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Abstract

Background: Our knowledge on zebrafish reproduction is very limited. We generated a gonad-derived cDNA microarray
from zebrafish and used it to analyze large-scale gene expression profiles in adult gonads and other organs.

Methodology/Principal Findings: We have identified 116638 gonad-derived zebrafish expressed sequence tags (ESTs), 21%
of which were isolated in our lab. Following in silico normalization, we constructed a gonad-derived microarray comprising
6370 unique, full-length cDNAs from differentiating and adult gonads. Labeled targets from adult gonad, brain, kidney and
‘rest-of-body’ from both sexes were hybridized onto the microarray. Our analyses revealed 1366, 881 and 656 differentially
expressed transcripts (34.7% novel) that showed highest expression in ovary, testis and both gonads respectively.
Hierarchical clustering showed correlation of the two gonadal transcriptomes and their similarities to those of the brains. In
addition, we have identified 276 genes showing sexually dimorphic expression both between the brains and between the
gonads. By in situ hybridization, we showed that the gonadal transcripts with the strongest array signal intensities were
germline-expressed. We found that five members of the GTP-binding septin gene family, from which only one member
(septin 4) has previously been implicated in reproduction in mice, were all strongly expressed in the gonads.

Conclusions/Significance: We have generated a gonad-derived zebrafish cDNA microarray and demonstrated its usefulness
in identifying genes with sexually dimorphic co-expression in both the gonads and the brains. We have also provided the
first evidence of large-scale differential gene expression between female and male brains of a teleost. Our microarray would
be useful for studying gonad development, differentiation and function not only in zebrafish but also in related teleosts via
cross-species hybridizations. Since several genes have been shown to play similar roles in gonadogenesis in zebrafish and
other vertebrates, our array may even provide information on genetic disorders affecting gonadal phenotypes and fertility
in mammals.
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Introduction

Zebrafish (Danio rerio) has become a major vertebrate model for

developmental biology and genetics [1], genomics [2,3] and

human diseases [4–6] during the last three decades. Despite these

advances, little is known about the molecular aspects of its

reproduction. The molecular mechanisms underlying gonad

development and function in zebrafish have yet to be elucidated.

Gonad differentiation in zebrafish is a highly complex process

involving a ‘juvenile ovary-to-testis’ transformation [7–9]. At 15–

20 days post fertilization (dpf), every zebrafish individual develops

an ovary-like gonad (‘juvenile ovary’). The juvenile ovary
continues to develop until maturation in the females while in the

rest of the individuals it undergoes a transitional intersexual phase

eventually leading to the formation of a differentiated testis [7,10].
This process is further complicated by the high variability of the

starting point and extent of the transformation process in different

individuals [9]. Although the molecular mechanism of gonad
differentiation is largely unknown, the products of several genes,

including aromatase (cyp19a1; [11], Fushi tarazu factor-1d (ff1d;

[12,13]), anti-Müllerian hormone (amh; [14,15]), and 11b-

hydroxylase (cyp11b; [15]) have been implicated in this process.
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Besides the gonads, the brain is also involved in vertebrate

reproduction. The involvement of the brain in gonad development

has been established by studies on quail which showed that males

transplanted with female forebrains had abnormally developed testes,

indicating that a genetically male brain is necessary for normal testis

development [16]. Since sex change in some teleosts can be influenced

by social control [17,18], it is likely that events in the brain may

determine the fate of the gonads, as suggested earlier by Francis [19].

Vertebrate reproduction and in part, sexual development, is largely

controlled by feedback interactions in the brain-pituitary-gonadal

(BPG) axis [19,20]. Contrary to the dogma in mammals and birds that

brain sexual dimorphism is entirely a result of hormonal action from

the gonads, it has now been proven that the brain also develops

differently in the two sexes as a result of differential brain gene

expression, remarkably even before the gonads are formed [21–23].

Microarray-based approaches have been used to identify genes

involved in gonad development and function in several organisms. In

Caenorhabditis elegans, sex-regulated genes have been identified by

characterizing gene expression differences between males and

hermaphrodites using DNA microarrays [24], while in Drosophila

melanogaster, microarray analysis has been performed to obtain the gene

expression profile of the testis [25]. In rainbow trout, precocious ovaries

were compared against normal ones using ovary-specific microarrays

to reveal genes which are potentially involved in ovary maturation and

development [26]. Extensive array-based studies have also been

performed to elucidate gonad development and function in mice.

These include gene expression profiling in differentiating male and

female embryonic gonads [27], microarray analyses to identify genes

involved in ovary development [28] and time course profiling of

testicular gene expression during spermatogenesis [29].

In contrast to the extensive studies performed on other

organisms, there has been little information available regarding

the gonad transcriptomes of zebrafish. Currently available zebrafish

microarrays include at least seven commercial whole genome oligo

arrays, a heart and skeletal muscle-derived cDNA array [30], a

microarray derived from mixed tissues of 4-month-old to adult

zebrafish [31], an array containing brain-specific cDNAs [32] and a

microarray spanning promoter regions of over 11,000 genes [33].

In order to identify and characterize genes potentially involved

in gonad development and function, we constructed a microarray

comprising nearly 6,400 unique cDNAs from zebrafish gonads. In

our previous work, we analyzed a smaller subset of this collection

by hybridizing adult ovary-, testis- and kidney-derived labeled

targets to a membrane-based cDNA macroarray containing 2760

adult gonad cDNAs [34]. In the current experiment, we extended

the throughput of the study by adding 3634 clones (derived mostly

from the differentiating gonad) to the array and switching to a

slide-based platform. In order to analyze the transcriptomes of the

adult gonads and to compare them with those of other organs,

RNA from adult ovary and testis were used as targets for

hybridization onto the microarray, while RNA from the brain,

kidney and rest of the body from both male and female adult

zebrafish were used as controls. Our analysis revealed that a large

number of genes showed sexually dimorphic expression in the

gonads and other organs of adult zebrafish. These included novel

transcripts which have not been characterized in any other

vertebrate species according to our knowledge.

Results and Discussion

Extension of the gonadal EST set and generation of the
Gonad Uniclone Microarray

We generated 4613 new ESTs from the adult zebrafish testis

and ovary and 11010 sequences from the differentiating gonad [3,

4 and 5 weeks post-fertilization (wpf)], which has never been

sampled before by others (refer to Table S1 for details). In total,

15623 new zebrafish ESTs have been submitted to GenBank from

the effort described in this study.

In order to minimize redundancy, we performed in silico

normalization of the above clone set by clustering their sequences

together with our clone set published earlier [34], gonad-derived

zebrafish ESTs from GenBank and gonadal zebrafish sequences

from RefSeq (see Methods for details). Clustering of these

sequences resulted in 11320 clusters and 21520 singletons

(Fig. 1). Out of these, 542 clusters (representing 1893 ESTs) and

6325 singletons that were isolated by us have not been previously

described from the zebrafish gonad by others. When we BLAST-

searched our transcripts against GenBank at the nucleotide level

(July 2007), 2018 transcripts did not hit any coding regions of the

zebrafish genome. Out of these, 90 of them could be translated

into peptides, 24 of which contained domains categorized by Gene

Ontologies [35] (Table S2). Of the 2018 transcripts, 365 did not

find any significant sequence identity to zebrafish ESTs, indicating

that they are likely to be absent from commercial zebrafish

microarrays. Of the 365 transcripts, 185 did not have hits to any

characterized genes in GenBank. Therefore, these sequences

represent entirely new zebrafish or vertebrate ESTs, justifying our

extension of gene discovery efforts to developmental stages that

have not been sampled previously.

From the clustered dataset, we selected full-length cDNA clones

representing 6370 unique clusters/singletons to form an extended,

in silico-normalized cDNA collection, PCR-amplified inserts of

which were used to generate our Gonad Uniclone Microarray. All

inserts were sequenced from the 59 end (refer to Table S1 for

GenBank IDs) and over 90% of them (5750 clones) from the 39

end, providing full-length sequences for 3582 clones (GenBank

IDs: EX153972-EX159719, EX159734-EX159735).

The expression profiles of several candidate genes on the
Gonad Uniclone Microarray were consistent with
previous reports

We performed a total of 32 hybridizations, using eight target

organs with four biological replicates each, with the aim of

identifying differentially expressed genes in the gonads and other

organs, and to set up a biological reference for future

hybridizations involving differentiating gonads. The target organs

consisted of adult ovary and testis; the brain, kidney and ‘rest-of-

body’ (ie. whole body except the three organs listed earlier) from

both male and female zebrafish, were used as controls. For

simplicity, ‘rest of body’ was regarded as an organ in this

publication. All targets were hybridized against a pooled common

reference consisting of equal amounts of targets from all dissected

organs from a single adult male and a single adult female.

In order to validate our data, duplicate clones of 24 candidate

genes, most of which were known to be involved in gonad

development and/or function in zebrafish and/or other organ-

isms, were also included in the microarray. We observed a good

similarity between expression profiles of the duplicate clones of

each candidate gene. Following a 1-way ANOVA test and a

Student-Newman-Keuls post hoc test, 18 of the 24 genes showed

statistically significant differences between the eight organs. Of the

18 genes, 11 showed at least 1.5-fold higher expression in

comparison to the common reference target in either of the

gonads. These 11 included four and seven genes most highly

expressed in the ovary and testis respectively. Although some of

the remaining candidate genes showed enhanced expression in the

gonads, they were excluded from analysis for the following

reasons: they were expressed more strongly in other organs

Zebrafish Gonad Transcriptomes
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compared to the gonads, they had inconsistent replicate readings,

they fell below the 1.5-fold cutoff or they did not show differential

expression between the gonads. In addition, the inability of cDNA

microarrays to distinguish between splice isoforms or similar

transcripts produced from paralogous loci may also have resulted

in lack of the expected differential expression for some of the

candidate genes. A summary of the expression pattern observed

for each of the 24 candidate genes is described in Table 1 and

Table S3. Figure S1 depicts the expression profiles of three

selected candidate genes described below.

Our array data revealed that the candidate gene zona pellucida

glycoprotein 2 (zp2; [36]) showed specific expression in the adult

zebrafish ovary (81-fold higher expression compared to the

common reference target; all subsequent fold values in this

publication are in comparison to the common reference target).

Zp2 is an egg envelope protein which functions as a secondary

sperm receptor during fertilization in mice [37]. Our observations

are consistent with previous studies which have also reported ovary-

specific expression of zp2 in zebrafish and mammals [36–38].

Another candidate gene, anti-Müllerian hormone (amh; for reviews

see e.g. [39–42]), showed a 5.4-fold and 1.2-fold hybridization

intensity in the testis and ovary respectively. This is consistent with

recent reports indicating higher expression of amh in the zebrafish

testis compared to the ovary [12,14,15,43]. Similarly, in rat, calf

and human, AMH is expressed primarily in fetal testicular tissue

[44]. Its functions include regression of the Müllerian duct to

suppress the formation of the female reproductive tract in males

[45], and the regulation of gonadal steroidogenesis to promote

testosterone synthesis [46].

Recently, a gene called fushi tarazu factor 1d (ftz-f1d or ff1d) has

been suggested to be a candidate for sex determination and

differentiation in zebrafish [12]. ff1d is one of the four zebrafish

homologs of Steroidogenic Factor-1 (SF-1), a gene implicated in

mammalian sex determination and differentiation [12,47]. Our

results revealed that ff1d showed an 8.3-fold and 1.4-fold

expression level in the testis and ovary respectively. These results

are consistent with RT-PCRs performed by [12] which showed

that ff1d expresses in both gonads of zebrafish, albeit more strongly

in the testis.

The positive results obtained from the expression profiles of the

11 candidate genes have enabled us to validate the experimental

data obtained from our array, hence reinforcing its reliability. The

comparison of candidate gene expression patterns across different

organisms will also enable us to broaden our understanding of

vertebrate sex determination and differentiation.

The Gonad Uniclone Microarray reveals many genes with
sexually dimorphic expression in the gonads of zebrafish

A 1-way ANOVA parametric test revealed 6302 genes that

showed statistically significant differences in their expression levels

across the eight organs. These genes were subjected to a Student-

Newman-Keuls post hoc test to reveal 1366 and 881 transcripts

that showed at least 1.5-fold expression level in the adult ovary

(Fig. S2) or testis (Fig. S3) respectively. Such genes will be referred

to as genes with ‘ovary-’ or ‘testis-enhanced’ expression. While the

expression of some genes appeared to be enhanced in one of the

gonads, some showed high expression in both: there were 656

transcripts with levels of at least 1.5-fold in both gonads. A list of

selected genes that were highly expressed in the gonads, together

with their normalized intensities, is shown in Table 2 (full gene lists

with Genbank IDs are shown in Tables S4, S5, S6 under

‘Supporting Information’).

Of the 881 ‘testis-enhanced’ genes, 346 showed lower

expression levels in the ovary, increasing their differential

expression level further between the two gonads. Similarly, 338

of the 1366 ‘ovary-enhanced’ genes showed lower expression level

in the testis. Interestingly, many of these genes also appeared to be

expressed at a lower level in all the other organs (Fig. S2A). In

contrast, the 346 ‘testis-enhanced’ genes showed considerably

lower levels in the ovary than in the other organs (Fig. S3C, F and

I). Therefore, a higher proportion of genes expressed in the testis,

Figure 1. Venn diagram depicting the clones used for in silico normalization for the generation of the Gonad Uniclone Microarray.
The number of adult and differentiating gonad-derived zebrafish sequences present in our Gonad Uniclone EST collection and their extent of overlap
with gonad-derived public zebrafish ESTs listed in GenBank are shown. For details on sequence pre-processing and clustering, refer to the Methods
section. In overlapping sections, the total number of clusters, prefaced by ‘C’, is followed in parentheses by the total number of ESTs contained by the
clusters. The total number of singletons is prefaced by ‘S’.
doi:10.1371/journal.pone.0001791.g001
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as opposed to those expressed in the ovary, are co-expressed in

other organs.

Genes with the most abundant transcripts in the gonad
are expressed in the germline

In order to validate the expression patterns of genes obtained

from the microarray, we performed in situ hybridizations (ISH) of

16 different transcripts on adult ovary or testis sections. We

selected six ovary- and ten testis-enhanced genes on the basis of

our microarray data (Table S7).

ISH results showed the expected expression in the gonad for five

of the six ovary-expressed genes and eight of the ten testis-

expressed genes analyzed (see Table S7), indicating an 81.3%

concurrence with our array data. Images of ISH signals in gonad

sections for five ovary- and five testis-expressed genes, together

with their expression profiles from the microarray, are shown in

Fig. 2. Nine of the ten genes shown had a positive correlation of

ISH signal intensities with their corresponding gene expression

levels as reflected from our array data (Fig. 2; Table S7), hence

reinforcing the validity of our hybridization results. Four genes

with unknown functions that showed ovary- or testis-enhanced

expression were defined in our study as gez1-gez4 (‘gez’: gonad-

expressed in zebrafish; see Fig. 2D, Fig. 2F and Table S7).

All five ovary-enhanced genes with positive signal detected by

ISH showed oocyte-specific expression pattern (Fig. 2A–E).

Expression was strongest in Stage I and II oocytes, while only

some Stage III oocytes showed strong staining. It is likely that

expression of these genes is stage-specific and that they are

involved in early oogenesis, as shown by their strong expression in

earlier stages. Our observation is substantiated by previous studies

which showed that zp2 expression in zebrafish (shown in Fig. 2A) is

restricted to developing and not mature oocytes [38,48]. Similarly,

all eight testis-enhanced genes with positive signal detected by ISH

showed spermatocyte-specific expression (Fig. 2F–J). Staining was

observed in clearly defined clusters of primary and secondary

spermatocytes for all genes analyzed. Their expression pattern

indicates that these genes may play a role in spermatogenesis.

Most gonadal RNA would be derived from the germline cells

since they comprise the most abundant cell types in the gonads. This

may explain why all the genes analyzed in our study were found to

be expressing in the germline. Analysis of some of the weakly

expressed ‘gonad-enhanced’ genes by ISH may in turn reveal genes

which are specific to gonadal somatic cells. In addition to validating

our array data, our ISH results have also enabled us to identify new

gonadal germ cell-markers from zebrafish.

Microarray data analysis reveals gonad-enhanced
expression for several characterized and novel genes

A number of gonad-enhanced genes identified from our array

were previously reported to be involved in gonad development and

Table 1. The list of the 24 candidate genes on the Gonad Uniclone Microarray, with their expression patterns indicated*.

Genbank ID Gene name Gene symbol Expression pattern

AY306005 17 beta-hydroxysteroid dehydrogenase hsd17b1

EF427915 androgen receptor ar

AY721604 anti-Müllerian hormone amh Testis-enhanced

AF183906 aromatase a cyp19a1a

AF226619 aromatase b cyp19a1b

DQ066429 desert hedgehog dhh

BC044349 estrogen receptor 2a esr2a

BC086848 estrogen receptor 2b esr2b

AY249190 feminization 1 homolog c fem1c Ovary-enhanced

BC116585 forkhead box transcription factor L2 foxl2

AF198086 fushi tarazu factor 1b ff1b

AF327373 fushi tarazu factor 1c ff1c

AY212920 fushi tarazu factor 1d ff1d Testis-enhanced

BC066690 paired box gene 2a pax2a

AF072548 paired box gene 5 pax5

AJ132931 presenilin-1 pre1 Ovary-enhanced

BC065382 presenilin-2 pre2 Testis-enhanced

BC055549 TATA binding protein tbp Ovary-enhanced

AF144550 Wilms’ tumor suppressor gene 1 wt1a Testis-enhanced

CO359442 zebrafish testis-expressed 141 zte141 Testis-enhanced

CO359197 zebrafish testis-expressed 15 zte15 Testis-enhanced

CO359335 zebrafish testis-expressed 25 zte25

CO359148 zebrafish testis-expressed 38 zte38 Testis-enhanced

AF331968 zona pellucida glycoprotein 2 zp2 Ovary-enhanced

*The 18 genes that showed statistically significant differences among the eight organs following a 1-way ANOVA test and a Student-Newman-Keuls post hoc test are
displayed in bold. Eleven of these genes that were at least 1.56more highly expressed in the ovary and/or testis, compared to the common reference, are indicated as
ovary- or testis-enhanced. Refer to Table S3 for expression data and references.

doi:10.1371/journal.pone.0001791.t001
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function. For example, the tektin-1 gene (tekt1) and the 11b-

hydroxylase gene (cyp11b), which have been implicated in spermato-

genesis in mice and humans [49] and testicular differentiation in

teleosts [15,50], showed higher expression levels in the testis

(127.8-fold and 13.6-fold respectively).

Some of the gonad-enhanced genes have important molecular

functions and could possibly be implicated in gonad development

and function. For example, the cdc20 gene showed 69.3-fold and

18-fold expression levels in the ovary and testis respectively. This

WD40-repeat protein, which is a homolog of fizzy in Drosophila and

Xenopus, is required to activate the anaphase-promoting complex

(APC) to enable anaphase initiation and exit from mitosis [51,52].

Its strong expression in zebrafish gonads may indicate an

involvement in cell division during oogenesis and spermatogenesis.

Of the 2903 gonad-enhanced transcripts, 1008 were found to be

novel (without any functional information from zebrafish or other

organisms). Studies of these genes with unknown functions can

lead to further elucidation of various aspects of zebrafish gonad

development and function including gonadal differentiation.

Several members of the septin gene family are
predominantly expressed in the zebrafish gonad

One member of the septin gene family (septin 4) is required for

normal sperm development in mice [53,54]. We found that several

other members of the septin gene family are highly expressed in the

gonads of zebrafish (Fig. 3), suggesting a common role of septins in

gonad development and/or function. The septins are a family of

cytoskeletal GTP-binding proteins found in fungi and animals.

They are involved in diverse processes such as cytokinesis,

exocytosis, tumorigenesis, maintenance of cell polarity and

apoptosis (for reviews, see [55,56]). Most septin transcripts undergo

alternative splicing and their splice variants are expressed

differentially in various tissues [56,57].

We identified five members of the septin gene family from our

array (sept4, 6, 7, 8 and 9; Fig. 3). The expression profiles for sept6,

sept9 and sept8 were highly correlated to each other, while those of

sept4 and sept7 formed a separate cluster. All, except for sept7,

showed the highest expression levels in either one or both gonads.

Our array data revealed that sept4, which has been implicated in

various functions from cytokinesis to apoptosis to tumor

suppression [58–60], was most highly expressed in the testis

(137.4-fold), consistently with data from zebrafish [43] and mice

[53]. In mice, homozygous Sept4 mutants have immotile and

structurally defective sperm due to a disorganized annulus (a ring-

like structure in the sperm tail), indicating a role in spermiogenesis

[53,54]. We performed in situ hybridization on adult zebrafish

testis sections and found that sept4 was expressed in the primary

and secondary spermatocytes (and possibly round spermatids)

(Fig. 2G). This is in contrast to the more restricted expression

pattern observed in mouse, where specific testicular localization to

post-meiotic round spermatids and spermatozoa was found [53].

Our results, therefore, indicate that sept4 may be involved in earlier

stages of spermatogenesis in zebrafish, possibly in cytokinesis

during meiosis.

Table 2. Selected genes showing .1.5-fold higher expression than the common reference in adult zebrafish gonads (normalized
intensities for the gonads, and the range of the normalized intensities for the remaining organs are indicated).

Ovary-expressing genes:

Gene name Accession no. Ovary Testis Range for other organs

similar to egg envelope glycoprotein isoform 1 CO350790 195.88 0.31 0.35–0.89

similar to flap structure-specific endonuclease 1 EV603088 192.56 0.52 0.52–1.35

similar to mKIAA1026 protein EV561259 154.32 0.38 0.25–4.73

hypothetical protein LOC556628 CO350423 114.75 0.45 0.47–0.99

similar to low-density lipoprotein receptor dan isoform 5 EV606521 110.51 3.24 0.51–1.12

B-cell translocation gene 4 CO349959 102.79 0.72 0.58–1.07

zona pellucida glycoprotein 3 EV560504 99.40 0.21 0.30–1.05

transcription factor IIIA CO349799 86.27 0.97 0.32–0.66

zona pellucida glycoprotein 2 AF331968 80.93 0.02 0.03–0.11

cell division cycle 20 homolog CO350129 69.31 18.03 0.54–1.23

Testis-expressing genes:

Gene name Accession no. Ovary Testis Range for other organs

Unknown CO353055 0.18 243.77 0.43–1.74

similar to septin-4 isoform 1 CO353547 0.22 137.44 0.74–1.42

tektin 1 CO352798 0.17 127.88 0.40–1.76

similar to mKIAA1148 protein CO353006 0.09 119.76 0.26–1.64

dynein, axonemal, intermediate polypeptide 1 CO355627 0.96 96.42 0.65–1.75

similar to human AKAP-associated sperm protein CO353327 0.68 80.52 0.68–2.11

piwi-like 1 CO354057 7.57 60.42 0.57–1.09

testis-specific A-kinase-anchoring-protein CO354405 1.02 59.27 0.54–1.51

spermatogenesis associated 4 CO353245 1.94 57.08 0.48–2.25

11b–hydroxylase EV564930 0.82 13.62 0.76–1.40

doi:10.1371/journal.pone.0001791.t002
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Figure 2. In situ hybridization revealed expression in the germline for ovary- and testis-enhanced genes. Adult ovary (A–E) and adult
testis (F–J) sections were hybridized with DIG-labeled riboprobes of ten genes which expressed strongly in either one of the gonads. Images are
arranged from top to bottom in order of decreasing in situ hybridization signal intensity. Microarray expression levels for each gene across the eight
organs analyzed are indicated by the coloured expression profiles. (A: zp2, B: btg4, C: CO350808, D: gez1, E: CO350303, F: gez2, G: sept4, H: CO353006,
I: tekt1, J: MGC75611; I, II, III: stage I, II and III oocytes; psc: primary spermatocytes, ssc: secondary spermatocytes; FB, FO, FK and FRB represent the
brain, ovary, kidney and ‘rest-of-body’ from female zebrafish, while MB, MT, MK and MRB represent the brain, testis, kidney and ‘rest-of-body’ from
male zebrafish.)
doi:10.1371/journal.pone.0001791.g002
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Another member of the family, sept9, showed the highest

expression in the gonads, with 4.8-fold and 1.6-fold expression

levels in the ovary and testis respectively. Previous reports have

shown that SEPT9 is ubiquitously expressed in human tissues [61],

although one isoform shows higher expression in the ovary than

testis [62]. Mammalian SEPT9 has been implicated in a wide

range of cancers including ovarian cancer [61–63].

On the other hand, while sept7 had the highest expression in the

female ‘rest-of-body’, it also showed high expression in the testis

(2.3-fold and 1.4-fold expression levels respectively). Both sept7 and

sept9 have been implicated in germ cell cytokinesis as they localize

to germ cell intercellular bridges [64]. Hence, it is possible that

these genes may play a role in germ cell cytokinesis in the zebrafish

gonad.

Our data also showed that the sept6 gene showed the highest

expression in the ovary and much lower level in the testis (3.7- vs.

1-fold). High expression levels were also observed in the female

and male brains (1.4-fold and 1.8-fold respectively). In contrast,

SEPT6 is ubiquitously expressed in humans with higher levels

observed in lymphoid and hematopoietic tissues [57]. It is not

known if sept6 plays a role in gonad development and function but

its interaction with sept9 [65] and its strong expression in the

zebrafish ovary indicate a potential involvement.

We have also identified on our array the sept8 gene which was

most highly expressed in the gonads (3.8- and 4.2-fold expression

levels in the ovary and testis respectively). Similarly, Blaser and

colleagues [66] have shown that one isoform of SEPT8 was highly

expressed in human gonads. While the function of this isoform

remains unknown, its strong expression in the gonads may indicate

an involvement in gonad development and function. Since Sept8

forms a complex with Sept5 in mouse gonads [66] and since the

latter is involved in exocytosis [67], it has been suggested that

Sept8 could play a role in the regulation of hormone secretion

[66]. In light of the above findings, it would be interesting to

further characterize the septins in order to elucidate their potential

roles in zebrafish gonad development and/or function.

The ovarian and testicular transcriptomes of zebrafish are
correlated with each other and with those of the male
and female brain

In order to compare transcriptional profiles across all eight

organs, hierarchical clustering was performed with a similarity

measure using Pearson correlation coefficient and a complete

linkage algorithm on 6331 genes which had expression levels

above those of negative controls. (All negative control probes, b-

actin probes and probes corresponding to RNA spikes were

eliminated from this analysis.) The resulting condition tree (Fig. 4)

revealed similar expression levels between biological and technical

replicates, highlighting the minimal inter- and intra-array

hybridization variation. As expected from an array enriched in

gonad-derived clones, the highest number of strongly-expressed

transcripts was found in the ovary and testis. Although the organ

pairs of the two sexes clustered together, distinct differences were

observed for all four sample types tested, particularly between the

ovary and testis. In addition, the gonad cluster grouped together

with the brain cluster, indicating the similarity of the transcrip-

tome among these organs (Fig. 4). The kidney and ‘rest of body’

profiles showed significantly different transcriptional profiles from

those of the gonads and brains.

These data were further substantiated by a principle component

analysis (PCA), using a mean centering and scaling, which showed

a similar correlation between expression profiles of the different

organs, albeit an increased distance was observed between the

gonads and brains (Fig. S4). Interestingly, when the ovarian and

testis transcriptomes were compared on the PCA, the latter

appeared to be more closely related to those of the male and

female brain than the former. This further substantiates our

finding that a higher proportion of genes in the testis are co-

expressed in other organs and previous reports stating the

similarity in gene expression of the testis and brain in mice and

humans [68,69]. These data point towards the conservation of

gene expression patterns of these organs across different

organisms. The discovery of gene mutations in mice and humans

which result in defects in both the nervous system as well as the

male reproductive system further substantiates the link between

brain and testicular gene expression [70,71].

Transcriptional analysis reveals genes with sexually
dimorphic co-expression in both the gonads and the
brains

While searching for genes differentially expressed in the two

sexes, we identified 3080 transcripts which showed statistically

significant differences in expression between the male and female

brain from the 1-way ANOVA parametric test and Student-

Figure 3. Hierarchical clustering of expression profiles of five members of the septin gene family in zebrafish. Expression patterns of
sept6, sept9 and sept8 appeared to be highly correlated to each other while sept4 and sept7 formed a separate cluster. sept4, sept6, sept9 and sept8
were most strongly expressed in either one or both gonads. sept7 had highest expression in the female ‘rest-of-body’ but strong expression was also
observed in the testis. Refer to Fig. 2 for abbreviations.
doi:10.1371/journal.pone.0001791.g003
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Newman-Keuls post hoc test. Out of these, 1641 genes were found

to be at least 1.5-fold differentially expressed between the brains of

the two sexes. When compared to the list of 2247 genes

differentially expressed between the two gonads (Tables S4 and

S5), we found 276 genes represented in both groups, indicating

that their expression was sexually dimorphic between both organ

types (Table 3). There were about twice as many genes (183)

showing higher expression levels in the female brains than those

showing male brain-enhanced expression (93), whereas the

number of genes with higher ovary (143) versus higher testis

(133) expression was similar (Table 3; for details, see Tables S8 and

S9).

Figure 4. Hierarchical clustering of expression profiles for 6331 genes across eight different organs. Individual gene expression profiles
are plotted horizontally against vertical columns of organ type. For each organ, profiles for the three biological replicates and each of their two
technical replicates are displayed. Strongly expressed and weakly expressed genes with respect to the common reference are represented in red and
green respectively. All organs showed a high level of correlation between biological and technical replicates. The gonads contained the highest
number of strongly expressed transcripts. Many genes showed sexually dimorphic gene expression in the gonads and in other organs. Clustering
showed correlation between expression profiles of different organs. Kidney targets clustered together with ‘rest-of-body’, while ovary and testis
clustered with brain targets to form a distinct group. Refer to Fig. 2 for abbreviations.
doi:10.1371/journal.pone.0001791.g004
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Sexually dimorphic gene expression has recently been reported

in the mouse brain by two research groups [23,72]. In the first

report [23], 54 genes were found to show sexually dimorphic

expression in the developing mouse brain (10.5 dpc), with twice as

many genes showing enhanced expression in the female brain than

in the male brain (36 vs. 18). The second study [72] reported that

about 650 genes (14% of those detected from the brain) showed

sexually dimorphic expression between the two adult mouse brain

types, with about half of them showing higher expression in female

brain and the other half in male brain.

We performed real-time PCR on three of the genes showing

sexually dimorphic expression in the brain to verify if they were

indeed differentially expressed between the male and female adult

brain (Fig. 5). These genes included a homolog of the Xenopus

tropicalis milk fat globule-EGF factor 8 (mfge8), Wilms’ tumor

suppressor gene 1 (wt1a) and a homolog of mouse carboxyl ester

lipase (cel). In all three cases, the real-time PCR results (Fig. 5)

yielded differential expression parallel to that observed on the

array, thereby confirming our array data. However, only in the

case of mfge8 did we find similar ratios with the two methods; for

wt1a and cel, the difference in expression levels was considerably

higher on the array. This may be explained by the fact that brain

expression levels of both wt1a and cel were very low, hence

stretching the limit of microarray detection sensitivity.

The three genes analyzed by real-time PCR in our study have

previously been implicated in reproduction. In mice, the Mfge8

gene has been shown to be expressed strongly in the initial

segment of the epididymis [73] and has been implicated in cell-cell

interactions during fertilization, since the ortholog in pig is

expressed on the apical head of the spermatozoa and binds zona

pellucida glycoproteins [74,75]. On the other hand, mutation of

WT1 in humans leads to Wilms’ tumor, a pediatric kidney cancer

[76,77]. Multiple organ defects, including in the kidneys and

gonads, have been reported in Wt1 knockout mice [78]. In

zebrafish and mice, high expression levels have been observed in

the gonads [79]. The cel gene is required for conversion of

cholesterol esters to free cholesterol for the biosynthesis of steroid

hormones. Our observation that these genes are also differentially

expressed in the male and female brain indicates their potential

involvement in the interplay between the brain and the gonads to

regulate gonad development and function.

This is the first report of sexually dimorphic gene expression on

a global scale in a teleost brain. The genes we have uncovered that

show differences in expression level between the male and female

brains and are highly expressed in the gonads could potentially be

important for gonad development and function, since it has been

shown in birds that a genetically male brain is necessary for

normal testis development [16]. Perhaps, the differential expres-

sion may be required in the complex regulatory networks involved

in the brain-pituitary-gonadal axis that links the nervous and

reproductive systems. Such genes are hormonally-influenced and

may need to be expressed at different levels in order to establish

the differences in the two gonads. Genes differentially expressed in

the two brains may also act independently of hormones to directly

establish brain sexual differentiation, gender-specific behavior and

possibly gonad development and function, as shown recently in

birds and mammals [21,22,80].

The Gonad Uniclone Microarray: a useful tool for studies
on reproduction in teleosts

The use of the Gonad Uniclone Microarray has enabled us to

generate a global profile of gonadal expression patterns in adult

zebrafish. We have also been able to identify genes that showed

enhanced or sexually dimorphic expression in the gonads. Several

Table 3. Genes* with sexually dimorphic co-expression in
both the gonads and the brains.

Higher ovary
expression

Higher testis
expression Total

Higher FB expression 93 90 183

Higher MB expression 50 43 93

Total 143 133 276

*These genes i) show at least 1.5-fold higher expression than the common
reference in one or both gonads as well as in at least one of the two brains; and
ii) are differentially expressed (at least 1.5-fold) both between the two gonads
and between the two brains.

doi:10.1371/journal.pone.0001791.t003

Figure 5. Real-time PCR analysis of selected genes which showed sexually dimorphic expression in the zebrafish brain. Normalized
transcript levels in the female (FB) and male brain (MB) for genes mfge8 (A), wt1a (B), and cel (C) are shown. The real-time PCR revealed sexually
dimorphic expression of these genes in the brain, thereby validating our array data.
doi:10.1371/journal.pone.0001791.g005
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genes were also found to be differentially expressed both in the

brains and the gonads of the two sexes, suggesting a sexually

dimorphic role for these genes in both of these organs. Further

analysis of some of these genes may lead to the discovery of gonad-

and/or brain-expressed markers with early sex-specificity, provid-

ed that their sexually dimorphic expression is also observable at

early stages. In addition, the possible availability of the brain for

molecular sexing of individuals would enable researchers to

preserve the gonad for other studies.

Currently, we are using our array for the analysis of zebrafish

gonad differentiation by comparing the expression profiles of

developing ovaries, testes and brains isolated from juvenile

vas::egfp-transgenic individuals sorted on the basis of the dynamic

EGFP levels of their gonads [9]. The comparison of the global

expression profiles of these developing gonads with each other and

with those of the adult organs is expected to provide us with a

deeper understanding of the molecular regulation of juvenile

hermaphroditism and possibly even that of protogynous sex

change.

The Gonad Uniclone Microarray is therefore a useful tool for

researchers analyzing the molecular regulation of gonad develop-

ment and function, and it may also be used to study the

involvement of other organs in these processes, since many gonad-

enhanced transcripts identified in our study were not exclusively

expressed in the gonads. In addition, our array may be suitable for

researchers studying genetically-inherited diseases with distinct

effects on gonadal phenotype in zebrafish, as well as the genomics

of other teleosts for which such a resource is not available [81].

Since several genes have been shown to play similar roles in

gonadogenesis in zebrafish and other vertebrates including

mammals [13], the data obtained in this study may provide

information on the development of the reproductive system in

zebrafish, other teleosts and other vertebrates, and may even

contribute new pieces to the complex puzzle of the genetic causes

of infertility in vertebrates.

Methods

Fish stocks and collection of gonadal samples
Zebrafish individuals from the AB strain and from a local strain,

called Toh, were kept at our fish facility at ambient temperature

and light cycle (12/12 hours) in AHAB (Aquatic Habitats,

Apopka, FL, USA) recirculation systems. Adult gonads were

isolated as described earlier [34]. For juvenile gonad isolation, the

larvae were placed on an examination plate ventral side up,

surrounded by 1.5% low melt agarose in egg water (60 mg/ml

Instant Ocean sea salts) and overlaid with cold 16 phosphate-

buffered saline (PBS). The body cavity was dissected and the

gonads were removed using fine forceps (Dumostar #55, Dumont,

Switzerland).

cDNA synthesis and library construction
Normalized and ORESTES cDNA libraries from adult testis

were generated earlier [34]. For the generation of three cDNA

libraries from differentiating gonads (Table S1), total RNA was

isolated from the gonad of 3 and 4 wpf mixed-sex individuals and

5 wpf males. Full-length cDNA was synthesized using Creator

Smart Library Construction Kit (Clontech, Mountain View, CA,

USA) according to the manufacturer’s instruction. After Sfi I

restriction enzyme digestion, the adaptors and short cDNAs were

removed by ChromaSpin 400 column (Clontech). The size

fractionated cDNA pool was then cloned into pBS-SK-Sfi (a

pBluescript based vector; detailed map is available on request) and

transformed into E. coli XL10-Gold cells. Clones were sequenced

from each library as described earlier; clones from full-length and

normalized libraries were sequenced from the 59 end [34].

For the generation of 4 wpf subtracted libraries, total RNA

samples from 4 wpf individuals were sorted into two groups

(‘sexed’) using an earlier version of the Gonad Uniclone array

(data not shown). Two sets of subtractive hybridizations were

performed: 3 wpf gonad (driver) from 4 wpf ‘male gonad’ (tester),

and 4 wpf ‘female gonad’ (driver) from 4 wpf ‘male gonad’ (tester).

The PCR-SelectTM cDNA subtraction kit (Clontech) was used to

enrich for developmental stage-specific fragments from the

SMART cDNA template according to the recommendations of

the manufacturer. To decrease the number of ‘background

clones’, mirror-oriented selection was applied as described

previously [82].

A 5 wpf transforming male gonad cDNA library was also

generated by subtracting against 5 wpf ovary. Zebrafish transgenic

to vas::egfp were sorted based on their gonadal EGFP levels as

transforming males and juvenile females at the age of 5 wpf [9].

cDNA was synthesized from 5 wpf transforming male gonad and 5

wpf ovary total RNA using SMART PCR cDNA synthesis kit

(Clontech). PCR-SelectTM cDNA subtraction kit (Clontech) was

used to enrich for fragments that were present in the 5 wpf

transforming male gonad but not in the 5 wpf ovary sample.

The selectively amplified cDNA fragments (in average 400–800

bp in length) were ligated into pGEM-T (Promega, Madison, WI,

USA) cloning vector. In total, 1400 clones were picked from the

three subtracted libraries and their inserts were sequenced using

M13 forward or reverse primer.

Sequence pre-processing
A total of 4746 ‘raw’ ESTs sequenced from adult testis and

ovary, and 11212 ‘raw’ ESTs obtained from differentiating gonad

were generated in our laboratory during this study and combined

with our previously submitted data set of 11122 ESTs [34]. Pre-

processing included the removal of 291 chimeric clones and 86

ESTs containing sequencing errors. In addition, sequences shorter

than 100 nucleotides (729 ESTs) were removed together with a set

of 1217 ESTs that was repeat-masked over at least 30% of an EST

length. The remaining 24813 ESTs were combined with gonad-

derived ESTs obtained from Genbank.

Similarly, a total of 90668 gonad-derived ESTs were obtained

from GenBank. Chimeric clones (499) and 1568 ESTs that were

repeat-masked over at least 30% of an EST length were removed

and the remaining 88601 ESTs were added to the 24813 ESTs

generated in our laboratory. In addition, a set of 3224 sequences

was obtained from NCBI’s reference sequence division, thus

producing a final data set of 116638 ESTs.

Clustering and sequence analysis
A total of 116638 ESTs were clustered as described earlier [34].

All ESTs that were ,100 nucleotides and masked over at least

30% of an EST length, were reintroduced as singletons after

clustering the final data set. We re-introduced those sequences that

were included in the Gonad Uniclone macroarray [34] but had

been removed during the present pre-processing due to more

stringent criteria.

Clones representing transcripts with at least one sequence from

our full-length or normalized libraries (i.e. sequences that have not

been represented in the previous Gonad UniClone set; [34]) were

selected to extend our non-redundant cDNA clone collection (an

additional 3634 clones). All the 6370 selected clones were

subjected to 39-end sequencing using an 18mer oligo-dT primer

with single-base anchor as described in [83].
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Singletons derived from our libraries and clusters without any

public ESTs were assessed in silico to retain every query EST that

does not match data in Genbank since these ESTs represent data

that have not been sampled by others. Transcripts were BLAST

searched locally against the zebrafish division of Genbank dbEST

using default parameters with the exception of e-value ,1e-02.

BLAST results were filtered by using a sequence similarity

threshold defined as 70% sequence identity across 30% of the

transcript length. (By using less stringent criteria, we found hits to

‘‘weak homologs’’ and ensured that our new ESTs indeed

represent data that had not been sampled in the current public

databases.) Sequences that did not show any sequence similarity to

zebrafish transcripts were screened against Genbank non-redun-

dant database. The absence of any identifiable homologs in

Genbank resulted in the ESTs being classified as either

‘noncoding’ as in the case of sequence identity to intergenic

regions or ‘unknown’ in the event that no significant sequence

identity was observed (e-value threshold of 1e-02).

Amplification and purification of cDNA inserts
Adult gonad cDNAs in pBluescript II SK (+) (Stratagene, La

Jolla, CA, USA) were amplified in 90 ml colony PCR reactions

using the following forward and reverse primers respectively: 59-

GGGCTGCAGGAATTCGGC-39 and 59-GGGTTAAGCGG-

GATATCACTCAG-39. cDNAs from differentiating gonads in

pBS-SK-Sfi were amplified with the following forward and reverse

primers respectively: 59-TCCCAGTCACGACGTTG-39 and 59-

CCATGATTACGCCAAGC-39. Control and candidate cDNAs

were cloned into pBluescript II SK (+) and pBS-SK-Sfi

respectively and were PCR amplified with M13 primers. PCR

product quantity and quality were assessed by gel electrophoresis.

A Biomek 2000 workstation (Beckman Coulter, Inc., Fullerton,

CA, USA) was used to purify the PCR products by a vacuum-

based, size exclusion separation through Montage PCRm96 Plates

(Millipore Corporation, Billerica, MA, USA), following the

manufacturer’s instructions. The DNA was eluted in 50 ml sterile

water and separated equally into two 384-well polypropylene

plates. The cDNAs were dried completely in a speedvac and then

resuspended in 10 ml ArrayIt Micro Spotting Solution Plus

(TeleChem International Inc., Sunnyvale, CA, USA). The average

concentration of purified PCR products was 180 ng/ml.

Printing of Gonad Uniclone Microarray
The array was designed according to MIAME guidelines [84].

Purified cDNA inserts were spotted onto amine-coated microarray

slides (Genetix, Boston, MA, USA) with 24 Stealth SMP3 Micro

Spotting Pins (TeleChem International, Inc., Sunnyvale, CA,

USA) using the GeneMachines OmniGrid 100 Microarrayer

(Genomic Solutions, Ann Arbor, MI, USA). Spots were printed at

an average spot diameter of 145 mm with a vertical and horizontal

spot spacing of 180 mm to form a 4612 subarray layout. A total of

6912 probes were printed in duplicate arrays on each slide. In

order to assess spot morphology, red reflect scanning with a

633 nm laser at 10 mm resolution was performed using the

Scanarray Express Microarray Scanner (Perkin Elmer, Boston,

MA, USA).

The probes comprised 6,370 unique Gonad Uniclones, plus 24

candidate genes in duplicate and several control probes. Positive

controls included 132 b-actin clones and 111 clones representing

12 other ubiquitously-expressed genes. Negative controls com-

prised empty cloning vectors (111 pBluescript II SK (+) clones and

18 pBS-SK-Sfi clones), 78 clones representing nine Arabidopsis,

viral or fungal genes which showed no sequence similarity to those

of zebrafish, triplicates of two clones containing a poly-A tail and

flanking vector arms from both cloning vectors which are present

in all clones and six samples of spotting solution. Controls were

interspersed throughout the array. To validate and monitor target

labeling and hybridization, eight Array ControlTM PCR Spots

(Ambion, Austin, Texas, USA), a set of E. coli DNAs designed to

hybridize to eight Array ControlTM RNA Spikes (Ambion), were

included in four concentrations spanning the probe concentration

range (25, 60, 120, 250 ng/ul). Information regarding the probes

and genes on the Gonad Uniclone Microarray is shown in Table

S10 (ArrayExpress accession number: A-MEXP-838). A full list of

probes present on the array is listed in Table S11.

Target amplification and labeling
For generation of labeled targets, five female and five male 10-

month-old zebrafish from Toh strain were dissected and total

RNA was isolated from the gonad, brain, kidney and ‘rest of body’

using Trizol reagent (Invitrogen, Carlsbad, CA, USA). Following

DNase treatment, RNA quantification was performed using the

NanoDrop ND-1000 spectrophotometer (NanoDrop Technolo-

gies, Inc., Wilmington, DE, USA). RNA quality was assessed by

agarose gel electrophoresis and by analyzing RNA samples on the

Agilent 2100 Bioanalyzer (Palo Alto, CA, USA) using the RNA

6000 Nano LabChip Kit (Agilent, Santa Clara, CA, USA). The

RNA integrity number (RIN) ranged from 6–9 for all samples (a

RIN of 1 represents a completely degraded sample whereas a RIN

of 10 represents an intact sample). Four of the five individuals with

the best RNA quality were selected for subsequent reactions.

Target amplification and labeling were performed using the

Amino Allyl MessageAmpTM II aRNA Amplification Kit

(Ambion, Austin, TX, USA), following manufacturer’s instruc-

tions. Total RNA (800 ng) from each target organ was subjected to

reverse transcription, second strand synthesis and 1-round

amplification by in vitro transcription, from which 20 mg amino

allyl aRNA was labeled with Alexa Fluor 647 reactive dyes

(Invitrogen). For the common reference, 200 ng total RNA from

each of the four target organs (gonad, brain, kidney and ‘rest-of-

body’) were pooled from one male and one female individual

separately and amplified as described above. Ten mg of amino allyl

aRNA from each individual was then pooled and labeled with

Alexa Fluor 555 reactive dyes. Both aRNA and labeled aRNA

were quantified on the NanoDrop ND-1000 spectrophotometer

(NanoDrop Technologies, Inc.). Frequency of incorporation (FOI)

of the targets ranged from 31–58 dye molecules/1000 nucleotides.

Target quality was assessed by agarose gel electrophoresis. Gels of

labeled targets were imaged using the Typhoon 9200 Variable

Mode Imager and visualized using ImageQuant TL software (GE

Healthcare).

A set of eight E. coli RNA spikes (10–250 pg) from ArrayCon-

trolTM (Ambion) which are complementary to the Array Control

PCR Spots on the array were included in each labeling reaction in

different ratios as a labeling and hybridization control.

Hybridization and washing of the microarray
Printed slides were heated on a 100uC heat block for 5 sec after

which DNA was UV crosslinked to the slide at 120 mJ using a UV

Stratalinker 2400 (Stratagene, La Jolla, CA, USA). The slides were

then heated to 100uC for 20 sec after which they were blocked

using a protocol adapted from [85]. Slides were immersed and

shaken for 1 hr at 40 rpm in a solution of 1.2 g succinic anhydride

(Fluka, Buchs, Switzerland) freshly dissolved in 240 ml anhydrous

1,2-dichloroethane (DCE; Fisher Scientific, New Jersey, USA) and

3 ml 1-methylimidazole (Fluka). After blocking, the slides were

rinsed once in DCE and three times in sterile water. DNA was

denatured by immersing the slides in boiling water for 2 min, after
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which the slides were dipped twice in 100% ethanol and

immediately spin-dried in an Eppendorf 5804 centrifuge.

A total of 32 hybridizations were performed, which included the

four pairs of target organs (male and female) from four biological

replicates, all hybridized against the common reference. Fifty pmol

each of Alexa Fluor 555 and 647 labeled targets were dried

completely in a speedvac and dissolved in 50 ml of Micromax

hybridization buffer (Perkin Elmer). The targets were denatured at

90uC for 2 min and then incubated at 65uC. A MAUI Mixer FL

Hybridization Chamber Lid (BioMicro Systems, Salt Lake City,

UT, USA) was adhered onto the slide to form a sealed chamber,

allowing 46 ml of target to be loaded onto the array. Hybridization

was performed at 65uC for 16 hours on a MAUI 4-Bay

Hybridization System (BioMicro Systems) according to the

manufacturer’s instructions.

The post-hybridization wash protocol was adapted from Diehl

et al. [85]. After hybridization, the MAUI Mixer was removed

from the slide in a 65uC solution of 26SSC, 0.1% SDS. The slide

was then washed in fresh 26SSC, 0.1% SDS for 2 min, 16SSC

for 3 min and 0.26 SSC for 3 min. All three washes were

performed at room temperature with shaking at 50 rpm. The

slides were then dipped into fresh 0.26 SSC and immediately

blow-dried using a nitrogen gun at a pressure of 7 bar.

Microarray scanning and statistical analysis
The arrays were scanned at 5 mm resolution using the

ScanArray Express Microarray Scanner. A 543 nm and 633 nm

laser with 90% laser power were used to excite Alexa Fluor 555

and 647 fluorophores respectively. Scanned TIFF images of the

three biological replicates which gave the best hybridization signal

and lowest background were used for statistical analysis (24 images

in total). The median of signal and background intensities from the

Alexa Fluor 555 and 647 channels were quantified using GenePix

Pro 6.0 image acquisition and analysis software (Axon Instru-

ments, Union City, CA, USA).

Statistical analysis was performed using GeneSpring GX 7.3

(Agilent). Local background-subtracted median intensities of 6739

genes were subjected to Locally Weighed Scatterplot Smoothing

(Lowess) normalization, global normalization to 33 positive control

probes (comprising b-actin and nine of the 12 ubiquitously-

expressing genes mentioned above) and gene normalization to its

median. To eliminate signals that were close to background levels,

probes which showed intensities lower than the median raw

intensity of 111 negative control probes on each slide were

excluded from analysis. (These 111 probes included 99 pBluescript

II SK (+) clones, 6 pBS-SK-Sfi clones and 6 clones containing

flanking vector arms and poly-A tail.) The resulting probes were

subjected to a 1-way ANOVA parametric test (variances assumed

equal; p-value cutoff 0.05) and a multiple testing correction using

Benjamini and Hochberg False Discovery Rate to reveal probes

that showed statistically significant differences in expression across

the eight organs. A Student-Newman-Keuls post hoc test was

performed on these genes to identify genes that were differentially

expressed in a selected organ(s) compared to the others. All target

preparation and hybridization protocols as well as raw expression

data are available on ArrayExpress (accession no: E-MEXP-1272).

Quality control of array hybridizations
We adopted the use of a common reference-based design for

our experiments. The common reference was generated by

pooling equal amounts of targets from the adult gonad, brain,

kidney and rest-of-body of both sexes. Such a common reference

should hybridize to all spots relevant to the individual target organ

hybridizations, thereby enabling a ‘non-zero value’ to be obtained

for each spot upon normalization. This strategy has the weakness

of being affected by extreme high or low expression level for any

given gene in one or more of the organs used.

For each probe, two technical replicates were printed on each

microarray. Duplicate spots were located distally from each other

to account for any intra-hybridization variation. Scatter plots of

background-subtracted raw intensities of Duplicate B against

Duplicate A of a single biological replicate of female brain (FB1),

male brain (MB2) and ovary (FO3) are shown in Fig. S5. For all

three organs, most spots were centered along the 45u line,

indicating the similarity in intensities between technical replicates.

There were a few spots scattered above or below the line, mostly at

the lower signal range. We used the square of the Pearson

correlation coefficient (R2) as a measure of the relatedness between

technical replicates. A high level of correlation was obtained

between technical replicates as the median R2 value for

normalized intensities across all 24 hybridizations was 0.977.

These results confirm that the hybridization conditions used for

our arrays generated highly reproducible technical replicates,

hence reflecting the reliability of our data.

For every organ type, the three best biological replicates (judged

on the basis of the linearity of scatter plot) were included in the

analysis. Scatter plots of the normalized intensities of various

biological replicates of the testis and female brain plotted against

each other showed that most genes were centered along the

gradient of 1, indicating that the data from the replicates were

reproducible (Fig. S6). As with the technical replicates, genes

which were scattered above or below the line were mostly at the

lower signal range. The biological replicates were confirmed to

show highly reproducible signals as a high level of correlation was

obtained across all 24 hybridizations (median R2 value for

normalized intensities = 0.909).

The eight spiked-in controls added in varying ratios during

target labeling produced raw/control ratios that were similar to

expected ratios (data not shown). This highlights the efficiency and

sensitivity of the target labeling, and the reproducibility of target

hybridization.

In situ hybridization
We performed in situ hybridization (ISH) for six ovary-expressed

and ten testis-expressed genes on adult ovary or testis sections. Eco

RI or Spe I-linearized Gonad Uniclone plasmids containing the

cDNAs of interest were in vitro transcribed using DIG RNA

Labeling Mix (Roche Diagnostics GmbH, Mannheim, Germany)

and T7 RNA polymerase (Promega), following manufacturer’s

instructions. Probes larger than 800 bp were hydrolysed at 60uC
using 16 carbonate buffer (40 mM NaHCO3, 60 mM Na2CO3)

to generate approximately 300 bp fragments.

For ISH, we used a modified protocol based on Strahle et al.

[86]. Dissected gonads from two female and two male adult

zebrafish (AB strain) were fixed overnight at 4uC in 4%

paraformaldehyde in 16 PBS. Ovary and testis sections (20 mm

and 18 mm respectively) were made using a cryostat (Leica

Microsystems GmbH, Nussloch, Germany), transferred to micro-

scope slides and hybridized overnight at 70uC with DIG-labeled

riboprobes at a final concentration of 1 ng/ml. Slides were blocked

in a solution containing MABT (56 maleic acid buffer, 20%

Tween 20, pH 7.5), 20% fetal bovine serum and 2% blocking

reagent (Roche) for 2 hours at room temperature, followed by

overnight incubation in a 1:3000 dilution of anti-digoxigenin-AP

antibody (Roche) in blocking solution. Slides were stained

overnight at room temperature in a solution of NBT (337.5 mg/

ml) and BCIP (175 mg/ml) (Roche) in AP staining buffer (100 mM

NaCl, 50 mM MgCl2, 100 mM Tris pH 9.5, 0.1% Tween-20).
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Slides were viewed under a Zeiss Axioplan 2 upright microscope

and imaged using a Nikon DXM1200F digital camera and ACT-1

software.

Real-time PCR
Real-time PCRs were performed on three genes that showed

differential expression between the male and female brain in the

microarray data. Total brain RNA (300 ng) from three male and

three female adult individuals was reverse transcribed using the

iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Inc., Hercules,

CA, USA) following manufacturer’s instructions. The RNA used

was identical to that used as targets for array hybridization. cDNA

(0.5–1 ml) was amplified in 25 ml triplicate reactions containing

0.2 mM primers and 12.5 ml iQ SYBR Green Supermix (Bio-Rad)

using a MyiQ Single Colour Real-time PCR Detection System

(Bio-Rad), according to manufacturer’s instructions. Primers used

for amplification were as follows: mfge8: F-59 TTATCAAGGCTTT

CAAGGTGGC 39, R-59 GGCTTTACGGCAGACAACAGG 39,

wt1a: F-59 GAGCCATCCCGGAGGTTATGA 39, R-59 TTGGT

CTCGGTTGAACGCACA 39; cel: F-59 ACATTCCCTCAATC

AACAACGC 39, R-59 CAAAGGCTTTCCAAACACATACTG

39;. Either a plasmid DNA or cDNA dilution series was used to

generate a standard curve for quantification of transcript levels and

for measuring amplification efficiency. For each sample, b–actin was

amplified in parallel using the following primers: F-59 CCAT

CCTTCTTGGGTATGGAATC 39, R-59 GGTGGGGCAATGA

TCTTGATC 39, to normalize transcript levels. Negative control

PCRs containing RNA templates and b–actin primers were included

for each individual to rule out the possibility of genomic DNA

contamination.

Supporting Information

Figure S1 Expression profiles of selected candidate genes across

eight organs in adult zebrafish. The normalized intensity (in log

scale) is indicated on the y-axis and organ types are stated on the x-

axis. FB, FO, FK and FRB represent the brain, ovary, kidney and

‘rest-of-body’ from female zebrafish, while MB, MT, MK and

MRB represent the brain, testis, kidney and ‘rest-of-body’ from

male zebrafish.

Found at: doi:10.1371/journal.pone.0001791.s001 (1.28 MB TIF)

Figure S2 Self-organizing map showing the 1366 genes which

had at least 1.5-fold higher expression in the ovary compared to

the common reference target. The genes were clustered using

1000000 iterations and a neighbourhood radius of 3.0. The

number of genes in each cluster is indicated in parentheses. FB,

FO, FK and FRB represent the brain, ovary, kidney and ‘rest-of-

body’ from female zebrafish, while MB, MT, MK and MRB

represent the brain, testis, kidney and ‘rest-of-body’ from male

zebrafish.

Found at: doi:10.1371/journal.pone.0001791.s002 (4.58 MB TIF)

Figure S3 Self-organizing map showing the 881 genes which

had at least 1.5-fold higher expression in the testis compared to the

common reference target. The genes were clustered using

1000000 iterations and a neighbourhood radius of 3.0. The

number of genes in each cluster is indicated in parentheses. FB,

FO, FK and FRB represent the brain, ovary, kidney and ‘rest-of-

body’ from female zebrafish, while MB, MT, MK and MRB

represent the brain, testis, kidney and ‘rest-of-body’ from male

zebrafish.

Found at: doi:10.1371/journal.pone.0001791.s003 (4.69 MB TIF)

Figure S4 Principle component analysis showing correlation

between expression profiles of eight different organs in the three

biological replicates analyzed. Kidney targets clustered together

with ‘rest of body’ to form a distinct group from the ovary, testis

and brain targets. The brain targets also showed a higher

correlation to the testis than the ovary. FB, FO, FK and FRB

represent the brain, ovary, kidney and ‘rest-of-body’ from female

zebrafish, while MB, MT, MK and MRB represent the brain,

testis, kidney and ‘rest-of-body’ from male zebrafish.

Found at: doi:10.1371/journal.pone.0001791.s004 (1.75 MB TIF)

Figure S5 Typical scatter plots showing reproducibility of

technical replicates in the following hybridizations: A) female

brain (FB), B) male brain (MB) and C) ovary (FO). Background-

subtracted raw intensities of Replicate B against Replicate A of a

single biological replicate are shown. All hybridizations were

performed against a common reference sample containing an

equal mixture of labeled targets from adult gonads, brains, kidney

and ‘rest-of-body’ from the two sexes.

Found at: doi:10.1371/journal.pone.0001791.s005 (2.47 MB TIF)

Figure S6 Scatter plots showing reproducibility of the three

biological replicates for testis (MT) and female brain (FB)

hybridizations. The normalized intensities of various biological

replicates are plotted against each other. A: MT2 vs MT1, B: MT3

vs MT1, C: MT3 vs MT2, D: FB2 vs FB1, E: FB3 vs FB1, F: FB3

vs FB2.

Found at: doi:10.1371/journal.pone.0001791.s006 (2.30 MB TIF)

Table S1 Description of the gonad-derived libraries and ESTs

used for the extension of the dataset featured on the Gonad

Uniclone Microarray. (Abbreviations: FL-full-length, NRM-nor-

malized, ORE-ORESTES, R-random, S/SU-subtracted, wpf-

week post fertilization)

Found at: doi:10.1371/journal.pone.0001791.s007 (0.02 MB

XLS)

Table S2 Domains and corresponding functional classes of 24

clones which did not find hits to characterized genes in Genbank

when BLAST-searched at the nucleotide level. *Source: ‘non-

coding’: transcripts align to non-coding regions of the zebrafish

genome; ‘no hits’: transcripts do not find any significant matches to

the zebrafish genome.

Found at: doi:10.1371/journal.pone.0001791.s008 (0.02 MB

XLS)

Table S3 Normalized intensities (‘Norm’) and corresponding

standard error (‘StdErr Norm’) of the 24 candidate genes on the

Gonad Uniclone Microarray. Genes which were at least 1.56
more highly expressed in the ovary or testis, compared to the

common reference, are underlined or indicated in bold respec-

tively. References which describe the characterization of these

genes are also indicated. (FB, FO, FK, FRB: brain, ovary, kidney,

‘rest-of-body’ from female zebrafish; MB, MT, MK, MRB: brain,

testis, kidney, ‘rest-of-body’ from male zebrafish. Data from 3

biological replicates is shown.)

Found at: doi:10.1371/journal.pone.0001791.s009 (0.09 MB

XLS)

Table S4 List of 1366 genes with at least 1.5-fold higher

expression in the adult ovary compared to the common reference.

Normalized intensities (‘Norm’) and corresponding standard errors

(‘StdErr Norm’) are shown. (FB, FO, FK, FRB: brain, ovary,

kidney, ‘rest-of-body’ from female zebrafish; MB, MT, MK,

MRB: brain, testis, kidney, ‘rest-of-body’ from male zebrafish.)

Found at: doi:10.1371/journal.pone.0001791.s010 (0.63 MB

XLS)

Table S5 List of 881 genes with at least 1.5-fold higher

expression in the adult testis compared to the common reference.
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Normalized intensities (‘Norm’) and corresponding standard errors

(‘StdErr Norm’) are shown. (FB, FO, FK, FRB: brain, ovary,

kidney, ‘rest-of-body’ from female zebrafish; MB, MT, MK,

MRB: brain, testis, kidney, ‘rest-of-body’ from male zebrafish.)

Found at: doi:10.1371/journal.pone.0001791.s011 (0.41 MB

XLS)

Table S6 List of 656 genes with at least 1.5-fold higher

expression in both the adult ovary and testis compared to the

common reference. Normalized intensities (‘Norm’) and corre-

sponding standard errors (‘StdErr Norm’) are shown. (FB, FO,

FK, FRB: brain, ovary, kidney, ‘rest-of-body’ from female

zebrafish; MB, MT, MK, MRB: brain, testis, kidney, ‘rest-of-

body’ from male zebrafish.)

Found at: doi:10.1371/journal.pone.0001791.s012 (0.32 MB

XLS)

Table S7 List of highly-expressed ovary and testis genes

analyzed by in situ hybridization (ISH). Normalized intensities

for ovary (FO) and testis (MT) targets and ratios of normalized

intensities of FO/MT (or vice versa) are shown.

Found at: doi:10.1371/journal.pone.0001791.s013 (0.02 MB

XLS)

Table S8 List of 183 gonad-expressed genes that show female

brain-enhanced expression. These genes i)show at least 1.5-fold

higher expression than the common reference in the female brain

and one or both gonads; and ii) are differentially expressed (at least

1.5-fold) both between the gonads and between the brains of the

two sexes. Normalized intensities (‘Norm’) and corresponding

standard errors (‘StdErr Norm’) are shown, along with the ratios of

normalized intensities of female brain:male brain (‘Ratio FB/MB’)

and ovary:testis (‘Ratio FO/MT’). (FB, FO, FK, FRB: brain,

ovary, kidney, ‘rest-of-body’ from female zebrafish; MB, MT, MK,

MRB: brain, testis, kidney, ‘rest-of-body’ from male zebrafish.)

Found at: doi:10.1371/journal.pone.0001791.s014 (0.11 MB

XLS)

Table S9 List of 93 gonad-expressed genes that show male

brain-enhanced expression. These genes i)show at least 1.5-fold

higher expression than the common reference in the male brain

and one or both gonads; and ii) are differentially expressed (at least

1.5-fold) both between the gonads and between the brains of the

two sexes. Normalized intensities (‘Norm’) and corresponding

standard errors (‘StdErr Norm’) are shown, along with the ratios of

normalized intensities of male brain:female brain (‘Ratio MB/FB’)

and ovary:testis (‘Ratio FO/MT’). (FB, FO, FK, FRB: brain,

ovary, kidney, ‘rest-of-body’ from female zebrafish; MB, MT, MK,

MRB: brain, testis, kidney, ‘rest-of-body’ from male zebrafish.)

Found at: doi:10.1371/journal.pone.0001791.s015 (0.07 MB

XLS)

Table S10 Composition of probes and genes on Gonad

Uniclone Microarray.

Found at: doi:10.1371/journal.pone.0001791.s016 (0.01 MB

XLS)

Table S11 Complete list of probes on Gonad Uniclone

Microarray

Found at: doi:10.1371/journal.pone.0001791.s017 (1.10 MB

XLS)
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