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Abstract 

Background: Epidemiological studies have repeatedly observed a markedly higher risk for coronary artery disease 
(CAD) in Scotland as compared to England. Up to now, it is unclear whether environmental or genetic factors might 
explain this phenomenon.

Methods: Using UK Biobank (UKB) data, we assessed CAD risk, based on the Framingham risk score (FRS) and com-
mon genetic variants, to explore the respective contribution to CAD prevalence in Scotland (n = 31,963) and England 
(n = 317,889). We calculated FRS based on sex, age, body mass index (BMI), total cholesterol (TC), high density lipopro-
tein cholesterol (HDL-C), systolic blood pressure (SBP), antihypertensive medication, smoking status, and diabetes. We 
determined the allele frequency of published genome-wide significant risk CAD alleles and a weighted genetic risk 
score (wGRS) for quantifying genetic CAD risk.

Results: Prevalence of CAD was 16% higher in Scotland as compared to England (8.98% vs. 7.68%, P < 0.001). 
However, the FRS only predicted a marginally higher CAD risk (less than 1%) in Scotland (12.5 ± 10.5 vs.12.6 ± 10.6, 
P = 0.03). Likewise, the overall number of genome-wide significant variants affecting CAD risk (157.6 ± 7.7 and 
157.5 ± 7.7; P = 0.12) and a wGRS for CAD (2.49 ± 0.25 in both populations, P = 0.14) were remarkably similar in the 
English and Scottish population. Interestingly, we observed substantial differences in the allele frequencies of indi-
vidual risk variants. Of the previously described 163 genome-wide significant variants studied here, 35 variants had 
higher frequencies in Scotland, whereas 37 had higher frequencies in England (P < 0.001 each).

Conclusions: Neither the traditional risk factors included in the FRS nor a genetic risk score (GRS) based on estab-
lished common risk alleles explained the higher CAD prevalence in Scotland. However, we observed marked differ-
ences in the distribution of individual risk alleles, which emphasizes that even geographically and ethnically closely 
related populations may display relevant differences in the genetic architecture of a common disease.
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Introduction
CAD is one of the most prevalent complex diseases [1]. 
Its pathogenesis is influenced by an interplay of genetics, 
diet, lifestyle, environmental and socioeconomic factors 
[2]. Regional differences in CAD prevalence have been 

observed globally, continentally and even among adjacent 
countries. For example, as compared to the Netherlands 
and the United Kingdom (UK), Spain had a constantly 
lower CAD rate throughout the past 20  years [3]. The 
same phenomenon can be observed among populations 
within the UK. In the last 15  years Scotland had con-
stantly higher CAD prevalence compared to England, 
Wales, and Northern Ireland—the underlying reasons 
being largely unclear [4].
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In principle, both environmental factors or genet-
ics may contribute to the local disparities in CAD [5, 6]. 
Compared to the European population, Burokienė et al. 
found that high BMI and poor plasma lipid profiles are 
primarily responsible for higher cardiovascular disease 
(CVD) mortality in Lithuania whereas no difference 
was found for a genetic risk score based on 60 CVD-
associated Single-nucleotide polymorphisms (SNPs) [7]. 
Indeed, exogenous risk factors affected by culture, life-
style, or socioeconomics can undergo rapid changes on 
the individual, familial, and population level leading to 
marked temporal changes in CAD prevalence [6, 8].

Evolutionary genetics determine the allele frequency 
in a population, which is modulated by natural selection 
and stochastic forces such as genet drift [9]. These and 
other factors contribute to variation among individuals 
in the same population and across populations [8–10]. 
While mutations causing monogenic disorders are under 
evolutionary pressure, this applies, to a lesser extent to, 
common risk alleles with small effect sizes [10]. Indeed, 
genome-wide association studies (GWAS) revealed that 
most common cardiometabolic conditions like hyperten-
sion, diabetes mellitus, or hyperlipidemia are affected by 
hundreds of risk alleles, most of which are common [11]. 
The high number of susceptibility variants and their high 
allele frequencies jointly contribute to the genetic archi-
tecture of disease [9, 12].

Lately, genetic risk scoring has been found to be useful 
in CAD risk prediction as well as therapeutic and lifestyle 
guidance. Using a GRS based on 27 SNPs, Mega et  al. 
observed that individuals at high genetic risk have greater 
benefit from statin therapy [13]. Moreover, Khera et  al. 
showed that a healthy lifestyle drastically reduces risk of 
incident CAD events among individuals at high genetic 
risk [14]. Besides for individual disease risk prediction, 
GRS are also used to assess and compare the risk allele 
burden between populations with different disease prev-
alence. Keaton et al. found ethnic-specific differences in 
the genetic architecture in the context of type 2 diabetes 
(T2D) between African- and European-Americans [15], 
whereas Werissa et al. found no such difference between 
the Roma and the Hungarian general population [16]. 
Pima Indians in Arizona have the highest prevalence 
and incidence of non-insulin-dependent diabetes of any 
geographically defined population [17], but Hanson et al. 
found that this is not attributable to allele frequency dif-
ferences at 63 diabetes loci [18].

In this study, we explored whether the higher CAD 
prevalence in the Scottish population could be explained 
by traditional risk factors and / or common genetic vari-
ants. We used a traditional scoring model, the FRS, and 
a GRS model based on 163 established common risk 
alleles.

Materials and methods
UK Biobank population
UK Biobank (https:// www. ukbio bank. ac. uk/) is a pow-
erful prospective cohort study resource of ~ 500,000 
volunteer participants originating from Great Britain. 
Genome-wide genotyping and various phenotypic data 
are available on nearly every participant [19]. At recruit-
ment, participants answered a series of questions on 
lifestyle, health-related information and socio-demo-
graphics, and received a range of physical measures, 
which can be obtained by researchers. After quality 
control including filtering for sex discordance, miss-
ingness, heterozygosity, kinship coefficient and ethnic 
background, our study contained 442,860 individuals 
with eligible genotype data. Based on their country of 
birth, they were grouped into England, Northern Ireland, 
Wales, and Scotland (Additional file 1: Fig. 1, Table 1).

Baseline characteristics were recorded in the assess-
ment centers of UK Biobank, such as age, gender, BMI, 
SBP, HDL-C, TC, and smoking status. Lifestyle and envi-
ronment factors, as well as family history and ethnic 
background were self-reported. Medications and treat-
ments were collected by questioning. To include more 
samples, we combined the UK Biobank data fields 20,003, 
6177 and 6153 to extract antihypertensive drugs for each 
individual and used the same strategy to identify CAD 
and diabetes. All variables used in the FRS are available 
in Additional file  1: Table  2. All variables used in the 
QRISK 3 score are available in Additional file 1: Table 3. 
The diagnosis codes used to identify cases and the medi-
cation codes used to identify antihypertensives can be 
found in Additional file 1: Tables 4 and 5.

In order to keep measured factors consistent with age 
(reported at the first visit) for Framingham risk score 
calculation, we used only first recorded value (instance 
0 data) from UK Biobank, at which participants were 
recruited from 2006 to 2010. The CAD prevalence and 
sample size can be found in Additional file  1: Table  1, 
and 371,077 individuals had both complete phenotype 
data and eligible genotype data (Additional file 1: Fig. 1, 
Table 6).

The study was approved by the Research Tissue Bank 
(RTB) and the National Research Ethics Service and UK 
Biobank’s governing Research Ethics Committee (REC), 
and was conducted in accordance with the principles of 
the UK Biobank Ethics Advisory Committee (EAC).

Source of CAD‑associated SNPs
Based on a review by Erdmann et al., we extracted lead 
SNPs of 163 CAD risk loci with genome-wide signifi-
cance as derived from the decade of GWAS [20]. All 163 
CAD-associated SNPs had odds ratios > 1.03 (Additional 
file  1: Table  7) and were based on different individual 

https://www.ukbiobank.ac.uk/
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studies using genotype data on 4,000,000 variants of 
more than 100,000 individuals. Besides, Khera et al. gen-
erated a CAD polygenetic risk score (PRS) including 
6.6 million common genetic variants using a Bayesian 
approach called the LDpred algorithm, which uses an 
linkage disequilibrium (LD) reference panel to infer cor-
relation patterns between SNPs for PRS calculations [21]. 
This genome-wide CAD PRS has more robust P values 
and higher effect estimates on CAD prevalent and inci-
dence [22].

Calculation of the Framingham risk score and QRISK3 score
From the perspective of mathematical modeling, the 
Framingham risk prediction algorithm was developed 
and validated in large community-based samples, and 
the score is calculated by summing up all risk factors 
weighted by their estimated regression coefficients from 
Cox proportional hazards models for women and men 
separately [23]. The variables required to estimate the 
10-year CVD risk include age, gender, SBP, HDL-C, TC, 
antihypertensive use, smoking status, and diabetes status, 
which are all available in UKB datasets. There are two 
models to calculate the FRS. The primary one uses lipids 
(HDL-C and TC), and the simpler one uses the BMI 
instead. The codes used to calculate the FRS_lipids and 
FRS_BMI can be found in Additional file 1: Table 10.

Hippisley-Cox et  al. have developed the QRISK3 pre-
diction algorithm that underlies 10-year cardiovascular 
disease risk in men and women [24]. The primary care 
systems presently recommend to prescribe statins to 
individuals with a QRISK3 risk score more than or equal 
to 10%, according to the current guidelines in Wales and 
England [25, 26]. Therefore, we consider the QRISK3 
score as an alternative to estimate the CAD risk. We 
included 199,778 individuals without missing data in any 
of the 22 QRISK3 variables, born in England and Scot-
land with genotype data (Additional file  1: Tables  3, 8). 
We used R Package QRISK3 (version 0.3.0) [24, 27] to 
calculate the 10-year CVD risk score for each individual. 
All 22 variables used in QRISK3 algorithm were available 
in UK Biobank Assessment Centre. Lifestyle, environ-
ment and family history were self-report, such as smok-
ing and ethnic background. Medication and treatment 
were collected by verbal interview, such as corticosteroid 
use and antihypertensives treatment.

Computation of uGRS and wGRS
After the exclusion of individuals with any missing phe-
notype data and genotype data of poor quality, we cal-
culated the unweighted (uGRS, the raw counts or the 
number of risk alleles) and weighted (wGRS) genetic risk 
scores to assess whether the genetic risk at population 
level is different between England and Scotland.

In the SNP-based additive polygenic genetic model 
[28], Eq.  (1), let  X1, …,  Xk denotes the number of risk 
alleles of SNP k in one individual, and let  b1, …,  bk denote 
the weight of SNP k.  Xk = 0 indicates no risk allele, while 
heterozygotes for the risk allele were coded as geno-
type  Xk = 1 and homozygotes for the risk allele as geno-
type  Xk = 2. Missing genotypes were imputed by their 
expected value, which is twice of the risk allele frequency 
in the population. Therefore, the effects of risk alleles at 
all loci are regarded as the same if all  bk equal 1. In this 
case a person’s summary genetic risk score is the sum of 
all risk alleles at all loci, which is denoted as uGRS. Giv-
ing distinct weights to risk alleles of each SNP, alleles 
with larger effect size contribute more to the GRS, and 
wGRS is the sum of the number of risk alleles multiplied 
the corresponding log odds ratio of each risk allele. Addi-
tional file  1: Table  7 indicates the SNPs and risk alleles 
identified in independent GWAS studies [20], which are 
used for the uGRS as well as the log odds ratios for the 
wGRS.

Statistical methods
We used Pearson’s chi-squared test to determine the sig-
nificance of the difference in CAD prevalence between 
the two populations. The difference between two pop-
ulations in FRS and QRISK3 were tested by two tail 
Mann–Whitney test as both are skewed and not normal 
distributions. The difference of means of the number of 
risk alleles and wGRS were assessed by two tail t-test as 
both are approximately normally distributed. Their dis-
tribution comparison was assessed by the Kolmogorov–
Smirnov test. We used R version 4.0.3 with packages such 
as data.table [29], epiR, ggplot2, Table  1, and tidyverse 
for data analysis and plotting. PLINK2 was used to cal-
culate uGRS and wGRS. PRSice-2 (Polygenic Risk Score 
Software for Biobank-Scale Data) was used to calculate a 
wGRS derived from 6.6 million variants [22]. The differ-
ence of risk alleles frequencies (RAF) between two popu-
lations are tested by Pearson’s chi-squared test, and we 
adjust these p-values for multiple comparisons by Bon-
ferroni correction. We used a significance level of P < 0.05 
for the means and distribution tests.

Results
Baseline characteristics of study participants
After exclusion of participants with missing covariates 
required for calculation of GRS or FRS, we obtained a set 
of 371,077 samples fulfilling our study requirements. The 
prevalence of CAD within UKB was highest in Scotland, 

(1)GRS =

K∑

k=1

bkXk
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followed by Wales, Northern Ireland, and England, which 
matches respective trends in published data from 2008 
to 2010 [4] (Fig. 1, Additional file 1: Table 6). After data 
filtering, a significant difference in CAD prevalence was 
observed between England (n = 317,889; 7.68%) and 
Scotland (n = 31,963; 8.98%, P < 0.001), as well as between 
England and Wales (n = 18,724; 8.30%, P = 0.002), while 
there was no significant difference between England and 
Northern Ireland (n = 2,501; 8.36%, P = 0.20). Consider-
ing the well-established difference in CAD prevalence 
between Scotland and England, we focused our compari-
son on these two populations.

The English and Scottish participants had a similar 
mean age (56.7 ± 8.1 in England and 56.6 ± 8.0 in Scot-
land) (Table 1). Among traditional CAD risk factors, the 
Scottish had moderate, but significantly higher levels of 
BMI and SBP (P < 0.001). There were also more smokers, 
but less diabetics among the Scottish compared to the 
English population (P < 0.001) (Table 1).

Comparison of traditional risk factors by the Framingham 
risk score and QRISK3 score
FRS_lipidsranged from 0.5 to 94.7 (mean, 12.6 ± 10.6) for 
the Scottish, and from 0.3 to 96.1 (mean, 12.5 ± 10.5) for 

the English population (P = 0.009; Table 2, Fig. 2). Thus, 
the FRS explains a difference of CAD prevalence of less 
than 1% whereas the observed prevalence differed by 
16.9% between the two countries. Computing the FRS_
BMI instead of lipids yielded similar results (Additional 
file 1: Fig. 2, Table 9). Likewise, estimation of CAD risk 
based on QRISK3 revealed only small but statistically 
significant differences between the two countries (Addi-
tional file 1: Fig. 3, Table 9).

Comparison of the genetic burden by the polygenic risk 
score
To investigate whether common genetic variants might 
predict the higher CAD prevalence in Scotland, we 
compared the population-based CAD GRS of Scotland 
and England based on 163 GWAS SNPs significantly 
associated with CAD (GWAS P < 5E−8, OR > 1.03) [20]. 
On average, Scottish participants had 157.5 ± 7.7 risk 
alleles while English individuals had 157.6 ± 7.7 (Fig.  3, 
Table 2). Both, mean and distribution of uGRS based on 
163 SNPs showed no significant difference between the 
two countries (Table  2). The same result was observed 
for wGRS based on CAD-associated SNPs. Namely, both 
countries had a mean wGRS of 10.6 and no difference in 

Table 1 Basic Characteristics of participants born in England and Scotland in UK Biobank

SD: standard deviation; BMI: body mass index; HDL: high-density lipoprotein
* p < 0.05; **p < 0.01; ***p < 0.001

England (N = 317,889) Scotland (N = 31,963) P‑value

Gender*** 0.0002

F 169,679 (53.4%) 17,411 (54.5%)

M 148,210 (46.6%) 14,552 (45.5%)

Age (years) 0.0519

Mean (SD) 56.7 (± 8.1) 56.6 (± 8.0)

BMI*** 0.0002

Mean (SD) 27.4 (± 4.7) 27.49 (± 4.7)

HDL cholesterol (mg/dL) 0.1296

Mean (SD) 26.2 (± 6.9) 26.1 (± 6.9)

Total cholesterol (mg/dL)* 0.0381

Mean (SD) 102.8 (± 20.6) 103.1 (± 20.7)

Systolic blood pressure (mmHg)***  < 0.001

Mean (SD) 138.0 (± 18.5) 139.0 (± 18.9)

Antihypertensive medication** 0.0012

Yes 72,816 (22.9%) 7,577 (23.7%)

No 245,073 (77.1%) 24,386 (76.3%)

Smoking***  < 0.001

Yes 32,484 (10.2%) 4,078 (12.8%)

No 285,405 (89.8%) 27,885 (87.2%)

Diabetes***  < 0.001

Yes 24,646 (7.8%) 1,918 (6.0%)

No 293,243 (92.3%) 30,045 (94.0%)
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wGRS distribution of the two populations was observ-
able (Table 2, Additional file 1: Fig. 4). Finally, CAD risk 
based on a GRS derived from 6.6 million variants [21]22 
revealed no differences between the two countries (Addi-
tional file 1: Fig. 5, Table 9).

Comparison of risk allele frequencies
We next calculated the risk allele frequency (RAF) at 163 
loci with established genome-wide significant association 
with CAD in England and Scotland (Fig.  4, Additional 
file 1: Fig. 6, Table 7). There were 35 variants with higher 
RAF in Scotland whereas 37 had higher RAF in England 
(Fig.  4,  Padjust < 0.001 each). The absolute difference in 

RAF ranged from 0.3% (rs116843064, England = 98.1%, 
Scotland = 97.8%) to 3.3% (rs579459, England = 21.0%, 
Scotland = 17.6%). As mentioned above, these differences 
neutralized each other since the GRS displayed no signif-
icant differences between the two countries.

Discussion
The prevalence of CAD is higher in Scotland than in Eng-
land for largely unexplained reasons [4, 30]. This obser-
vation was also evident in the UK Biobank participants 
studied here. The traditional risk factors included in the 
FRS hardly explained the difference in CAD prevalence 
between the two countries. Out of 163 genome-wide 

Fig. 1 Trends in the CAD prevalence from QOF data, England, Wales, Scotland, and Northern Ireland 2008 to 2017. Source: England—Health and 
Social Care Information Centre. QOF achievement data; Scotland—ISD Scotland. QOF achievement data to 2015/16. Prevalence data for 2016/17 
and 2017/18 obtained via personal communication; Wales— StatsWales. QOF achievement data; Northern Ireland—Department of Health, Social 
Services and Public Safety. QOF exception reporting data 2017/18; QOF, Quality and Outcomes Framework [4]

Table 2 Statistics for the Framingham score and genetic risk score in populations

SD: standard deviation

**p < 0.01

England (N = 317,889) Scotland (N = 31,963) P‑value

Framingham score using lipids** 0.009

Mean (SD) 12.5 (10.5) 12.6 (10.6)

Median [Min, Max] 9.2 [0.3, 96.1] 9.4 [0.5, 94.7]

Coronary artery disease uGRS 0.1173

Mean (SD) 157.6 (7.7) 157.5 (7.7)

Median [Min, Max] 157.6 [122.1, 196.0] 158.0 [122.6, 186.7]

Coronary artery disease wGRS 0.1419

Mean (SD) 10.6 (0.5) 10.6 (0.5)

Median [Min, Max] 10.6 [8.0, 13.0] 10.6 [8.0, 12.7]
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significant risk alleles studied, 35 had higher RAF in 
Scotland whereas 37 had higher RAF in England. How-
ever, overall, these differences appeared to neutral-
ize each other since there was no significant difference 
in the means and distributions of both weighted and 
unweighted GRS based on 163 CAD SNPs.

According to the ancestral-complex disease suscepti-
bility model, genetic variations existed before the human 
spreading out of Africa and evolved with an extremely 
slow speed [31, 32]. However, nowadays environment 
and lifestyle are remarkably different from that of our 

ancestors. A mismatch between the ancestral variants 
and current environment might contribute to the devel-
opment of some of non-communicable, complex diseases 
[2, 33].

It is unclear as to whether differences in ancestral vari-
ants contributing to CAD risk explain regional differ-
ences in CAD prevalence. With respect to England and 
Scotland, we observed that about 40% of genome-wide 
significant variants displayed significant differences 
in allele frequencies. It is remarkable to find that many 
significant differences in allele frequencies of disease 

Fig. 2 Histograms showing the distribution of the Framingham score using lipids for the comparison population (born in Scotland) and the 
reference population (born in England)

Fig. 3 Histograms showing the distribution of the number of risk alleles based on 163 CAD associated SNPs for the comparison population (born in 
Scotland) and the reference population (born in England)
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relevant genes in such closely related populations. How-
ever, the balanced effect—35 variants had higher RAF 
in Scotland and 37 had higher RAF in England—sug-
gests that this is not driven by any selection pressure on 
these risk alleles, which is in line with findings of Keyue 
and Iftikhar, who did not observe significant differences 
in the distribution of Fst values at 158 CVD-associated 
SNPs compared to background SNPs [34]. In fact, the net 
effects of these differences at multiple loci seem to neu-
tralize each other, since we observed no differences in the 
CAD risk based on polygenic risk scores.

Thus, genetic susceptibility to CAD—based to com-
mon risk alleles—appears to be rather similar in Eng-
land and Scotland. The same applies to traditional risk 
factors for CAD, since the present as well as previous 
studies failed to demonstrate profound differences 
between these two countries [35, 36]. In 1989, Carstairs 
and Morris reported that Scotland suffers from more 
severe deprivation than England and Wales [37], In 
2011, the same pattern of deprivation was still observed 
between the countries of Scotland and England [38]. 
In 2013, Newton et al. reported that significant health 
inequalities remain between the poorest and most 
deprived areas [39]. Thus, social deprivation might 
be one of the explanations for Scotland´s higher CAD 

rates. In order to lower CAD rates in Scotland, it seems 
to be reasonable to intensify preventive measures to be 
delivered at the most deprived.

A limitation of our study may be the fact that the lead 
SNPs we used to represent risk at a given genome-wide 
significant locus might not be the causal ones. However, 
these variants were associated with the strongest risk 
such that the causal variants are likely to be in very high 
LD. Moreover, the estimation of risk based on polygenic 
risk scores is unlikely to be affected by lack of knowledge 
on the causal variant. Another limitation of our study 
could be that we did not explore rare variants, gene–
gene interactions, gene-environment, and exposure to 
epigenetic factors. All of these can modulate genetic risk 
[2, 40, 41] but are challenging to investigate in a study 
like ours. As for the traditional factors analysis, we only 
included the major risk factors for CAD (sex, age, BMI, 
HDL-C, TC, SBP, antihypertensive medication, smoking 
status and diabetes), while other important factors such 
as physical activity, family history and socioeconomic 
status are not included in the Framingham risk model 
[42]. Finally, the UKB population has been considered 
to represent a relatively low risk. As such, the data may 
not be representative for the entire population spectrum 
[43]. Nevertheless, the repeatedly observed differences 

Fig. 4 Dumbbell plot showing the risk allele frequency per SNP in England and Scotland. The left gray block shows the 37 SNPs with higher 
allele frequencies in England (P < 0.001). The right antique white block shows the 35 SNPs with higher allele frequencies in Scotland (P < 0.001). 
Non-significant SNPs are shown in the Additional file 1: Fig. 6



Page 8 of 9Yang et al. BMC Cardiovascular Disorders          (2021) 21:586 

in CAD prevalence between Scotland and England were 
apparent in UKB as well.

Conclusions
Using representative data from UK Biobank, our study 
assessed traditional and genetic risk models for discrimi-
nation of CAD prevalence in Scotland and England. Our 
study found that the traditional risk factors included in 
FRS may explain little of the difference in CAD preva-
lence between Scotland and England. Likewise, both 
unweighted and weighted GRS based on 163 SNPs or 6.6 
million SNPs suggested a similar genetic susceptibility to 
CAD in the Scottish and English populations. Yet, there 
have to be reasons why the Scottish population con-
stantly has higher CAD rates than the English. If genet-
ics can´t elucidate this observation, environmental or 
lifestyle factors that have received less attention thus far 
might provide an answer [44–47].
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