room temperature for another hour. Excess

NHS was quenched by adding glycine, pH 8.5 to a final concentration of 20 mM and rotated at

room temperature for 5 min. Modification was confirmed by analysis on an 8% denaturing TBE

PAGE gel. Samples were precipitated by splitting the reaction into 20 mL aliquots and adding 280 mL

of nuclease-free water, 30 mL of 3 M NaCl, and 990 mL of 100% ethanol. The precipitation reaction

was incubated at �80˚C overnight, followed by centrifugation at >10,000,000 �g for 30 min. The

supernatant was discarded, the pellet was washed with 100 mL of 75% ethanol, and centrifuged

at >10,000,000 �g for 10 min. The supernatant was removed, and the pellets were dried for 5 min

at room temperature. The pellets were recombined by resuspension in 50 mL of 1� BBS. Samples

were quantified by A260.

To conjugate methyltetrazine to ova, detoxified ova (Sigma-Aldrich, St. Louis, MO) (using a Triton

X-114 lipopolysaccharide detoxification method; Anis et al., 2007) was buffer exchanged into 1�

BBS, pH 8.5. To an Amicon 0.5 mL 30 kDa filter (Millipore, UFC5030) was added 1 mg of ova and

1� BBS to a volume of 450 mL. The filter was centrifuged at 14,000 �g for 5 min. The flow through

was discarded and the sample washed twice with 400 mL of 1� BBS. The product-containing column

was inverted into a clean collection tube and centrifuged at 1000 �g for 2 min. Assuming no loss,

the volume of the sample was adjusted to 2 mg/mL with 1� BBS. 400 mL of 1� BBS was added to

the Amicon filter and stored at 4˚C for later use. A 500 mL labeling reaction containing 0.5 mg of ova

in 1� BBS and 50 mL of 2 mM mTz-PEG4-NHS in DMSO (0.2 mM final; Click Chemistry Tools, 1069),

pH 8.5 was rotated at 4˚C overnight. Excess NHS was quenched by adding glycine, pH 8.5 to a final

concentration of 20 mM and rotated at room temperature for 10 min. The previously stored Amicon

filter was centrifuged at 14,000 �g for 5 min and the flow through discarded. 400 mL of reaction mix-

ture was added to the filter and centrifuged at 14,000 �g for 5 min. This was repeated until all 1 mg

of protein had been added to the filter and was supplemented with 1� BBS as needed. Samples

were washed 1� with 400 mL of 1� BBS. The product-containing column was inverted into a clean

collection tube and centrifuged at 1000 �g for 2 min. Assuming no loss, the volume of the sample

was adjusted to 5 mg/mL with 1� BBS.

For the final antigen-DNA conjugation, a 100 mL reaction containing 300 mg of ova-mTz and 6

nmol of oligonucleotide-TCO (1:1 equivalents) in 1� BBS was rotated at 4˚C overnight. Excess mTz

was quenched with 10 mL of 10 mM TCO-PEG4-glycine and rotated at room temperature for 10 min.

TCO-PEG4-glycine was prepared by reaction of 10 mM TCO-PEG4-NHS with 20 mM glycine, pH 8.5

in 1� BBS for 1 hr at room temperature and stored at �20˚C. Products were analyzed by 10% TBE

PAGE. For purification, excess ova and DNA were removed by filter centrifugation. 200 mL of 1�

PBS was added to an Amicon 0.5 mL 50 kDa filter (Millipore, UFC5050) followed by 300 mL of sam-

ple. The filter was centrifuged at 14,000 �g for 5 min and the flow through discarded. Samples were

washed five times with 400 mL of 1� PBS and centrifuged at 14,000 �g for 5 min. The product-con-

taining column was inverted into a clean collection tube and centrifuged at 1000 �g for 2 min. Puri-

fied products were analyzed by 10% TBE PAGE and total protein quantified with Bio-Rad protein

quantification reagent (Bio-Rad, 5000006). LPS contamination after conjugation was below 0.5 EU/

mg as mentioned in the ’Vaccinations’ section.

Bone marrow-derived DC, macrophages, and LEC cultures
Both left and right tibia and femur were isolated under sterile conditions. Bone marrow was

extracted from femurs of 6–8-week-old C57BL/6 mice by decollating the top and bottom of the

bone and releasing the marrow with 27 gauge syringe and 5 mL of Modified Essential Medium
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(MEM) (Cellgro). Suspension was strained through 100 mm filter, pressed with the back of a syringe

and washed. Cells were spun 1500 RPM, 5 min then suspended in minimum essential medium

(MEM) with 10% FBS, 20 ng/mL of Granulocyte-macrophage colony-stimulating factor (GM-CSF)

from the supernatant of the B78hi-GM-CSF cell line. Every 2 days, dead cellular debris was spun,

supernatant collected and combined 1:1 with new 40 ng/mL GM-CSF 20% FBS (2�) in MEM. After 7

days of culturing at 37˚C, 5% CO2 cells were harvested for respective assays. Mouse LECs (Cell Bio-

logics, C57-6092) were cultured in Endothelial Cell Media (Cell Biologics, M1168) with kit supple-

ment. T75 Flasks were coated with gelatin for 30 min 37˚C, washed with PBS, and then inoculated

with mLEC. Cells were passaged with passive trypsin no more than 3–6 times and split at density of

1:2. SVEC4-10 (ATCC CRL2181), an SV40 transformed endothelial cell line, was purchased from

ATCC and mycoplasma tested before use. SVECs have been characterized to be similar to LECs

(Xiong et al., 2017), and CD31 and PDPN expression were validated prior to use. SVEC were cul-

tured in RPMI with 10% FBS and passaged with passive trypsin and split at a density of 1:3. For

BMDMs, whole bone marrow was isolated and red blood cells were lysed. Cells were then cultured

in M-CSF (50 ng/mL) for 6 days in complete media. Cells were harvested via cell scraper and plated

for treatment.

Conjugate detection assay
Dendritic cells (BMDC), endothelial cells (mLEC), or SV-40 transformed endothelial cells (SVECs) or

BMDM cultures were stimulated with 5 mg of either ova-psDNA or ova with or without 20 mg of anti-

CD40, 20 mg Poly I:C in a 6-well format. 24 hr post treatment, cells were washed and refreshed with

new media. At designated time points, cells were harvested, counted, and transferred into micro-

centrifuge tubes, spun at 350 g, and both supernatant and pellets were frozen at �80˚C. Cell pellets

were lysed in 50 mL of Mammalian Protein Extraction Reagent (Thermo Scientific, 78503). Conjugate

DNA was measured by qPCR amplification from 1 mL of lysate in a 10 mL reaction containing 5 mL of

iTaq Universal SYBR Green Supermix (Bio-Rad, 1725125) and 5 pmol of each primer (Figure 1—

source data 1). Quantification was measured using an external standard curve and normalized to

lysate protein content. To visualize within ova-psDNA acquisition by cells, cells were fixed with 10%

formalin for 10 min at room temperature in the dark, washed with PBS, and spun for 10 min at 2000

rpm. Cells were then permeabilized with 100% ice-cold methanol for 20 min at �20˚C. Cells were

then washed with PBS and spun as above. Cells were stained with the anti-ova antibody as above for

at least 2 hr at room temperature and then washed with 1% bovine serum albumin (BSA) with

sodium azide (FACS buffer) and spun as above. Cells were then incubated with an anti-rabbit sec-

ondary in PE for 1 hr at room temperature and then washed with FACS buffer. Cells were then

stained with streptavidin conjugated to BV421 in PBS for 15 min at room temperature and then

washed twice with FACS buffer prior to acquiring cells on a FACS CANTO II flow cytometer. Analysis

was performed using FlowJo software. Immunofluorescence was performed as above except cells

were grown on glass coverslips and stained on cover slips using an anti-rabbit dylight 649 and strep-

tavidin-FITC. Coverslips were mounted with Vectashield with DAPI and imaged on a Zeiss LSM780

confocal microscope. The imaging experiments were performed in the Advanced Light Microscopy

Core part of the NeuroTechnology Center at University of Colorado Anschutz Medical Campus sup-

ported in part by the Rocky Mountain Neurological Disorders Core Grant Number P30 NS048154

and by the Diabetes Research Center Grant Number P30 DK116073. Contents are the authors’ sole

responsibility and do not necessarily represent official NIH views.

OT1 isolation and co-culture
CD8 T cells were isolated from an OT1+ mouse using the mojosort mouse CD8 T cell isolation kit

(Biolegend) and labeled with violet proliferation dye (BD Biosciences cat# 562158). For DC-T cell co-

culture, BMDCs were treated with psOVA (5 mg), or ova+psDNA (5 mg) for 1, 3, or 7 days. BMDCs

were washed and then co-cultured with labeled OT1s for 3 days at a 1:10 ratio of BMDC:OT1. Cells

were then stained and run on a flow cytometer. OT1 division (percent dividing cells) was calculated

as previously described (Roederer, 2011) using the equation fraction diluted ¼

P
i

1

Ni

2i
=
P

i

0

Ni

2i
, where

i is the generation number (0 is the undivided population), and Ni is the number of events in genera-

tion i.
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Vaccinations
6–8-week-old C57BL/6 (CD45.2) mice were immunized with 1E3 or 1E4 colony-forming units (CFU)

of Vaccinia Western Reserve or 5 mg of poly I:C (Invivogen) with or without 5 mg of anti-CD40

(FGK4.5, BioXcell)and 10 mg of ova-psDNA or ova in 50 mL volume by footpad injection. Endotoxin

levels were quantified using the Pierce Limulus Amebocyte Lysate Chromogenic Endotoxin Quantita-

tion kit (Thermo Scientific) to be less than 0.5 EU/mg for either ova or ova conjugated to psDNA.

Nystatin
Nystatin (Sigma N4014) was resuspended in DMSO to a concentration of 10 mg/mL. Mice were

injected with 50 mL of 10 mg/mL nystatin per footpad 1 hr prior to injection with ova conjugated to

Alexa 488 (5 mg) in a mixture with polyI:C and anti-CD40 (2.5 mg each). LNs were harvested and

digested as below (preparation of single-cell suspensions) and stained with CD45 brilliant violet 510

(Biolegend clone 30F11, 1:300), PDPN APC (Biolegend clone 8.1.1, 1:200), CD31 PercP Cy5.5 (Biole-

gend clone 390, 1:200), and PD-L1 pacific blue (Biolegend clone 10F.9G2, 1:200).

Tetramer and intracellular cytokine assays
Draining LNs were processed by glass slide maceration 7 days after injection, washed, and sus-

pended in FACS (2% FBS in PBS) buffer containing Tetramer (SIINFEKL)-PE (1:400) (NIH tetramer

core facility), CD8 APC-Cy7 (Biolegend clone 53-6.7 1:400) for 1 hr at 37C. Cells were washed and

stained for 30 min in CD44 PerCP Cy5.5 (Biolegend clone IM7, 1:400), B220 BV510 (Biolegend clone

RA3-6B2, 1:300). Samples were ran on the FACS Canto II flow cytometer (BD).

Preparation of single-cell suspensions
2 days or 2 weeks following vaccination with 1E3 CFU of VV-WR with 10 mg of ova-psDNA per foot-

pad, popliteal LNs were removed from 15 mice and LNs were pulled apart with 22-gauge needles.

Tissue was digested with 0.25 mg of Liberase DL (Roche, Indianapolis, IN) per mL of EHAA media

with DNAse (Worthington, Lakewood, NJ) at 37˚. Every 15 min media was removed, cells spun

down, and new digestion media added to the undigested tissue until no tissue remained, ~1 hr. Fol-

lowing digestion, cells were filtered through a screen and washed with 5 mM EDTA in EHAA. LN

cells were then divided into thirds where one-third underwent staining with CD11c (N418), CD11b

and B220, and a live/dead dye (Tonbo). Live cells were then sorted into four tubes on a FACS Aria

Cell Sorter (BD): sorted CD11c-APC Cy7 (Biolegend clone N418 1:400)+ cells, sorted CD11b PE-Cy7

(Biolegend clone M1/70)+ cells, sorted B220 PE (Biolegend clone RA3-6B2)+ cells and Fixable Viabil-

ity Stain 510 (BD Biosciences Cat # 546406) ungated live cells, which were recombined at a 4:4:1:1

ratio, respectively. For the remaining two-thirds of cells, cells were stained with CD45 PE followed

by magnetic bead isolation using the Miltenyi bead isolation kit. CD45-negative cells that passed

through the column were then washed. Both sorted and selected (CD45+ and CD45-) cells were

then washed with PBS in 0.1% BSA as described in the Cell Prep Guide (10x Genomics) and counted

using a hemacytometer. Final concentration of cells was approximately 1000 cells/mL and approxi-

mately 10–20 mL were assayed.

Single-cell library preparation using the 10x Genomics platform
Cells were assayed using the 10x Genomics single-cell 3’ expression kit v3 according to the manufac-

turer’s instructions (CG000183 Rev B) and CITE-seq protocol (cite-seq.com/protocol Cite-

seq_190213) with the following changes:

1. cDNA amplification and cleanup. During cDNA amplification, 1 mL of 0.2 mM each mixture of
additive forward and reverse primers (Figure 1—source data 1) was included to amplify the
antigen tags. The CITE-seq protocol was followed for size selection and cleanup of the cDNA
and antigen tag products. Antigen tag products were eluted in 60 mL of nuclease-free water.

2. Amplification of antigen tag sequencing libraries. A 100 mL PCR reaction was prepared con-
taining 45 mL of purified antigen tag products, 1X Phusion HF Buffer (NEB), 200 mM dNTPs, 25
pmol each Illumina sequencing forward and reverse primers (Figure 1—source data 1), 2 Units
Phusion High Fidelity DNA Polymerase. PCR cycling conditions were 95˚C for 3 min, 6-10� (95˚
C for 20 s, 60˚C for 30 s, 72˚C for 20 s), 72˚C for 5 min. Products were purified according to
the CITE-seq protocol. Gene expression and antigen tag libraries were analyzed on the Agilent
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D1000 Tapestation and quantified using the Qubit HS dsDNA fluorometric quantitation kit
(Thermo Scientific).

All libraries were sequenced on a Illumina NovaSeq 6000 with 2 � 150 base pair read lengths.

Transcriptome and oligonucleotide detection and analysis
Briefly, FASTQ files from the gene expression and antigen tracking libraries were processed using

the feature barcode version of the cellranger count pipeline (v3.1.0). Reads were aligned to the

mm10 and vaccinia virus (NC_006998) reference genomes. Analysis of gene expression and antigen

tracking data was performed using the Seurat R package (v3.2). Antigen tracking and gene expres-

sion data were combined into the same Seurat object for each sample (CD45-/day 2, CD45+/day 2,

CD45-/day 14, CD45+/day 14). Cells were filtered based on the number of detected genes (>250

and <5000) and the percent of mitochondrial reads (<15%). Gene expression counts were log-nor-

malized (NormalizeData), and relative ova signal was calculated by dividing ova-psDNA counts by

the median ova-psDNA counts for all T and B cells present in the sample. To allow for the values to

be log-transformed for visualization, a pseudo count was added (smallest non-zero value * 0.5).

Gene expression data were scaled and centered (ScaleData). 2000 variable features (FindVariable-

Features) were used for PCA (RunPCA), and the first 40 principal components were used to find clus-

ters (FindNeighbors, FindClusters) and calculate uniform manifold approximation and projection

(UMAP) (RunUMAP). Cell types were annotated using the R package clustifyr (https://rnabioco.

github.io/clustifyr) (Fu et al., 2020) along with reference bulk RNA-seq data from ImmGen (available

for download through the clustifyrdata R package, https://rnabioco.github.io/clustifyrdata). To anno-

tate cell subtypes, the samples were divided into separate objects for DCs, LECs, and FRCs and

reprocessed (FindVariableFeatures, ScaleData, RunPCA, RunUMAP, FindNeighbors, FindClusters).

Cell subsets were annotated using clustifyr with reference bulk RNA-seq data for DCs (Brown et al.,

2019; Miller et al., 2012), FRCs (Rodda et al., 2018), and LECs (Fujimoto et al., 2020;

Kalucka et al., 2020; Xiang et al., 2020). After assigning DC, LEC, and FRC subtypes, the other cell

types (T/B cells, epithelial cells, NK cells) were added back to the objects and reprocessed as

described above.

Identification of ova-low and -high populations was accomplished using a two-component Gauss-

ian mixture model implemented with the R package mixtools (https://cran.r-project.org/web/pack-

ages/mixtools/index.html). All LECs were used when identifying ova-low and ova-high cells

(Figure 4). For DCs (Figure 3—figure supplement 5), ova-low and -high populations were identified

independently for each DC cell type. For ova-low and ova-high populations, differentially expressed

genes were identified using the R package presto (wilcoxauc, https://github.com/immunogenomics/

presto). Differentially expressed genes were filtered to include those with an adjusted p-value<0.05,

log fold-change > 0.25, area under the receiver operator curve (AUC) > 0.5, and with at least 50% of

ova-high cells expressing the gene.

Raw data and analysis software
Raw and processed data for this study have been deposited at NCBI GEO under accession

GSE150719. A reproducible analysis pipeline is available at https://github.com/rnabioco/antigen-

tracking http://doi.org/10.5281/zenodo.4615724 (Sheridan and Hesselberth, 2021;

copy archived at swh:1:rev:f7f6c0696f08aeeac6ad88c39975197a0791e30d).

Statistical analysis
Statistical analysis was done using either a non-parametric two-tailed Mann–Whitney t-test or multi-

ple t-tests with a two-stage step-up method of Benjamini, Krieger, and Yekutieli without assuming

consistent standard deviations. A biological replicate was considered a measurement of a biologi-

cally distinct sample (such as a separate mouse), and a technical replicate was considered a repeated

measurement of the same sample. Each in vivo analysis was performed with 3–6 mice per group as

determined by a power calculation using the assumption (based on prior data) that there will be at

least a twofold change with a standard deviation of less than 0.5. To calculate numbers, we per-

formed a power calculation with an a of 0.5 and a 1-b of 0.80 to determine at least three mice per

group are evaluated. Error bars indicate the standard error of the mean (SEM), and all analyses were

blinded.
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