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Background: Tumor purity is defined as the proportion of cancer cells in the tumor tissue,
and its effects on molecular genetics, the immune microenvironment, and the prognosis of
children’s central nervous system (CNS) tumors are under-researched.

Methods: We applied random forest machine learning, the InfiniumPurify algorithm, and
the ESTIMATE algorithm to estimate the tumor purity of every child’s CNS tumor sample in
several published pediatric CNS tumor sample datasets from Gene Expression Omnibus
(GEO), aiming to perform an integrated analysis on the tumor purity of children’s CNS
tumors.

Results: Only the purity of CNS tumors in children based on the random forest (RF)
machine learning method was normally distributed. In addition, the children’s CNS tumor
purity was associated with primary clinical pathological and molecular indicators.
Enrichment analysis of biological pathways related to the purity of medulloblastoma
(MB) revealed some classical signaling pathways associated with MB biology and
development-related pathways. According to the correlation analysis between MB
purity and the immune microenvironment, three immune-related genes, namely, CD8A,
CXCR2, and TNFRSF14, were negatively related to MB purity. In contrast, no significant
correlation was detected between immunotherapy-associated markers, such as PD-1,
PD-L1, and CTLA4; most infiltrating immune cells; and MB purity. In the tumor
purity–related survival analysis of MB, ependymoma (EPN), and children’s high-grade
glioma, we discovered a minor effect of tumor purity on the survival of the aforementioned
pediatric patients with CNS tumors.

Conclusion: Our purity pediatric pan-CNS tumor analysis provides a deeper
understanding and helps with the clinical management of pediatric CNS tumors.
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INTRODUCTION

As the most frequent solid tumors in children, pediatric tumors of
the central nervous system (CNS) represent an array of
molecularly and clinically diverse entities. The tumor
microenvironment (TME) is a complicated milieu comprising
many factors that promote and inhibit tumor growth, nutrients,
chemokines, and the spectrum of non-tumor cells (e.g.,
immunocytes, fibroblasts, and endotheliocytes). Increasing
evidence has revealed that the TME plays a pivotal role in
tumorigenesis, tumor progression, and the response to therapy
(Schreiber et al., 2011).

For the past few years, high-throughput techniques have been
increasingly applied in the field of pediatric CNS tumors (Kumar
et al., 2018). These techniques offer some new means for the
clinical diagnosis, prognostic prediction, and precise classification
of pediatric CNS tumors. Nevertheless, the surgically acquired
tumor tissues used for high-throughput techniques are a mixture
of both tumor cells and non-tumor tissues. The DNA and RNA
extracted from such a mixture are from all of the cells involved, so
the measurement result is a kind of mixed signal (Zheng et al.,
2017). Such a sample mixture may bias the downstream analyses
and thus could mask true biologically meaningful signals.

Tumor purity is defined as the proportion of tumor cells in
tumor tissue. Some recent studies have reported the confounding
effect of tumor purity on gene clustering, coexpression networks,
molecular taxonomy, and tumor prognosis andmicroenvironment
(Aran et al., 2015; Rhee et al., 2018). Currently, there are threemain
methods available for tumor purity estimation. The first is to
estimate the tumor purity based on the pathological images of
the tumor tissue by histopathological researchers and clinical
pathologists. However, these results are subject to the observer’s
proficiency and the pathological sensitivity of the tumor tissue
(Zhang et al., 2017). The second way determines tumor purity by
virtue of cell sorting–based techniques such as magnetic-activated
cell sorting (Schmitz et al., 1994) and fluorescent-activated cell
sorting (Basu et al., 2010). However, these methods demand high
inputs of time, effort, andmoney and are therefore difficult to apply
in large-scale studies.

More recently, with the development of high-throughput
techniques and improved bioinformatics approaches, many
purity estimation methods by computational methods have
been developed, and they are based on transcriptome data,
copy number variation data, DNA methylation data, or genetic
mutation data. These methods include the random forest (RF)
algorithm based on DNA methylation data (Capper et al., 2018),
ESTIMATE based on gene expression data (Yoshihara et al.,
2013), ABSOLUTE based on somatic copy number data (Carter
et al., 2012), and InfiniumPurify based on DNAmethylation data
(Zheng et al., 2017).

The existing studies on tumor purity are limited to adult
samples from the Cancer Genome Atlas, and little is known
regarding the relationship between tumor purity and the
clinicopathologic or genomic features in pediatric CNS
tumors. In addition, the association between the purity and
microenvironment of pediatric CNS tumors remains unclear.
In this study, we used these major means of tumor purity

estimation to infer tumor purity and sought to evaluate the
impact of purity on pediatric CNS tumor prognosis, genetic
profiling, and the immune microenvironment, which may deepen
our understanding of pediatric CNS tumor biology and provide new
insights into the clinical management of pediatric CNS tumors.

MATERIALS AND METHODS

Data Collection
The data of children’s CNS tumors (e.g., medulloblastoma (MB),
ependymoma (EPN), pilocytic astrocytoma, diffuse midline glioma,
atypical teratoma/rhomboid tumor, and embryonal tumor with
multilayered rosettes) used in this study were from Gene
Expression Omnibus (GEO) and ArrayExpress. Supplementary
Table S1 lists the general information about the datasets involved.

Selection of an Adequate Algorithm for
Purity Estimation of Common Pediatric CNS
Tumors
Random forest (RF), InfiniumPurify, and ESTIMATE algorithms
were used to estimate tumor purity. The RF model was
established by training the DNA methylation data extracted
from the panglioma dataset (795 samples of glioma)
(Ceccarelli et al., 2016) in TCGA based on the ABSOLUTE
algorithm (a direct purity estimation method) (Capper et al.,
2018). We selected the optimal algorithm from the
aforementioned three algorithms according to the distribution
of purity in different datasets of common pediatric CNS tumors.

Exploration of Biological Functions Related
to Common Pediatric CNS Tumor Purity
We screened the genes that correlated with tumor purity by
Pearson correlation analysis (Pearson |R| > 0.3). In total, 1,051
genes were eligible for Gene Ontology (GO) enrichment analysis
and gene set enrichment analysis (GSEA) (Subramanian et al.,
2005). Both GO analysis and GSEA were performed utilizing the
R package “clusterProfiler.” In addition, the cases were split into
high- and low-purity groups based on the median purity. By
utilizing the R package “GSVA,” we performed gene set variation
analysis (GSVA) of hallmark pathways between the high- and
low-purity samples (Hänzelmann et al., 2013).

Evaluation of the Relationship Between the
Purity of Common Pediatric CNS Tumors
and the Tumor Microenvironment
By applying CIBERSORT(Gentles et al., 2015), we scored 22
immune cell types for their relative abundance in pediatric CNS
tumor samples. For any given sample, we computed the
relationships between tumor purity and the relative
proportions of the individual immune cell types. In addition,
we also computed the associations between tumor purity and the
relative fractions of 24 immune cell types by using single-sample
gene set enrichment analysis (ssGSEA) (Bindea et al., 2013), as
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implemented in the R package “GSVA.” Finally, we determined
the correlations between tumor purity and 14 immune-related
genes (GZMA, PRF1, CD8A, PD-1, PD-L1, CTLA4, IDO1,
CXCR2, TNFRSF14, TNFRSF18, CD247, LAG3, BTLA, and
HAVCR2).

Survival Analysis
For each type of pediatric CNS tumors, we divided the samples
into high- and low-purity groups based on the optimal cutoff
value generated by using the R package “survMisc.”
Kaplan–Meier (K-M) curves were used to estimate the overall
survival distribution.

Statistical Analysis
R software version 3.4.4 was employed for all statistical
analyses. p values for the associations between tumor

purity and the immune microenvironment were computed
utilizing Pearson correlation analyses, followed by multiple
testing utilizing the Benjamini–Hochberg method. For all
statistical analyses, p < 0.05 was considered statistically
significant.

RESULTS

Selection of the Most Adequate Algorithm
for Estimating the Purity of Common
Pediatric CNS Tumors
To establish a general understanding of the purity distribution
of common pediatric CNS tumors, we estimated the tumor
purity of samples in the GSE90496 datasets containing MB,

FIGURE 1 | Tumor purity distribution of seven common pediatric CNS tumor datasets based on three methods of tumor purity estimation. (A) Tumor purity
distribution of the GSE90496 dataset based on InfiniumPurify and random forest (RF) algorithms; (B) tumor purity distribution of the GSE85218 dataset based on the
InfiniumPurify, ESTIMATE, and RF algorithms; (C) tumor purity distribution of the E-MTAB-5528 dataset based on the InfiniumPurify and RF algorithms; (D) tumor purity
distribution of the GSE64415 dataset based on the ESTIMATE algorithm; (E) tumor purity distribution of the GSE65362 dataset based on the InfiniumPurify and RF
algorithms; (F) tumor purity distribution of the GSE44971 dataset based on the InfiniumPurify, ESTIMATE, and RF algorithms; (G) tumor purity distribution of the
GSE64019 dataset based on the ESTIMATE algorithm.
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EPN, pilocytic astrocytoma, diffuse midline glioma, atypical
teratoma/rhomboid tumor, and embryonal tumor with
multilayered rosettes. As shown in Figure 1A, the tumor
purity distribution resulting from the InfiniumPurify
algorithm had a bimodal pattern, with an average tumor

purity of 49.8 ± 29.3%, while that from the RF algorithm
was normal, with an average tumor purity of 65.9 ± 7.1%.
Regarding the tumor purity distribution of the GSE85218
dataset (MB) (Figure 1B), the tumor purity based on the
InfiniumPurify algorithm was bimodal (average tumor

FIGURE 2 | Relationship between tumor purity and the patients’ clinical features in the GSE90496 dataset. (A) An overview of the correlation between the clinical
features and tumor purity in the GSE90496 dataset; (B) box plot of the tumor purity by tumor histology; (C) box plot of the tumor purity by age at diagnosis; (D) box plot of
the tumor purity by the tumor grade; (E) Box plot of the tumor purity by the tumor location; (F) box plot of the tumor purity by the tumor grade; (G) box plot of the tumor
purity by the patient gender.
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purity: 39.8 ± 37.6%), while that based on the ESTIMATE
algorithm was skewed and focused on 80% or more of the total
area (with an average tumor purity of 96.99 ± 3.3%), but the
tumor purity resulting from the RF algorithm was normal,
with an average tumor purity of 73.7 ± 4.5%. When applied to
the E-MTAB-5528 dataset (diffuse midline glioma)
(Figure 1C), the InfiniumPurify algorithm determined the
tumor purity to be skewed and the average tumor purity to
be 74.04 ± 12.4%, while the RF algorithm generated normal
tumor purity, with an average value of 69.5 ± 5.5%. For the
GSE64415 and GSE65362 datasets (EPN) (Figures 1D,E),
the tumor purity based on the ESTIMATE algorithm was
skewed, with an average value of 85.95 ± 8.01%, and that
based on InfiniumPurify was also skewed, with an average
value of 67.1 ± 22.4%, but that based on the RF algorithm was
normal, with an average value of 68.4 ± 4.6%. For the
GSE44971 dataset (pilocytic astrocytoma) (Figure 1F), the
average tumor purities generated were 59.4 ± 6.9, 74.8 ±
11.8, and 59.9 ± 5.5% for InfiniumPurify, ESTIMATE,
and RF, respectively, but they were all skewed. For the
GSE64019 dataset (atypical teratoma/rhomboid tumor),
the tumor purity distributed according to the ESTIMATE

algorithm was skewed, with an average tumor purity of
87.4 ± 8.1%.

Judging from these results, the distribution of pediatric CNS
tumors resulting from the ESTIMATE algorithm was skewed
and focused on the part with over 70% of the total area, and the
tumor purity distributions based on InfiniumPurify and RF
were skewed and normal, respectively. The ESTIMATE
method estimates purity indirectly by measuring stromal
and immune counterparts in the tumor sample (Yoshihara
et al., 2013). Therefore, the presence of non-stromal and
immune cells in a cancer sample, such as contaminating
adjacent normal cells, could affect ESTIMATE-based tumor
purity estimation. In addition, the InfiniumPurify method
estimates purity indirectly by identifying differentially
methylated regions between cancer and normal samples
(Zheng et al., 2017). However, paired normal controls were
lacking in our pediatric pan–central nervous system tumor
analysis. Although the InfiniumPurify method has a control-
free variant, this is only applicable for tumor entities that are
included in the TCGA datasets and not suitable for entities
from the pediatric spectrum that we have used here. In contrast
to the ESTIMATE and InfiniumPurify purity estimates,

FIGURE 3 |Relationship between the tumor purity of each pediatric CNS tumor and the patient age at diagnosis in the GSE90496 dataset. (A)Box plot of the tumor
purity in medulloblastoma (MB) samples by the age at diagnosis; (B) box plot of the tumor purity in atypical teratoma/rhabdoid tumor samples by the age at diagnosis; (C)
box plot of the tumor purity in diffuse midline glioma samples by the age at diagnosis; (D) box plot of the tumor purity in ependymoma (EPN) samples by the age at
diagnosis; (E) box plot of the tumor purity in pilocytic astrocytoma samples by the age at diagnosis.
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ABSOLUTE is a direct measure of the cancer cells in a sample
(Carter et al., 2012). Taken together, we selected the
ABSOLUTE-based RF method for the purity estimation of
pediatric CNS tumors in this study, and all subsequent studies
were based on the RF algorithm.

Tumor Purity and Molecular and
Clinicopathologic Features
Figures 2–4 illustrate the relationships between tumor purity and
the patients’ clinical features in the GSE90496 dataset. For the
tumor histology (Figures 2A,B), we observed that MB had the
highest purity, whereas pilocytic astrocytoma and atypical
teratoma/rhabdoid tumors had the lowest purity (p <
2.2e−16). For the age at diagnosis (Figures 2A,C), we found
that the patients aged 0–3 years had the lowest tumor purity,
while those older than 11 years had the highest purity (p �
1.5e−06). For the tumor grade (Figures 2A,D), the purity of
Grade I tumor was the lowest, while that of Grade IV was the
highest (p < 2.2e−16). For the tumor location (Figures 2A,E), we

found that the purity of tumors located in the posterior cranial
fossa was higher than that in the supratentorial parts (p �
8.5e−07). Regarding the tumor stage (Figures 2A,F),
compared with primary tumors, recurrent tumors had lower
purity (p � 0.019). For patient sex (Figures 2A,G), we
observed higher tumor purity in male patients (p � 0.044)
than in female patients.

Figure 3 presents the relationship between tumor purity
and the age at diagnosis in each type of pediatric CNS tumor in
the GSE90496 dataset. We found a positive correlation
between tumor purity and the age at diagnosis in MB (p <
2.2e−16, Figure 3A) but not in other pediatric CNS tumors
(including atypical teratoma/rhabdoid tumor, diffuse midline
glioma, EPN, and pilocytic astrocytoma) (Figures 3B–E). As
shown in Figures 4A–F, among six pediatric CNS tumors, no
significant difference was detected between tumors located in
the posterior cranial fossa and those in supratentorial sites in
terms of tumor purity. The relationships between MB purity
and clinicopathologic features in the GSE85218 dataset are
shown in Figure 5. The four molecular subgroups of MB

FIGURE 4 | Relationship between the tumor purity of each pediatric CNS tumor and the tumor location in the GSE90496 dataset. (A) Box plot of the tumor purity in
medulloblastoma (MB) samples by the tumor location; (B) box plot of the tumor purity in atypical teratoma/rhabdoid tumor samples by the tumor location; (C) box plot of
the tumor purity in diffusemidline glioma samples by the tumor location; (D) box plot of the tumor purity in ependymoma (EPN) samples by the tumor location; (E) box plot
of the tumor purity in pilocytic astrocytoma samples by the tumor location; (F) box plot of the tumor purity in embryonic tumors of multilayered rosettes by the tumor
location.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 7078026

Yang et al. An Integrated Analysis of Tumor Purity of Common Central Nervous System Tumors

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


(Figure 5A) differed greatly from each other in terms of tumor
purity (p < 2.2e−16). Compared with the non-WNT/SHH
(Groups 3 and 4) subgroups of MB with an inferior

prognosis, the WNT and SHH subgroups with a superior
prognosis had a higher tumor purity. For the metastatic
status of MB patients (Figure 5C), non-metastatic patients

FIGURE 5 | Relationship between the tumor purity of the medulloblastoma (MB) and its clinical molecular features in the GSE85218 dataset. (A) Box plot of the
tumor purity by molecular subgroup; (B) box plot of the tumor purity by histopathology; (C) box plot of the tumor purity by metastatic status; (D) box plot of the tumor
purity of the SHH subgroup by GLI amplification; (E) box plot of the tumor purity of the SHH subgroup byMYCN amplification; (F) box plot of the tumor purity of the Group
4 subgroup by MYCN amplification; (G) box plot of the tumor purity of the Group 3 subgroup by MYC amplification; (H) box plot of the tumor purity of the SHH
subgroup by PTEN deletion.
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had higher tumor purity than metastatic patients (p � 0.0053).
For the MYC amplifications of Group 3 MB patients
(Figure 5G), the tumor purity of Group 3 MB with MYC
amplifications was significantly different from that of Group 3
MB without MYC amplifications (MYC amplifications vs.
MYC balance, p � 0.0086; MYC amplifications vs. MYC
deletion, p � 9.8e-05). However, no significant difference
was detected among all of the groups in tumor purity when
other clinical and molecular features of MB were taken into
account (Figures 5B,D–F,H).

Figure 6 shows the relationships between high-grade glioma
tumor purity and the other clinicopathologic and molecular
features in the E-MTAB-5528 dataset. However, for the tumor
location (Figure 6A), none of the groups were significantly
different from each other in tumor purity. For the tumor
grade (Figure 6B), we found that the tumor purity of Grade
IV patients was higher than that of Grade III patients (p � 0.017).
Regarding BRAF_V600Emutation status (Figure 6C), no evident
difference was found between the wild-type BRAF patients and
mutant-type BRAF patients in tumor purity. For histone
mutation status (Figure 6D), the tumor purity of subgroups

divided by histone H3 mutation differed significantly (p � 0.025).
For IDH1 mutation status (Figure 6H), patients with wild-type
IDH1 were not significantly different from those with mutant-
type IDH1 in tumor purity. Regarding the molecular subgroup
(Figure 6F), a significant difference was detected between all of
the molecular subgroups of high-grade glioma in tumor purity
(p � 0.019).

Functional Annotation of Transcriptomic
Analysis in Tumor Purity
Since only the MB samples in the GSE85218 dataset came with
gene expression and DNAmethylation data as well as complete
clinical information, we performed an analysis of tumor
purity–related biological functions in this dataset. GO
analysis revealed that many development-associated
pathways were related to tumor purity (Figure 7A). Gene
set enrichment analysis determined the top three biological
pathways, including the MYC signaling pathway, DNA repair
pathway, and E2F targets signaling pathway (Figure 7B).
According to GSVA, the MYC signaling, DNA repair,

FIGURE 6 |Relationship between tumor purity of high-grade glioma (HGG) and the patients’ clinical molecular features in the E-MTAB-5528 dataset. (A)Box plot of
the tumor purity by tumor location; (B) box plot of the tumor purity by tumor grade; (C) box plot of the tumor purity by BRAF_V600E mutation status; (D) box plot of the
tumor purity by histone mutation status; (E) box plot of the tumor purity by IDH1 mutation status; (F) box plot of the tumor purity by molecular subgroup.
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glycolysis, WNT signaling, Hedgehog signaling, mTORC1
signaling, and oxidative phosphorylation pathways were
positively related to tumor purity, whereas the KRAS

signaling, IL2-STAT5 signaling, inflammatory response, and
angiogenesis pathways were negatively related to tumor purity
(Figure 7C).

FIGURE 7 | Biological functions related to the purity of medulloblastoma (MB) in the GSE85218 dataset. (A) Biological pathways related to the MB purity as
revealed by Gene Ontology (GO) analysis; (B) biological pathways related to Mb purity as revealed by gene set enrichment analysis (GSEA); (C) biological pathways
related to MB purity as revealed by gene set variation analysis (GSVA).
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FIGURE 8 | Relationship between the purity of medulloblastoma (MB) and the immune microenvironment in the GSE85218 dataset. (A) Relationship
between the MB purity and immune-related genes; (B) correlation between the purity of each MB subgroup and the CIBERSORT-based infiltrating immunocyte
proportions.
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Tumor Immune Microenvironment and
Tumor Purity
For the GSE85218 dataset, we also identified the relationship
between tumorpurity and the immunemicroenvironment.As indicated
in Figure 8A, we found that tumor purity was only negatively related to
three immune genes, namely, CD8A (R� −0.18, p� 1.06 e-06), CXCR2
(R � −0.18, p � 2.90 e-07), and TNFRSF14 (R � −0.21, p � 2.58 e-09),
but not to other immune-related genes, including the well-known PD1,
PD-L1, and CTLA4. Figure 8B reveals the correlation between the
tumor purity of each subgroup of MB and CIBERSORT-based
proportions of infiltrating immunocytes. In WNT MB, only
neutrophils were significantly negatively related to tumor purity (R �
0.34, p� 0.004). For SHHMB, only natural killer cells were significantly
negatively related to tumor purity (resting, R� −0.14, p� 0.03; activated,
R � −0.15, p � 0.02). However, no statistical correlation was detected
between the tumor purity and infiltrating immunocyte proportions in
Groups 3 and 4MB. As shown in Figure 9, WNT and SHHMBs were
significantly enriched in the high–immunocyte infiltration group,
whereas Groups 3 and 4 MBs were more enriched in the
low–immunocyte infiltration group.

The Prognostic Role of Tumor Purity
Since only the GSE85218, GSE117130, and E-MTAB-5528
datasets included clinical outcome data, they were used to

assess the relationship between tumor purity and clinical
outcome. For each type of pediatric CNS tumor, we divided
the patients into a high-purity group and a low-purity group. As
shown in Figures 10A–H, the two groups did not differ much in
terms of survival rate in all of the CNS tumor datasets. The
aforementioned findings suggest that among all pediatric CNS
tumors, the association between tumor purity and patient
prognosis may be weak.

DISCUSSION

With the development of high-throughput techniques, many
novel computation methods based on bioinformatics could be
employed to infer tumor purity. In contrast to those based on
histopathology, bioinformatics algorithms elicit more highly
concordant and objective results. In this study, we performed
a comprehensive purity analysis of pediatric CNS tumors with
DNA methylation data and gene expression data from several
CNS tumor–related large sample datasets on the basis of three
tumor purity calculation methods (namely, RF, InfiniumPurify,
and ESTIMATE). We found that only the RF estimation
approach could produce normally distributed tumor purity.

These results suggest that 1) to prevent bias arising from the
introduction of other tumor molecular data, we should employ

FIGURE 9 | Relationship between the medulloblastoma (MB) purity and the clinical features and immune microenvironment in the GSE85218 dataset as revealed
by the single-sample gene set enrichment analysis (ssGSEA).
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high-throughput data of the same tumor type (glioma in this
study) to construct a prediction model for estimating tumor
purity; and 2) given that the presence of non-immune and
stromal cells in CNS tumor tissues may affect the purity
estimation results of indirect algorithms such as ESTIMATE, it
is more reasonable to choose direct methods of tumor purity

estimation. We found that there was some relationship between
pediatric CNS tumor purity and the molecular and
clinicopathologic features. These findings suggested that tumor
purity may be an intrinsic characteristic of pediatric CNS tumors.
When analyzing the purity of MB in a systematic way, we
discovered that tumor purity was lower in Groups 3 and 4

FIGURE 10 | Prognostic role of tumor purity in three pediatric CNS tumor datasets. (A) Kaplan–Meier (K-M) curves for overall survival according to tumor purity in
the GSE85218 dataset; (B) K-M curves for overall survival according to tumor purity of the WNT subgroup medulloblastoma (MB) in the GSE85218 dataset; (C) K-M
curves for overall survival according to the tumor purity of the SHH subgroup MB in the GSE85218 dataset; (D) K-M curves for overall survival according to the tumor
purity of Group 3 subgroup MB in the GSE85218 dataset; (E) K-M curves for overall survival according to the tumor purity of Group 4 subgroup MB in the
GSE85218 dataset; (F)K-M curves for overall survival according to the tumor purity in the GSE117130 dataset; (G) K-M curves for progression-free survival according to
the tumor purity in the GSE117130 dataset; (H) K-M curves for overall survival according to the tumor purity in the E-MTAB-5528 dataset.
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MBs with a worse prognosis than in WNT and SHHMBs. This is
consistent with previous studies with regard to glioma purity
(Zhang et al., 2017). A possible reason for this is that Groups 3
and 4 MBs are more inclined to undergo metastasis and tumor
cell spreading and have difficulty forming dense solid bulks.

An enrichment analysis of MB purity–related biological
pathways unveiled some classical signaling pathways related to
the biology of MB, including MYC, WNT, and Hedgehog
pathways (Northcott et al., 2011). For instance, the WNT
pathway is enriched in WNT MB, and the sonic Hedgehog
pathway is enriched in SHH MB (Northcott et al., 2011;
Ramaswamy and Taylor, 2017; Wang et al., 2018). Moreover,
amplification of the MYC oncogene is the most common genetic
alteration of Group 3 MB (Ramaswamy and Taylor, 2017; Wang
et al., 2018). In addition, we found that some development-
associated pathways were associated with tumor purity; thus,
abnormalities in such pathways may lead to the occurrence of
MB. In the correlation analysis of MB purity and the immune
microenvironment, three genes related to immunity, namely,
CD8A, CXCR2, and TNFRSF14, were negatively related to
tumor purity. These findings suggested that such immune-
related genes may be potential targets for immune
microenvironment–specific MB therapies. On the other
hand, genes related to classical immunosuppression
checkpoints, such as PD-1, PD-L1, and CTLA4, were not
significantly associated with MB purity. This finding
indicates that the efficacy of immunotherapies with PD-1,
PD-L1, and CTLA4 inhibitors may be limited to MB. In
addition, most infiltrating immunocytes were unrelated to
MB purity, indicating that immunocyte-based therapies may
also be limited to MB.

While exploring the tumor purity–related survival analyses of
MB, EPN, and pediatric high-grade glioma, we confirmed that the
effect of tumor purity was insignificant for the survival of patients.
These results are inconsistent with previous studies on tumor
purity (Aran et al., 2015; Zhang et al., 2017). Cancer cells are
capable of recruiting immune infiltrating cells to the glioma
microenvironment (Silver et al., 2016), which could influence
the prognosis of glioma patients (Zhang et al., 2017). However,
childhood brain tumors are considered to be relatively
immunologically “cold” due to the lack of genetic mutations
(Gröbner et al., 2018). Furthermore, Bockmayr et al. did not
observe associations between intratumoral immune infiltrates
and MB survival, and they attributed their results to the
overall very low immune infiltration (Bockmayr et al., 2018).
The hypothesis that the ability of pediatric CNS tumors to recruit
immune infiltrating cells is relatively weak may provide a
direction for why tumor purity does not influence the overall
survival of pediatric CNS tumor patients. In addition, these
results may indirectly confirm the difference between
children’s CNS tumors and adults’ brain tumors in terms of
clinical and molecular features.

Nevertheless, the present work has some limitations. First, our
findings require external validation using independent pediatric
CNS tumor datasets. Second, due to the retrospective setting of

the present study, additional prospective studies are necessary to
evaluate our conclusions.

CONCLUSION

We presented a systematic comparison of three tumor purity
estimation methods across pediatric CNS tumors and found that
the RF algorithm is applicable for pediatric CNS tumor purity
estimation. MB purity was significantly associated with some
classical signaling pathways associated with MB biology and
development-related pathways. Furthermore, our analysis
showed a minor effect of tumor purity on the survival of
pediatric patients with CNS tumors. It is important for future
studies of pediatric CNS tumors to take tumor purity into account
when analyzing high-throughput data from patient samples.
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