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Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is one of the most
common malignant tumors in the world with a very poor prognosis. Immunotyping
is of great significance for predicting HCC outcomes and guiding immunotherapy.
Therefore, we sought to establish a reliable prognostic model for HBV-related HCC
based on immune scores. We identified immune-related modules of The Cancer
Genome Atlas LIHC and GSE14520 data sets through weighted gene co-expression
network analysis and evaluated HCC through a non-negative matrix factorization
algorithm. Through further bioinformatics analyses, we identified causes for prognostic
differences between subtypes. The results illustrate a significant difference in prognosis
based on immunotypes, which may stem from metabolic disorders and increased
tumor invasion associated with the high expression of genes related to stem cell
characteristics. In conclusion, we identified a novel HBV-related HCC immune subtype
and determined its immunological characteristics, which provides ideas for further
individualized immunotherapy research.

Keywords: HCC, immune score, prognosis, immune subtype, HBV-related

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most widespread cancers globally and it has an
extremely poor prognosis. Approximately 800,000 people die each year from HCC worldwide (1).
Although great progress has been made in the treatment of HCC, the prognosis for HCC patients is
still largely negative due to difficulties surrounding the early diagnosis and high recurrence of HCC
(2–5). Hepatitis B virus (HBV) infection is one of the most significant causes of HCC in East Asia,
especially in China (6, 7). Therefore, identifying reliable prognostic factors for HBV-related HCC is
of great importance for the treatment of HCC.

Immune-related genes (IRGs) are a class of genes closely related to the activation and intensity
of immune responses. Many studies confirm that IRGs are involved in the pathogenesis of HCC
and are closely related to the survival outcome of HCC patients (8, 9). Related literature confirms
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the prognostic value of IRGs in HCC and establishes a molecular
subtype model for HCC based on this (4, 10). However, some
models focus on a single gene, and some models have overfitting
problems, posing a barrier to consistent, wide-ranging clinical
use. Therefore, a more complete molecular subtype model of
HCC is extremely necessary.

Recent studies show that the tumor microenvironment (TME)
plays an important role in tumor development and metastasis
by affecting gene expression and biological behavior in tumor
cells (11–16). The TME encompasses the cellular environment
of the tumor, including fibroblasts, immune cells, endothelial
cells, extracellular matrix, and various cytokines (17). Immune
cells and stromal cells are the main components of the TME
and greatly influence tumor prognosis. Currently, researchers
have developed a set of algorithms called ESTIMATE that utilize
gene expression data in The Cancer Genome Atlas (TCGA)
database to estimate immune cell presence in malignant tumors
and determine reliable molecular subtypes related to immune
characteristics (14, 18). So far, this algorithm has been applied to
colon cancer (19), breast cancer (20), prostate cancer (21), and
glioma (22) and found to be effective. However, existing models
for HCC prognosis based on immune score are still limited.

In this study, we use the ESTIMATE algorithm to analyze
HBV-related HCC patient data from the TCGA and GSE14520
databases. Using weighted gene co-expression network
analysis (WGCNA), immune-related modules and genes were
identified, and functional enrichment analysis was performed.
Subsequently, two immune subtypes were determined using
a non-negative matrix factorization (NMF) algorithm based
on immune-related genes related to prognosis. Our analysis
highlights a significant difference in prognosis between these two
subtypes. Based on key differentially expressed genes (DEGs) and
functional enrichment analysis, we conclude that the prognostic
differences between the two immune subtypes is due to metabolic
dysfunction and increased tumor invasion associated with the
high expression of genes related to stem cell characteristics of
the C2 subtype. Our research provides a new model for HCC
immunotyping and verifies its effectiveness, which contributes to
further research on the difference of immunotherapy effects and
provides a new perspective for immunotherapy.

MATERIALS AND METHODS

Databases
All gene expression and clinical follow-up data were obtained
from TCGA and Gene Expression Omnibus GSE14520 databases.
Data preprocessing using screening criteria included only tumor
samples containing HBV, removing samples without clinical
follow-up information, removing samples without data on
survival time, and removing samples without survival status.
There were 145 TCGA samples and 156 GSE14520 samples after
data preprocessing.

WGCNA Analysis Based on ESTIMATE
We used the R software package ESTIMATE (1.0.13) to
calculate the immune scores of 145 TCGA samples according

to the published method (14). In brief, gene expression values
were rank-normalized and rank-ordered, and then, empirical
cumulative distribution functions of characteristic genes and
other genes were calculated based on this. A statistic was
calculated by integrating the differences between empirical
cumulative distribution functions. We defined ssGSEA as an
immune score based on characteristics related to immune cell
infiltration (23, 24). The expression profiles for protein-coding
genes in these 145 samples were then extracted and underwent
hierarchical clustering. Five outlier samples were removed for
a total of 140 remaining samples. The Pierre coefficient was
used to calculate the distance between each gene and construct
a weighted co-expression network using the R software package
WGCNA. To ensure a scale-free network, we set the soft
threshold equal to 14 and screened the co-expression module.
Next, the expression matrix was converted into an adjacency
matrix, and then, the adjacency matrix was converted into a
topological overlap matrix (TOM). Based on TOM, an average-
linkage hierarchical clustering method was used to cluster genes
with 40 as the minimum number of genes for each gene network
module. After determining gene modules using the dynamic
shear method, we calculated the eigengenes of each module in
turn and then performed cluster analysis on the modules to
merge those modules closer to each other into new modules
(height = 0.25, deep split = 2, and minimodule size = 40).
GSE14520 data were processed using the same method. In
addition, we selected genes related to immunity in the two data
sets separately and used the R software package WebGestaltR
(0.4.3) for KEGG and GO functional enrichment analysis.

Identification of Molecular Typing Based
on Immune Score–Related Genes
For genes related to immune scores in the two data sets, we used
the coxph function in the R software package to perform single-
factor cox analysis using overall survival (OS) time and survival
status, respectively, and identified genes related to prognosis in
both data sets. Further, we clustered HCC samples in the two
data sets by NMF based on the expression levels of these genes.
We selected the standard “brunet” and performed 50 iterations.
The number of clusters was set as 2 to 10, and the R package
NMF was used to determine the average contour width of the
shared member matrix. The minimum number of members in
each subclass was set to 10. The optimal number of clusters
was determined according to indicators such as cophenetic,
dispersion, and silhouette and was set as 2 (Supplementary
Figures S1–S4).

Functional Enrichment Analysis of DEGs
in Molecular Subtypes
Differentially expressed genes between molecular subtypes were
calculated separately using the limma (3.40.6) package. False
discovery rate (FDR) <0.05 and log2FC > 1 were the thresholds
for the TCGA data set and FDR < 0.05 and fold change (FC) >1.5
were the thresholds for the GSE14520 data set. Through the R
software package WebGestaltR (0.4.3), KEGG and GO functional
enrichment analysis was performed on DEGs of different
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molecular subtypes in the TCGA and GSE14520 data sets. Items
with FDR < 0.05 were considered significantly enriched.

Ethical Approval
This study was approved by the ethics committee at the First
Affiliated Hospital of Zhengzhou University.

RESULTS

WGCNA
Consistent WGCNA identified 14 and 17 HCC modules in the
TCGA and GSE14520 data sets, respectively, (Figures 1A,B). The
gray module is a collection of genes that cannot be aggregated
into other modules. We further analyzed the correlation of each
module with patient gender, age, TNM state, stage, grade, and
immune score (Figures 1C,D). Results show that these modules
in the TCGA database had no strong correlation with gender, age,
TNM state, stage, or grade (cor < 0.4) although immune scores
had a significantly positive correlation with the tan, blue, green,
purple, and red modules (cor > 0.4, p < 0.00001). Gene numbers
in each module included 53 in tan, 558 in blue, 261 in green, 70
in purple, and 173 in red, totaling 1115 genes. In GSE14520, in
addition to a significantly negative correlation with stage in the
blue module (cor < −0.4, p < 0.00001), the other modules had

no significant correlation with gender, age, or stage (cor < 0.4)
although immune scores had a significantly stronger correlation
with black, green, and purple modules (cor > 0.4, p< 0.00001) in
which the correlation between green module genes and immune
score reached 0.97. Gene numbers in each module included 424
in black, 756 in green, and 320 in purple, totaling 1500 genes.

Functional Enrichment Analysis of Genes
Related to Immune Score
Genes in the modules related to immune score in the above
two databases were merged, totaling 2167 genes (Figure 2A).
There were 448 genes at the intersection, accounting for
39.73% (448/1115) of genes related to immune score in
TCGA and 29.87% (448/1500) of genes related to immune
score in GSE14520. To identify the functions of these 2167
immune score–related genes, we performed KEGG and GO
functional enrichment analysis through the R software package
WebGestaltR (0.4.3). Terms with FDR < 0.05 were considered
significantly enriched. For biological process (BP) immune-
related functions, activation of immune response, immune
response regulatory signaling pathway, and regulation of T cell
activation were significantly enriched (Figure 2B). For KEGG
pathway enrichment analysis, there were 69 significantly different
pathways (FDR < 0.05), including natural killer cell–mediated

FIGURE 1 | Correlation between WGCNA-based modules and sample information in HCC samples in TCGA and GSE14520 data sets. (A) Gene co-expression
modules of the TCGA database obtained by consistent WGCNA. (B) Gene co-expression modules of the GSE14520 database obtained by consistent WGCNA.
(C) Relationship between modules in the TCGA database and clinical follow-up information and immune score. (D) Relationship between modules in the GSE14520
database and clinical follow-up information and immune score.
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FIGURE 2 | Functional enrichment pathways of immune-related genes and differential prognosis between immune subtypes. (A) Venn diagram of immune
co-expression-related genes. (B) GO function annotation for BPs of immune score–related genes. (C) KEGG analysis of immune score-related genes. (D,E) The
immune subtypes T-C1 and T-C2 in TCGA have significant differences in OS and PFS time. (F,G) The immune subtypes G-C1 and G-C2 in GSE14520 have
significant differences in OS and RFS time.

cytotoxicity, B cell receptor signaling pathway, NF-kappa B
signaling pathway, toll-like receptor pathway, T cell receptor
signaling pathway, TNF signaling pathway, NOD-like receptor
signaling pathway, and other immune-related pathways. Some of
the annotated results are shown in Figure 2C.

Molecular Typing Based on Immune
Score–Related Genes
We extracted the expression profiles of 2167 immune score–
related genes in TCGA and GSE14520 databases and used OS
time and survival status to perform single factor cox analysis
through the coxph function in the R software. A total of 592 genes
in the TCGA data set were related to HCC prognosis (p < 0.05),
of which 566 genes were risk factors [Hazard Ratio (HR) > 1] and
26 were protective factors (HR < 1). For the GSE14520 data set,
264 genes were related to HCC prognosis (p < 0.05), of which
104 genes were risk factors (HR > 1) and 160 were protective
factors (HR < 1). There were 84 genes related to prognosis
in both data sets.

Based on the expression levels of the 84 prognostic-
related genes, the NMF algorithm was used to cluster the
samples in TCGA and GSE14520. Accordingly, we divided
the samples in TCGA into T-C1 and T-C2 subtypes and
those in GSE14520 into G-C1 and G-C2 subtypes. Further
analysis of prognostic relationships between subtypes found
that by OS time and progression-free survival (PFS) time,
T-C1 and T-C2 had significant differences (Figures 2D,E; log
rank p < 0.001). Similarly, G-C1 and G-C2 had significant
differences in OS time and relapse-free survival (RFS) time

(Figures 2F,G; log rank p < 0.001). Principal component analysis
(PCA) showed significant differences between different immune
subtypes (Figure 4A).

Correlation Between TNM Stage and
Immune Molecular Subtype
Through further analysis, we determined the correlation between
immune molecular subtype, immune score and survival status,
TNM stage, and grade. We found that, in TCGA-LIHC, T-C1
was associated with higher M. Stage (p < 0.05), and T-C2 was
significantly correlated with high dead events, T. Stage, Stage,
and Grade (p < 0.05). A higher immune score was significantly
related to T. Stage (Figure 3). In the GSE14520 database, G-C2
was significantly associated with higher death events and stage
(Supplementary Figure S5).

Functional Enrichment Analysis of DEGs
in Molecular Subtypes
Differentially expressed genes between molecular subtypes were
calculated using the limma (3.40.6) package. After filtering the
TCGA data set (FDR < 0.05, log2FC > 1), there were a total of
1004 DEGs, including 656 up regulated and 348 down regulated
genes. The difference between T-C2 and T-C1 was mainly up
regulated differential expression (Figure 4B). The GSE14520 data
set was filtered according to thresholds FDR < 0.05 and FC > 1.5
yielding 696 DEGs, including 253 up regulated and 443 down
regulated genes. The difference between G-C1 and G-C2 was
down regulated differential expression (Figure 4C).
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FIGURE 3 | The correlation between molecular subtype, immune score, and tumor stage in TCGA-LIHC. (A–F) Analysis of the correlation between molecular
subtypes and survival status, TNM staging, stage, and grade in TCGA-LIHC. (G–I) Correlation analysis between immune score and gender, tumor grade in
TCGA-LIHC. *p < 0.05, “NS” means no statistical difference.

FIGURE 4 | Gene expression and functional enrichment pathways between immune subtypes. (A) PCA diagrams of different molecular subtypes. (B) Volcano map
of DEGs between TCGA molecular subtypes. (C) Volcano map of DEGs between molecular subtypes of GSE14520. (D,E) GO function analysis of biological
processes (BPs) and KEGG analysis of genes up regulated in the T-C2 subtype in TCGA. (F,G) GO function analysis of BPs and KEGG analysis of genes down
regulated in the T-C2 subtype in TCGA.

Frontiers in Oncology | www.frontiersin.org 5 September 2020 | Volume 10 | Article 560229

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-560229 September 20, 2020 Time: 11:10 # 6

Zhang et al. Immune-Related Genes in HCC

KEGG and GO functional enrichment analysis was performed
using the R software package WebGestaltR (0.4.3) on the 656 up
regulated genes in the T-C2 molecular subtype from the TCGA
data set, of which 230 terms were annotated to BP with significant
differences (FDR < 0.05; Figure 4D). Among them, cell division,
chromosome segregation, nuclear division, DNA replication, and
other BPs were significantly annotated. For KEGG pathway
enrichment, there were 10 significant differences (FDR < 0.05;
Figure 4E), among which tumorigenesis pathways, such as
mismatch repair, DNA replication, cell cycle, and p53 signaling
pathway, were significantly enriched. Functional enrichment
results of the DEGs down regulated in T-C2 showed that
metabolic-related pathways, such as carbon metabolism, PPAR
signaling pathway, tryptophan metabolism, retinol metabolism,
and drug metabolism, were significantly enriched (Figures 4F,G).

Functional enrichment analysis of the DEGs up regulated in
G-C2 showed that 89 terms were significantly enriched in BP
(Figure 5A), including cell division, chromosome segregation,
nuclear division, and DNA replication. For KEGG pathway
analysis (FDR < 0.05, Figure 5B), DNA replication, cell cycle,
p53 signaling pathway, oocyte meiosis, and other oncogenic
and development pathways were significantly enriched with the
p53 signaling pathway and oocyte meiosis having significance
(p < 0.01). Functional enrichment analysis of DEGs down
regulated in G-C2 showed that tryptophan metabolism, fatty
acid degradation, drug metabolism, carbon metabolism, and
other metabolic-related pathways were significantly enriched
(Figures 5C,D).

Gene Set Enrichment Analysis Between
Molecular Subtypes
We performed a gene set enrichment analysis (GSEA) for the
subtypes in the two databases using c2.cp.kegg. v7.0 according
to published methods (25). Results show that metabolic-related
pathways, such as fatty acid metabolism; PPAR signaling
pathway; tyrosine metabolism; glycine, serine, and threonine
metabolism; and other pathways were significantly enriched
in the T-C1 and G-C1 subgroups (p < 0.05; FDR < 0.25).
Meanwhile, DNA replication, mismatch repair, homologous
recombination, spliceosome, and others were found to be
enriched in T-C2, and the spliceosome, cell cycle, and others were
enriched in G-C2 (p < 0.05, FDR > 0.25; Figures 5E,F).

Identification of Key Genes in Molecular
Subtypes
In the analysis of DEGs between molecular subtypes, we found
that SPP1, AFP, CD24, CA9, and others showed significant
differential expression and were highly expressed in T-C2 and
G-C2. Further analysis showed that these genes were related
to phenotypes associated with tumor stem cell characteristics.
This indicates that molecular subtype C2 may be related to
stem cell characteristics. Therefore, we screened genes related to
stem cell characteristics and compared expression levels between
molecular subtypes. The results showed that not only SPP1, AFP,
CD24, and CA9, but also MMP9, SOX4, SOX9, GPC3, and KRT19,

which are related to stem cell characteristics, were expressed in C2
subtypes higher than C1 subtypes (Figures 6A,B).

Comparison Between TCGA Molecular
Subtypes and Existing Immune Subtypes
Thorsson et al. performed an extensive immunogenomic analysis
of more than 10,000 tumors comprising 33 diverse cancer types
by utilizing data compiled by TCGA. Six immune subtypes were
identified: wound healing (C1), IFN-gamma dominant (C2),
inflammatory (C3), lymphocyte depleted (C4), immunologically
quiet (C5), and TGF-beta dominant (C6) (26). Interestingly, we
found that the proportion of C1 and C2 immune subtypes of the
T-C2 subtype in TCGA increased significantly and was associated
with poor prognosis, and C3 had tumor suppressive effects and a
better survival rate. In our studies, C1 and C2 subtypes account
for only 7.7% of the T-C1 subtype, and C1 and C2 subtypes in the
T-C2 subtype account for 27.63% (Figures 6C,D). And C1 and C2
in this existing immune subtype were related to poor prognosis
(Figures 6E,F). This result verifies the stability of our model.

Comparison of Immune Scores in
Molecular Subtypes
We compared the immune scores of the two subtype samples
in the TCGA and GSE14520 data sets using the MCPcounter
tool (27). The results show that T cells, B lineage, monocytic
lineage, myeloid dendritic cells, endothelial cells, and NK cells
had significant differences between T-C1 and T-C2 (p < 0.05).
Neutrophils showed marginal differences (p = 0.064), and CD8 T
cells, cytotoxic lymphocytes, and fibroblasts were not statistically
different between the two molecular subtypes (p > 0.05;
Figure 7). Among these immune cells, T-C2 had higher immune
scores in T cells, B lineage, monocytic lineage, myeloid dendritic
cells, and endothelial cells compared to T-C1, and NK cells
and neutrophils in T-C1 had higher immune scores than
T-C2. For the GSE14520 data set, only endothelial cells and
fibroblasts had significant differences in immune scores with
both having higher immune scores in G-C1 than in G-C2
(Supplementary Figure S6).

Differences in Somatic Mutations
Between Immune Subtypes in TCGA
We drew a waterfall chart of the top 20 genes with the highest
mutation frequency detected by the mutect software in the TCGA
data set in two molecular subtypes, and the main type of mutation
was missense mutation. The results show that the mutation
rates of TP53, TTN, CTNNB1, CACNA1E, and MUC16 are quite
different among different subtypes. Among them, the mutation
rate of TP53, TTN, and MUC16 increased in T-C2, and the
mutation rate of CTNNB1 and CACNA1E were upregulated in
T-C1 (Figure 8).

DISCUSSION

Studies have shown that HCC can induce an immunosuppressive
TME and promote tumor progression and metastasis through
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FIGURE 5 | Functional enrichment pathways between immune subtypes in GSE14520. (A,B) GO function analysis of BPs and KEGG analysis of genes up regulated
in the G-C2 subtype in GSE14520. (C,D) GO function analysis of BPs and KEGG analysis of genes down regulated in the G-C2 subtype in GSE14520. (E) Results
of GSEA of immune subtypes in TCGA. (F) Results of GSEA of immune subtypes in GSE14520.

FIGURE 6 | Expression differences of stem cell characteristics–related genes among immune subtypes and comparison with existing subtypes. (A) The expression
of stem cell–related genes in molecular subtypes in the TCGA data set. (B) The expression of stem cell–related genes in molecular subtypes in the GSE14520 data
set. (C,D) Proportional distribution of existing immune subtypes in T-C1 and T-C2. (E) KM curve of OS time of existing immune subtype in TCGA data set; (F) KM
curve of PFS time of existing immune subtype in TCGA data set. *p < 0.05, **p < 0.01, and ***p < 0.001.

Frontiers in Oncology | www.frontiersin.org 7 September 2020 | Volume 10 | Article 560229

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


fonc-10-560229 September 20, 2020 Time: 11:10 # 8

Zhang et al. Immune-Related Genes in HCC

FIGURE 7 | Comparison of 10 kinds of immune cells in T-C1 and T-C2. (A–J) Differences in immune cell scores between subtypes. T cells, B lineage, monocytic
lineage, myeloid dendritic cells, endothelial cells, and NK cells had significant differences between T-C1 and T-C2 (p < 0.05). Neutrophils showed marginal
differences (p = 0.064).

multiple mechanisms (28). Immunotherapy, such as immune
checkpoint inhibitors, has been shown to have effective antitumor
effects. However, only a small percentage of people respond to
immunotherapy (29, 30). Although there have been some studies
that have conducted immunophenotyping of the prognosis of
HCC, some of the research models are not stable and some have
the limitation of overfitting. These studies fail to further study the
immune landscape of HCC. Therefore, it is extremely necessary
to explore the immunological landscape of the differential
prognosis of HCC patients.

In this study, we screened hundreds of HCC samples from
TCGA and GSE14520 databases. Through WGCNA analysis,
we identified 14 modules and 17 modules, respectively. Further
analysis showed that these modules have little correlation with
patient gender, age, TNM state, stage, and grade although some of
these modules had a strong correlation with immune score. This
suggests that the immune score has a key role in the development
and evolution of HCC. Gene enrichment analysis of genes
in these immune-related modules shows that immune-related
functions were significantly enriched, further confirming the
above results and in accordance with previous reports (31–33).

Through single-factor analysis of immune genes, we screened
84 immune genes related to survival and then performed cluster
analysis by the NMF method to divide the TCGA and GSE1450
data sets into two categories. These two subtypes had significant

differences in OS and PFS (RFS) time status, and the prognosis
for the T-C1 and G-C1 subtypes was obviously better than that
of the T-C2 and G-C2 subtypes. Through functional enrichment
analysis of DEGs between subtypes, we find that, regardless of
data set, both GO and KEGG analysis show that up regulated
differential genes in the C2 subtype are related to mismatch
repair, DNA replication, and cell cycle functions, and down
regulated differential genes are related to metabolic function.
Meanwhile, we used GSEA to analyze the functions of C1 and
C2 in the TCGA and GSE14520 data sets and obtained similar
results to the functional enrichment of differential genes: the
C2 subtype was related to mismatch repair, DNA replication,
and cell cycle function, and the C1 subtype was related to
metabolic function. This means that, in the C2 subtype, pathways
related to tumorigenesis and development are activated, and
pathways related to normal metabolism are inhibited. Many
studies confirm that changes in the immune state of the TME can
affect tumor metabolism and cause changes in tumor biological
behavior (34–38). Based on this, we speculate that one possible
reason for the poor prognosis of the C2 subtype is that normal
metabolic function is inhibited, causing metabolic disorders.

Thorsson et al. analyzed the immunological characteristics of
more than 10,000 samples of 33 types of cancer and showed that
immunohistochemical characteristics are an important factor in
predicting cancer prognosis, identifying six immune subtypes: C1
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FIGURE 8 | Waterfall plots of the top 20 genes with the highest frequency of somatic mutations in TCGA-LIHC in two molecular subtypes. (A) The mutations of the
20 genes with the highest frequency of somatic mutations in T-C1. (B) The mutations of the 20 genes with the highest frequency of somatic mutations in T-C2.

(wound healing), C2 (INF-r predominant), C3 (inflammation),
C4 (lymphocyte depletion), C5 (immunologically silent), and C6
(TGF-beta predominant) of which C1, C2, and C6 are related to
poor prognosis and C3 has a tumor suppressor effect and better
survival rate (26). Compared with our model, we find that the
proportion of C1 and C2 types (associated with poor prognosis)
in T-C2 samples was significantly higher than in T-C1. This result
further validates the stability of our model.

In the somatic mutation data, the mutation rate of TP53, TTN,
andMUC16 in the T-C2 subtype were up regulated of whichTP53
and MUC16 were related to immune status. TP53 mutations have
been shown to show inflammation-related functional gains in
non-small cell lung cancer and breast cancer, etc. (39, 40).MUC16
has also been shown to be an important part of the immune
genetic landscape. Its mutation is related to the increase of tumor
mutation burden and may become a potential target for immune
checkpoint inhibitor (ICI) therapy (41). CTNNB1, which has an
up regulated mutation rate in T-C1, was initially shown to be
associated with ICI resistance, and its evidence needs to be further
studied (42).

Furthermore, we analyzed the most significant DEGs between
subtypes in the two data sets and found that SPP1, AFP,

CD24, CA9, and others showed the most differential expression
and were highly expressed in molecular subtypes T-C2 and
G-C2. Interestingly, the functions of these genes are related
to tumor stem cell characteristics. As a crucial gene in tumor
pathogenesis, SPP1 is related to the stem cell characteristics of
HCC and is involved in PD-L1-mediated immune escape in
HCC (43). AFP expression mainly occurs in fetal liver cells,
and although AFP disappears from the blood about 2 weeks
after birth, its overexpression can be detected in liver cancer
patients. As a marker of hypoxia, CA9 is also a marker for
poor prognosis in HCC, and recent studies show that its
expression is related to stem cell phenotypes (44, 45). This
indicates that molecular subtype C2 may be related to stem cell
characteristics. Additionally, in the TCGA and GSE14520 data
sets, the expression of genes MMP9, SOX4, SOX9, GPC3, and
KRT19 in the C2 subtypes were higher than those in the C1
subtype. All of these genes are also related to characteristics found
in stem cells (44, 46, 47). Thus, we define the C2 subtype as a
subtype related to stem cell characteristics. Studies show that the
expression of such characteristics in tumor stem cells enhances
the aggressiveness of the tumor, leading to poor prognosis. This
explains the poor prognosis of the T-C2 and G-C2 subtypes,
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which is likely due to increased tumor invasiveness caused by
increases in genes related to stem cell characteristics.

Our independent analysis of the TCGA-LIHC and GSE14520
data sets confirms that our immunophenotyping model is reliable
and effective. Through bioinformatics analysis, we identified
two immune subtypes with significant prognostic differences
and determined the reasons. Furthermore, we demonstrated
the inherent immunological characteristics of the two immune
subtypes, including the differences in various immune cells
and somatic mutations. This model provides a comprehensive
perspective for the study of molecular subtypes of HBV-related
HCC patients, and provides new ideas and basis for further
research on individual differences in immunotherapy.

CONCLUSION

We conducted an in-depth bioinformatic analysis on HCC
samples from the TCGA and GEA14520 databases and
determined new immune subtypes based on differences in
immune genes. Among them, T-C2 and G-C2 subtypes have
a poor prognosis, which may be due to metabolic dysfunction
and increased tumor aggressiveness caused by stem cell
characteristics. This is of great significance for the diagnosis of
immune characteristics of patients with HBV-related HCC and
the further research on personalized immunotherapy.
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