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Abstract: Mitochondrial transfer has been recognized to play a role in a variety of processes, ranging
from fertilization to cancer and neurodegenerative diseases as well as mammalian horizontal gene
transfer. It is achieved through either exogeneous or intercellular mitochondrial transfer. From the
viewpoint of evolution, exogeneous mitochondrial transfer is quite akin to the initial process of
symbiosis between a-protobacterium and archaea, although the progeny have developed more
sophisticated machinery to engulf environmental materials, including nutrients, bacteria, and viruses.
A molecular-based knowledge of endocytosis, including macropinocytosis and endosomal escape
involving bacteria and viruses, could provide mechanistic insights into exogeneous mitochondrial
transfer. We focus on exogeneous mitochondrial transfer in this review to facilitate the clinical
development of the use of isolated mitochondria to treat various pathological conditions. Several
kinds of novel procedures to enhance exogeneous mitochondrial transfer have been developed and
are summarized in this review.
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1. Introduction

Mitochondria are considered to be derived from a-protobacterium that entered and symbiotically
dwelled in archaea [1,2]. Upon entry, the a-protobacterium disrupted the target archaea, which
protected themselves against the x-protobacterium. The progenies of archaea that developed a
symbiosis with the x-protobacterium evolved into eukaryotes, leaving behind vestiges that we can
observe through nutrient uptake and bacterial or viral infections [3]. Exogeneous isolated mitochondria
are engulfed into recipient cells that are in proximity by macropinocytosis [4]. The x-protobacteria might
also take advantage of macropinocytosis for destination, whereas archaea might engulf o-protobacteria
along with nutrient acquisition by macropinocytosis. Alternatively, an interaction between the two
prior to passing across the plasma membrane might induce endocytosis, including macropinocytosis.
Macropinocytosis is regulated by the sensing of environmental cues [5], and macropinosomes that are
pinched off the plasma membrane might be leaky or fragile enough for the cargo to be liberated into the
cytosol, as it has been reported from independent researchers that exogenously isolated mitochondria
complement the respiratory deficits in host cells [4,6]. Currently, mitochondrial transfer that is mediated
by either exogeneous [7-10] or intercellular transfer [11] is ensured not only in vitro but also in vivo in
pathophysiological situations, ranging from fertilization [12] to cancer [13] and neurodegenerative
diseases [14]. In particular, exogeneous mitochondrial transplantation has been intensively investigated
in animal models of various diseases, including neurological and cardiovascular diseases, and major
related reports are summarized in Table 1. Neurons suffering from in vivo ischemia-reperfusion
injuries showed enhanced expression of survival-related genes such as BCL-XL and suppressed
expression of apoptosis-related genes such as caspase 3 after direct injection of astrocyte-derived
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mitochondrial particles into the IR-damaged cortex [15]. Mitochondrial transfer was reported to
rescue IR damage through either intracerebral or intra-arterial injection, resulting in restored motor
performance with attenuated cell death [16]. Although treatment of spinal cord injury with exogeneous
mitochondrial transfer showed conservation of bioenergetics in the short-term, the effects were not
maintained long-term [17]. Similar to the effects on IR damage in the brain, IR injuries to heart were
also improved by exogeneous mitochondrial transfer [18]. In the liver after IR injury, mitochondrial
transfer suppressed hepatic cell death [19]. Similar effects were observed in IR-damaged lungs after
either intra-arterial or trans-tracheal delivery of exogeneous mitochondria [20]. Regardless of the
organ, IR injuries appear to be a promising clinical target of exogeneous mitochondrial transfer, as
independent researchers have achieved functional rescue, despite differences in efficacy among reports.
However, mechanistic approaches for the examination of the process of exogeneous transfer have
been more scarce than those for the process of intercellular transfer. Although the way in which the
trajectory of exogeneous mitochondria from outside the cell to the final destination inside the host cell
is achieved still remains to be elucidated in terms of molecular aspects, virus entry could offer us clues
for better understanding of the molecular regulation involved in mitochondrial transfer. In this review,
we focus on molecular mechanistic insights into the internalization of exogeneous materials, nutrients,
or viruses to provide viewpoints to reveal the mechanism of mitochondrial transfer. In addition, we
reviewed the current technology that is used to enhance exogeneous mitochondrial transfer.

Table 1. Exogenous mitochondrial transplantation in animal models.

Target Diseases Method Outcome Animal  Ref,/Year
Brain Ischemia reperfusion injury Direct injection Enhanced survival-related gene expression Mice [15]/2016
Brain Ischemia reperfusion injury Intra-arterial injection Functional recovery Rats [16]/2016
Spine Spinal cord injury Direct injection Improved mitochondrial respiration Rats [171/2018
Heart Ischemia reperfusion injury Direct injection Enhanced post-infarct cardiac function Rabbits [18]/2013
Liver Ischemia reperfusion injury Direct injection into the spleen Suppressed necrosis and apoptosis Rats [19]/2013
Lung Ischemia reperfusion injury  Intra-arterial or trans-tracheal injection  Increased compliance and inspiratory capacity Mice [20]/2020
2. Cell Entry

Isolated mitochondria are mainly engulfed via macropinocytosis [4], although other processes are
involved in the internalization of exogeneous mitochondria. Macropinocytosis is a process in which
eukaryotes engulf extracellular materials, including fluids, and it is well conserved from amoebae to
humans, suggesting that macropinocytosis could have been acquired at an early stage of evolution [21]
and might have been involved in the first occurrence of symbiosis. Macropinocytosis is a form of
pinocytosis, which does not depend upon dynamin, whereas phagocytosis, another form of endocytosis,
involves the ingestion of large particles, including solid objects [22]. The two processes share common
features, such as a large vacuole size, transient activation, and actin dependence, but are different in
several aspects. Phagocytosis requires receptor interaction with the particle for ingestion, involves the
uptake of a limited fluid volume due to the tight wrapping of the particle, is specific for the particle
in specialized cells, such as macrophages, and activates localized actin modifications. On the other
hand, macropinocytosis does not require the particle to interact with receptors in plasma membranes,
engulfs extracellular fluids, is executed in a nonspecific manner in all cells, and globally causes the
formation of either ruffles, lamellipodia, or blebbing over the entire surface of the plasma membrane.

2.1. Passage through the Plasma Membrane of Viruses

Virus entry comprises several processes by which the viral genome is transported to the replication
site, such as the replication organelle for many minus-stranded RNA viruses. All events, including
attachment to the plasma membrane, penetration or endocytosis, endosomal escape, and uncoating, are
achieved through the sophisticated collaboration of virus-encoded proteins with the host machinery.

Once the surface receptors on the plasma membrane interact with virions, they convey forward
signals into the cells. The battle between the host cell and the virus commences. For example, following
the dual attachment of adenoviruses to the plasma membrane via the coxsackievirus adenovirus
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receptor (CAR), which induces actomyosin-dependent movement of virions, and av33/5 integrins
that are static and confined to a given position for virions, the opposing force by the host cell causes
the virions to loosen their structures [23], resulting in fiber shedding to reduce avidity [24]. Taking
advantage of this process, adenoviruses expose protein VI, which is shielded inside the virion, to
generate pores in the plasma membrane, whereas the host secretes acid sphingomyelinase from
lysosomes in response to Ca?* influx from the pores to repair the disturbed membrane, which is
exploited to facilitate viral endocytosis, including incremental macropinocytosis of ceramide lipids [25].
Although the virus trajectories on the plasma membranes, including directed motion and diffusive
motion, exhibit the general features of the virus-host interaction that are driven by the intrinsic
properties of the plasma membrane rather than those of the viruses [26], viruses transform the host
defensive machinery for the purpose of their own offensive modalities. Unlike viruses, the progenitors
of mitochondria could survive without parasitizing cells, so the invasion of cells by mitochondria
might not have occurred. However, the components of mitochondria, including mitochondrial DNA,
N-formyl peptides, and cardiolipin, are strongly immunogenic, meaning that mitochondria are nonself
for host cells. Thus, both at the initial occurrence of symbiosis and upon the internalization of
exogeneous mitochondria, offense and defense measures should occur.

Most viruses exploit the endocytic activities of the host cell upon entry into the cytoplasm. For
example, B-species human adenoviruses bind to CD46 through their fiber knobs [27] and to av[33/5
integrins via the viral penton base with different affinities [26], leading to CD46 oligomerization,
which triggers macropinocytosis [28]. The signals for macropinocytosis are generally mediated by
the Rac-Pak1-CtBP1 axis [29] (Figure 1). Rac, which is downstream of several receptors, including
receptor of tyrosine kinases, activates actin polymerization, which is indispensable for membrane
ruffling in macropinocytosis and relays signals to Pakl; CtBP1, which is phosphorylated by Pakl,
is incorporated into macropinosomes along with Pakl and suppresses innate immune response
via transcriptional repression [30,31]. Similar to adenoviruses, vaccinia virus, coxsackievirus B,
herpes simplex virus 1, echovirus 1, and mimivirus are also ingested through macropinocytosis [22].
They initially activate signaling pathways to elicit either ruffles or blebbing. Vaccinia virus elicits
a macropinocytotic response characterized by blebbing rather than ruffles and lamellipodia, which
seems to mimic the internalization of apoptotic bodies [32]. The membranes of mature virions possess
large amounts of phosphatidylserine, which is required for macropinocytosis of apoptotic bodies.
Ingestion of extracellular materials seems to occur through the bleb retraction process. This type of
macropinocytosis is exploited by the bacterial pathogen Shigella flexneri [33]. Poxvirus infection, which
mainly utilizes macropinocytosis as a cell entry method [32], rapidly provokes AMPK activation and
vice versa, suggesting the involvement of macropinocytosis via AMPK activation upon viral entry [34].
Ebola virus takes advantage of the AMPK signaling pathway to infect cells via macropinocytotic
internalization [35]. AMPK phosphorylates the anti-capping protein of actin, vasodilator-stimulated
phosphoprotein (VASP), which subsequently promotes actin capping and results in increased cell
motility, cytoskeletal rearrangement and reorganization, and the formation of lamellipodia. In
addition to the large size of the materials, immune evasion might be another reason that viruses
exploit macropinocytosis. Macropinocytosis of apoptotic cells can suppress innate immunity instead
of inducing inflammatory responses [36]. This property might work in favor of the ingestion of
exogeneous mitochondria by macropinocytosis.



Int. ]. Mol. Sci. 2020, 21, 4995 40f17

Actin Modulation:  Circular Ruffle Macropinosome
Ruffling Macropinocytic Cup Closure .
. g Protein
B o . @ . ‘ " . . = s o | «* ¢ Amino acid

- : ” ‘ = Plasma

Receptor membrane
tyrosine l PIP2
Kinase \_/ PIlP3 v DAG "
Ras ———— 5 PI3K AKT PLCy L

- PKC l

TSC12  Escape

IME gt .
F - —

| - ,} Rag  Fusion

‘ Macropinosome

| mTORC1

Rab5

ARF
Rac1 > PAK1—>CtBP1

Figure 1. Regulation of macropinocytosis and the signaling pathways involving in mTORC share
many molecules, but these molecules do not always function in parallel under various environmental
stress conditions. PI3K: phosphoinositide 3-kinase, PIP2: phosphatidylinositol-4, 5-bisphosphate, TSC:
tuberous sclerosis complex, DAG: diacylglycerol, PKC: protein kinase C, PLC: phospholipase C.

2.2. Molecular Aspects of Macropinocytosis

The induction of macropinocytosis takes place in response to growth factors, pathogens, including
viruses or bacteria, or apoptotic bodies [22]. Macropinocytosis is an actin-driven process involving
rearrangements of filamentous F-actin, which is preceded by the establishment of membrane
patches primed for macropinocytosis with high levels of Ras activity and phosphatidylinositol
(3,4,5)-triphosphate (PIP3) accumulation [21]. Growth factor-dependent macropinocytosis is activated
by receptor tyrosine kinases (RTKs), which relay signals to Ras superfamily GTPases and then
initiate parallel signaling pathways involving Racl, Rab5, Arf6, and PI3K (Figure 1) [22]. Racl and
Arf6 are involved in actin modulation, whereas Rab5 and CtBP1, which are downstream of Racl,
contribute to macropinosome closure; PI3K mainly regulates macropinocytic cup formation and cup
closure. Growth factor-dependent macropinocytosis supplies amino acids to lysosomes, resulting in
Rag activation (vesicular pathway), whereas the PI3K-PIP3-AKT pathway leads to Rheb activation
(cytosolic pathway), subsequently effectively activating mTORC1 [5]. On the other hand, growth
factor-independent macropinocytosis does not involve RTKs but takes advantage of downstream RTKs,
especially PI3K and PKC, which are augmented by PI3K, leading to mTORC1 activation (Figure 1).
Signaling involved in amino acid detection by a mammalian cell converges on mTORC1, which regulates
growth and responses against stresses, including starvation and hypoxia [37]. Macropinocytosis and
mTORC1 seem to coordinately contribute to cellular growth by sharing some signaling pathways [5].

In the case of macrophages treated with macrophage colony-stimulating factor (M-CSF), the
beginning of macropinocytosis involves the formation of a ruffle-like C-shape, which then forms a
loop called a ruffle closure when activated Racl accumulates within the cup-like structure surrounded
by the ruffle [38]. As the ruffle grows, PI3K is activated and generates PIP3 inside of the cup. Actin
polymerization in the ruffles is executed through the recruitment of myosin-I motor proteins and
myosin-IB by PIP3 [39]. Other proteins that are recruited by PIP3 are a subset of pleckstrin homology
(PH) domain-containing signaling proteins, such as AKT and PDK1 [40]. A well-examined pathway
downstream of PIP3 involves phospholipase C-y (PLCy), which is phosphorylated and activated by
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RTKs through the SH2 domain and generates inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG)
from PIP2. DAG inside the macropinocytic cup recruits and activates protein kinase C (PKC) [41],
which contributes to cup closure at the inlet hole by folding back into the center of the cup and
generating macropinosomes to be released into the cytoplasm [42].

2.3. Regulation of Macropinocytosis

Growth factors, such as insulin and epidermal growth factor, and extracellular nutrients regulate
cell growth and survival. Depending upon these inputs, cells execute either anabolic processes that
cause growth or catabolic processes to ensure survival through mechanistic target of rapamycin
(mTOR), consisting of mMTORC1, which is involved in protein, lipid, and nucleotide synthesis, and
mTORC2, which is involved in cytoskeleton rearrangement and glucose metabolism [43]. Ras, mutant
variants of which are involved in various cancers, localizes in the membranous portions, including
the plasma membrane, where it forms nanoclusters, endoplasmic reticulum, and the Golgi apparatus
through its prenylation and palmitoylation. Ras activates macropinocytosis through several signaling
cascades, such as the mitogen-activated protein (MAP) kinase and PI3K cascades [44]. Ras is a
single-subunit small GTPase that plays the role of a signaling switch that is on when bound to GTP and
off when bound to GDP and activates downstream effectors with high affinity binding. The manner
of transmission does not involve allosteric changes but rather the release of the autoinhibition of
MAPK and the restraint of PI3K on the membrane [45]. PI3K is recruited and allosterically activated
by various growth factors and cytokines, such as insulin and epidermal growth factor, resulting in the
phosphorylation of phosphatidylinositol (4,5)-bisphosphate (PIP2) to generate PIP3, which in turn
recruits and activates effectors with pleckstrin homology (PH) domains such as protein kinase B (also
called AKT). AKT amplifies the signals of RTKs through a positive feedback loop with mTORC?2 [46].
The growth factor signals converge at and are coordinated by mTORC1, which increase anabolism and
suppress catabolism [43]. Both ERK and its effector p90RSK in the MAPK pathway [47] and AKT in the
PI3K pathway [48] phosphorylate tuberous sclerosis complex 2 (TSC2), which comprises TSC along
with TSC1 and TBC1D7, an upstream inhibitor of mTORC1 [49], via the suppression of Ras homolog
enriched in the brain (Rheb); Rheb is an immediate upstream activator of mTORC1 and is constitutively
present on the lysosomal surface [50]. The phosphorylation of TSC by AKT induces its dissociation
from the lysosomal membrane rather than a reduction in intrinsic TSC2 GTPase-activating protein
(GAP) activity, affecting Rheb and TSC2 protein stability and resulting in mTORC1 activation [51].
Another essential regulator of mTORC1 is amino acids, the sensor of which is the Rag GTPase on
the surface of lysosomes. Rag proteins recruit mTORC1 to lysosomes upon detection of amino acid
sufficiency [52], and TSC suppresses mTORC1 upon amino acid deficiency [53]; these processes result
in either positive or negative regulation (Figure 2).

The PI3K pathway is negatively regulated by several cellular machineries [54]. The tumor
suppressor phosphatase and tensin homologue (PTEN) plays a role as an inhibitor by dephosphorylating
PIP3 to convert it to PIP2 [55]. Insulin receptor substrate-1 (IRS-1), which is an adaptor protein of
RTKSs that provides the binding site for PI3K, is subject to negative regulation by PI3K through its
degradation by proteasomes [56], decreased interaction with RTK due to the phosphorylation of IRS-1
by S6K, which is downstream of mTORC1 [57], and transcriptional suppression [58].
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Figure 2. Regulation of mTORC, especially related to amino acids and signals of growth factors.
IRS: insulin receptor substrate, PI3K: phosphoinositide 3-kinase, PIP2: phosphatidylinositol-4,
5-bisphosphate, PETN: phosphatase and tensin homolog, mTORC: mTOR complex, MAPK:
Mitogen-activated Protein Kinase, RSK: ribosomal protein S6 kinase, TSC: tuberous sclerosis complex,
Dotted arrow; abridged signaling factors, In table, +: presence, —: absence.

In a nutrient-replete state, an inhibitor of mTORC1 suppresses macropinocytosis.
Bone marrow-derived dendritic cells are inhibited in performing macropinocytosis by rapamycin at a
low, physiologically relevant concentration (1 ng/mL) [59]. In myeloid cells, growth factors, such as
granulocyte/macrophage colony-stimulating factor (GM-CSF) and FMS-related tyrosine kinase 3 ligand
(FLT3L), Toll-like receptors (TLRs) and cytokines, such as IL-4 and IL-15, promote mTOR activity,
whereas the mTOR pathway is inactivated in the absence of these signals [60]. On the other hand, resting
fibroblasts and other primary cells show the activation of mTOR even in the absence of extracellular
signaling of PI3K. One report showed increased macropinocytosis in Ras-overexpressing cancerous
cells even upon the addition of rapamycin [61]. During starvation, suppression of mTORC1 stimulates
the degradation of proteins in lysosomes to enhance survival without affecting the macropinocytosis
machinery [62]. In cells with constitutively active Ras under nutrient-replete conditions, activated
mTORC1 directs protein synthesis and cell growth by utilizing extracellular amino acids and inhibits
lysosomal catabolism of proteins engulfed via macropinocytosis [62]. On the other hand, in a
nutrient-depleted environment, mTORCT is suppressed, which results in the derepression of lysosomal
catabolism. The derepression is the reason why hypovascular tumors can grow in a poor nutrient
milieu. In cells with constitutively active Ras, mTORC1 does not seem to significantly regulate
macropinocytosis under either nutrient-replete or nutrient-depleted conditions. Macropinocytosis is
the molecular underpinning of exogenous mitochondrial transfer and shares its regulatory pathway
with mTOR. Macropinocytosis is the molecular underpinning of exogenous mitochondrial transfer and
shares its regulatory pathway with mTOR. Understanding these signaling cascades could be useful for
developing a better mitochondrial transfer protocol.
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3. Relations with Internalized Mitochondria and Endosomes

Following the internalization of mitochondria by macropinocytosis, the mitochondrial trajectory
has not yet been revealed in detail. For entrapped viruses in endosomes, it is essential to break
through the membranes of endosomes to the final destination. Viruses take advantage of various
host machineries along with their own components. On the other hand, direct interaction between
endogenous mitochondria and endosomes provides not only ion transport but also stress responses.
In addition, some experiments showed that packaging of endogenous mitochondria allows them to be
exported into extracellular spaces [63-65]. The examination of the endosomal escape of viruses and the
exocytosis might provide useful clues as to how exogenous mitochondria dwell inside new host cells.

3.1. Endosomal Escapes for Viruses

Upon endosomal escape of viruses, reverse signaling from the host molecular machinery to
the virus facilitates the release of the viral genome [29]. In nonacidic early-stage endosomes and
macropinosomes containing incoming virions, since damaged adenoviruses expose protein VI to
the plasma membrane upon cell entry, causing the membrane to be leaky [25], damaged virions in
endosomes could be primed for endosomal escape via the leakage of membranes in concert with the
fluxing of inorganic ions, such as sodium, potassium, chloride, or calcium, which are regulated by
ion pumps and exchangers found in the endosomal membrane [66]. Serious disrupted endosomal
membranes in the process of endosomal penetration are swiftly expelled by endosomophagy [25].
Unlike nonenveloped viruses such as adenoviruses, enveloped viruses such as orthomyxoviruses and
rhabdoviruses make use of viral fusion proteins that are embedded in the viral envelopes [67]. The
fusion proteins are activated by low pH, which is attributed to the vacuolar ATPase that functions to
acidify intracellular compartments through the pumping of protons [68] and the rearrangement of viral
proteins, such as Lassa virus glycoprotein [69], or the cleavage of components in the outermost layer,
such as Ebola virus glycoprotein, by the endosomal proteases cathepsin L and B [70]; this eventually
results in the fusion of two lipid bilayers via intracellular receptor switching to release the viral genome
into the cytosol [71]. This acidification is also involved in the uncoating of influenza A virus by opening
the M2 proton channel, acidifying the interior of the viral particles [72]. Depending upon the payload
to be liberated into the cytosol, endosomes are ruptured by transient membrane modification, pore
formation, and serious disruption (Figure 3).

Membrane disruption

™~

Acidification
Pore formation

X %

\

Membrane modification
Endosome
Cell fusion
—

—

H*

Figure 3. An array of methods used by viruses to escape from entrapment by endosomes. A virus
often harnesses various machineries in combination.
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The viral particles released from endosomes are transported toward the minus ends of microtubules
near the centrosome and the nucleus across the densely packed cytosol [73]. Although the complexity of
microtubule-dependent virion movements that are executed by contra-directional microtubule motors,
which consist of plus-end-directed kinesin Kif5B and KLC1/2 and minus-end-directed dynein/dynamin,
still remain to be elucidated [74], a stochastic model in which the directionality can be determined
with certainty was proposed [75] that well explained the movement of peroxisomes in the cytosol [76].
During the translocation of virions, the nucleus exports the nuclear export factor CRM1 (chromosome
region maintenance 1), which predominantly exists in the nucleus and exports a leucine-rich nuclear
export sequence-containing protein upon the stimulation of Ran-GAP [77,78], consequently leading to
detachment of the virion from the microtubules [79]. Adenoviruses exploit this dislocation to enable
them access to the nuclear pore complex (NPC), which is a selective channel for small molecules less
than 6 nm (40 kDa) spanning the nuclear envelope, and release their genomic contents to the final
destination, the nucleus [80]. Whereas the host causes NPCs to link to microtubules, which allows the
removal of virions from NPCs, the force applied to virions makes the capsid vulnerable, thus resulting
in the destruction of the capsid and the liberation of the genome into the nucleus [81]. Such physical
force in the cytosol might function in mitochondrial transfer to liberate the mitochondrial genome to
the final destination.

3.2. Mitochondria—Endosome Interactions and Mitochondrial Exports

Mitochondria form microdomains when they are in contact with other intracellular organelles, such
as the endoplasmic reticulum (ER), and exchange ions and metabolites essential for cellular homeostasis
through mutual support [82]. Whereas the dynamic platform between the mitochondria and the ER is
termed the mitochondria-associated membrane (MAM), which is fundamental for Ca?* and glucose
homeostasis, lipid trafficking, autophagy, apoptosis, and immunity [83-85], endosome-mitochondria
interactions function as transport sites for iron and cholesterol, which are indispensable for the
synthesis of iron-sulfur clusters and steroid hormones, respectively [86,87]. The binding occurs
through VPS13A/13C [88], which regulates lipid metabolism [89], and MFN2 [90], which is in charge
of mitochondrial fusion and MAM [91]. As MAMSs are involved in innate immunity, ROS are
released into endosomes containing Staphylococcus aureus through contact with mitochondria-derived
vesicles (MDVs) to kill the bacteria [92]. Moreover, mitochondria are recruited to the parasitophorous
vacuole membrane (PVM) that holds parasites such as Toxoplasma gondii, which are deprived of
nutrients by mitochondria, resulting in starvation of the parasites [93]. Thus, these microdomains
between endosomes and mitochondria open up to exchange materials ranging from ions to sizable
biomolecules. The formation and export of MDVs containing selective mitochondrial contents, such
as damaged mitochondria, were reported in the immune system [64] and central neural system [65].
Furthermore, a report that the export of whole mitochondria by healthy cells can rescue growth in
respiration-deficient tumors [63] might suggest the existence of a machinery that packages endogenous
pinched-off mitochondria in mitochondrial networks, which might result in their entrapment for
export rather than their digestion by mitophagy [94]. Given that there is a packing mechanism, the
cargo unpacking or leakage machinery might exist, and thus lead to the engraftment of exogeneous
mitochondria in the cytosol, although this requires more investigation. Concern has arisen about
the intactness of exogenous mitochondria in the extracellular space or endosomes [95]. Even at
micromolar concentrations of Ca?* in the medium, influx into matrices through the permeability
transition pore is nonselectively effective for molecules with molecular masses of up to 1600 kDa [96].
Subsequent swelling of the mitochondria to equalize the osmolarity of the mitochondrial matrices and
the medium could lead to irreversible destruction of the mitochondrial membrane. On the other hand,
independent research has shown functional recovery of mitochondrial respiration with exogenous
mitochondrial transfer into respiration-deficient cells. To resolve these discrepancies, I suppose that
exogenous mitochondria function as a vehicle for mitochondrial DNA as cargo rather than functioning
as respiratory units. Either endosomal escape of exogenous mitochondria into the cytoplasm or direct
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contact of endosome-enclosed exogenous mitochondria with endogenous mitochondrial networks
might deliver the mitochondrial DNAs to endogenous mitochondria, resulting in rescue of respiratory
function (Figure 4). When either exogenous mitochondria or mitochondrial DNA could be integrated
into endogenous mitochondria, the function of endogenous mitochondria, including mitochondrial
respiration, expression of mitochondria dynamics-related proteins, and mitochondrial ROS as signaling
molecules, should affect the consequences.

@D Cellular membrane

Macropinosome

Direct Contact to

\l:/litochondrial Network ?

Endosomal Escape ?
Ve

Mitochondria

Figure 4. Putative intracellular trajectory of exogeneous internalized mitochondria, which originate
from either isolated or exosome-derived mitochondria. Similar to viral endosomal escape, mitochondria
might be liberated to make direct contact with the pre-existing mitochondrial network, or, as observed
during iron transport, endosomes containing mitochondria might physiologically transport material
originating from exogeneous mitochondria.

4. Artificial Mitochondrial Transfer

Since mitochondprial transfer has been reported and shown to function in pathophysiological
conditions, interventions using mitochondrial transfer to treat various diseases have been investigated
intensively [15,97-99], and some protocols have reached the clinical application stage [100,101].
A challenge for this process is the poor efficiency of the transfer, which might weaken the effects on
the disease, despite some parameters such as ATP production and mitochondrial ROS generation
being improved to some degree. In recent years, various methods have been developed to artificially
introduce isolated exogenous mitochondria into cells (Table 2). These methods, using cell penetrating
peptides (CPPs) [7], centrifugal force [8], magnetic force [9], and vapor bubbles [10], successfully and
more efficiently internalized exogenous mitochondria into cells.
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Table 2. Current reported technologies used to enhance mitochondrial transfer in vitro.

10 of 17

Method Recipient Cell Donor Mitochondria Mitochondria Marker Ref./Year
TAT-dextran Human Ute.rlne endometrial Rat C2C12, an immortalized myoblast cell line MitoDsRed [71/2020
gland-derived mesenchymal cells
Rat Neonate cardiomyocytes, primary Rat C2C12, an immortalized myoblast cell line MitoDsRed
Centrifugation Rat L6, muscle Human Umbilical cord-derived mesenchymal stem cells MitoTracker [8]/2018
MRC-5, a diploid human cell culture line
. . composed of fibroblasts, originally developed .
Magnetomitotransfer Human MRC-5, fibroblasts Human L. d MitoTracker [9]/2016
from research deriving lung tissue of a 14 week
old aborted Caucasian male fetus

P};(;?fb;le;g;al Human 143BTK-, osteosarcoma Human MDA-MB-453, breast carcinoma MitoDsRed [10]/2016
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4.1. Cell Penetrating Peptide

Maeda et al. designed the Trans-Activator of Transcription protein (TAT) conjugated with dextran
to enable complex formation and isolated mitochondria with TAT-dextran, which allowed easier
penetration of the plasma membrane through the reduction of the net negative charges, and the
properties of CPP and TAT, independent of macropinocytosis, demonstrated that the complex can
more efficiently transfer exogenous mitochondria into cells [7]. The improvement of the transfer
efficiency was verified by using primary rat neonatal cardiomyocytes that were exposed to oxidative
stress based on the survival and the reduced apoptosis signals following stress. As viruses utilize
independent pleural machinery to enter cells, exogeneous mitochondria might take advantage of forms
of endocytosis other than macropinocytosis, through which isolated exogeneous mitochondria are
mainly engulfed by simple in vitro coincubation [4].

4.2. Centrifugal Force

A simple and easy mitochondrial transfer protocol using centrifugation was reported in various
types of cells, including cancer cell lines and mesenchymal stem cells [8]. The protocol showed better
transfer efficiency in the examined cell types, as the TAT-dextran protocol improved the transfer
efficiency. The authors found that mitochondrial transfer significantly increased ATP production,
the membrane potential, and the basal oxygen consumption rate in cells that received exogeneous
mitochondria. The system is simple and rapid for introducing mitochondria and may be adaptable
not only to adherent cells but also to floating cells. The mode of action of centrifugation could be to
localize cells and mitochondria in close proximity. The activation of macropinocytosis through the
mTORC pathway could be feasible in combination with this protocol to obtain improved efficiency,
although it is not as simple to regulate macropinocytosis as described above. The aberrant activation of
macropinocytosis is implicated in cancer [102], neurogenerative diseases [103], and atherosclerosis [104].

4.3. Magnetic Force Using Anti-Mitochondria Specific Protein with Magnetic Nanoparticles

Instead of centrifugation force, magnetic force was applied to develop a new protocol for
mitochondrial transfer by increasing the contiguity of cells [9]. In this protocol, TOM22, which is a
mitochondrial import receptor along with TOM20 and TOM40 on the mitochondrial outer membrane,
was used as a tether for binding with microbead-conjugated antibodies. This method was also
more efficient in transferring mitochondria into cells with respect to functionality, similar to the
TAT-dextran and centrifugation protocol. There is a concern that the magnetic beads may remain in
cells after mitochondrial transplantation after 4 days, and it is unclear how these magnetic beads affect
cellular function.

4.4. Generation of Vapor Bubbles by a Photothermal Nanoblade

Photothermal nanoblades are metal nanostructures that generate highly localized and shaped
explosive cavitation bubbles by light energy derived from laser pulses. These bubbles are capable
of temporally disturbing the cell membranes. A protocol using this blade to perforate the cell
membrane and transfer isolated mitochondria into cells was developed [10]. The authors reported
that mitochondprial transfer restored the respiratory capacity of mitochondria-deficient cells and that
the metabolic-related gene expression patterns and metabolic profiles were also close to those of the
original cells. Although this technique is unsuitable for mitochondrial transfer into many types of cells,
it might be an alternative to direct injection for eggs.

5. Perspective

Current protocols for mitochondrial transfer focus on the first step, which involves crossing the
plasma membrane, whereas endosomal escape could be an essential step required for exogeneous
mitochondria to function in new hosts and could be the next target in further investigations. In addition
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to internalization and endosomal escape, another issue is the preparation of isolated mitochondria
for clinical intervention using mitochondrial transfer. When significantly damaged mitochondria are
transferred into the cell, two distinct fates other than stable engraftment could occur: digestion by
mitophagy, which might outsource this process [64], and provocation of the innate immune response
by mtDNA and various proteins released from damaged mitochondria as DAMPs [105]. Considering
that viruses utilize damage that occurs upon crossing the plasma membrane to escape endosomes, it
might be not necessary to ensure the intactness of isolated mitochondria too strictly if the mitochondrial
genome is safely protected from any damage.

Improved understanding of the trajectory of exogenous mitochondria from cell entry to
engraftment in the host cytosol could shed light on not only the evolutionary process of symbiosis
but also new aspects of the development of a novel, enhanced mitochondrial transfer method to treat
diseases involving mitochondrial dysfunction.
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VSAP Vasodilator-stimulated phosphoprotein
PIP3 Phosphatidylinositol (3,4,5)-triphosphate
RTKs Receptor tyrosine kinases

M-CSF Macrophage colony-stimulating factor
PH Pleckstrin homology

PLCy Phospholipase C-y

IP3 Inositol 1,4,5-trisphosphate

DAG Diacylglycerol

PKC Protein kinase C

mTOR Mechanistic target of rapamycin

MAP Mitogen-activated protein

PIP2 Phosphatidylinositol (4,5)-bisphosphate
TSC2 Tuberous sclerosis complex 2

Rheb Ras homolog enriched in the brain
GAP GTPase-activating protein

PTEN Phosphatase and tensin homologue
IRS-1 Insulin receptor substrate-1

GM-CSF  Granulocyte/macrophage colony-stimulating factor
FLT3L FMS-related tyrosine kinase 3 ligand
TLRs Toll-like receptors

CRM1 Chromosome region maintenance 1
NPC Nuclear pore complex

ER Endoplasmic reticulum

MAM Mitochondria-associated membrane
MDVs Mitochondria-derived vesicles

PVM Parasitophorous vacuole membrane
CPPs Cell penetrating peptides

TAT Trans-Activator of Transcription protein
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