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ABSTRACT
BACKGROUND: Very preterm birth is associated with an increased risk of childhood psychopathology and cognitive
deficits. However, the extent to which these developmental problems associated with preterm birth are amenable to
environmental factors or determined by neurobiology at birth remains unclear.
METHODS: We derived neonatal brain structural covariance networks using non-negative matrix factorization in 384
very preterm infants (median gestational age [range], 30.29 [23.57–32.86] weeks) who underwent magnetic resonance
imaging at term-equivalent age (median postmenstrual age, 42.57 [37.86–44.86] weeks). Principal component
analysis was performed on 32 behavioral and cognitive measures assessed at preschool age (n = 206; median
age, 4.65 [4.19–7.17] years) to identify components of childhood psychopathology and cognition. The Cognitively
Stimulating Parenting Scale assessed the level of cognitively stimulating experiences available to the child at home.
RESULTS: Cognitively stimulating parenting was associated with reduced expression of a component reflecting
developmental psychopathology and executive dysfunction consistent with the preterm phenotype (inattention-hy-
peractivity, autism spectrum behaviors, and lower executive function scores). In contrast, a component reflecting
better general cognitive abilities was associated with larger neonatal gray matter volume in regions centered on key
nodes of the salience network, but not with cognitively stimulating parenting.
CONCLUSIONS: Our results suggest that while neonatal brain structure likely influences cognitive abilities in very
preterm children, the severity of behavioral symptoms that are typically observed in these children is sensitive to a
cognitively stimulating home environment. Very preterm children may derive meaningful mental health benefits from
access to cognitively stimulating experiences during childhood.

https://doi.org/10.1016/j.bpsgos.2021.05.002
Very preterm birth is associated with developmental problems
including increased inattention, social and emotional diffi-
culties (sometimes referred to as the preterm behavioral
phenotype) (1), and deficits in executive function (2,3). How-
ever, there is substantial variation in the extent of impairment
that preterm children experience, and there is insufficient
knowledge of possible predictors and moderators of adverse
outcomes in this population.

Premature exposure to the extrauterine environment is
associated with macro- and microstructural brain matura-
tional alterations (4–7). Such alterations have been shown to
be related to adverse childhood outcomes, particularly in the
cognitive domain (8–12), and are also implicated in the
heightened risk of developmental psychiatric disorders in
preterm cohorts because many affected regions are involved
in important aspects of mental functioning such as socio-
emotional processing (13,14), attention (15), and emotional
regulation (16). Given the coordinated development of
spatially disparate brain regions (17), coupled with an
increasing appreciation of brain network dysfunction
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underlying psychopathology in general (18), it is important to
elucidate neural underpinnings of adverse outcomes of pre-
term birth at the network level. A useful approach to explore
structural brain networks is to assess anatomical covariance
of regional volume across subjects, resulting in the delinea-
tion of structural covariance networks (SCNs). SCNs are
thought to arise from coordinated maturation of distinct brain
regions (17,19), show convergence with the brain’s intrinsic
functional network architecture (20), and are altered in psy-
chiatric disease (21–23). Altered structural covariance has
been reported in preterm-born adolescents (24) and young
adults (25). Notably, the association between low gestational
age at birth (GA) and executive deficits was shown to be
mediated by altered structural covariance in orbitofrontal,
temporal, parietal, and subcortical regions in a large sample
of adolescents (26). However, it is unclear to what extent
SCNs emerging in the neonatal period might predict devel-
opmental outcomes after preterm birth.

The manner in which neurodevelopmental risk resulting
from preterm birth unfolds individually is likely to be amenable
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to experiential factors, including parental behavior (27,28). It is
also possible that those born preterm may benefit more
strongly from an improved home environment than their term-
born peers, as posited by theories of differential susceptibility
(29,30). For example, parental responsivity and a highly stim-
ulating home environment moderate the association between
low birth weight on cognitive development (31) and attention-
deficit/hyperactivity disorder (ADHD) symptoms (32). There is
also evidence that effects of parenting on social and emotional
outcomes may be mediated by their impact on cognitive
development uniquely in preterm children (33). Promoting
cognitive development in early childhood after preterm birth
might be particularly important, given that cognitive delays
could negatively affect social, emotional, and behavioral
development (34–36). Cognitively stimulating parenting
(indexing the extent of a child’s access to cognitively stimu-
lating items and experiences at home) has been shown to
promote school success in both term- and preterm-born
children (37) and cognitive function in toddlers with congen-
ital heart disease (38). However, it is not clear whether cogni-
tively stimulating parenting also positively affects the mental
health sequelae associated with preterm birth.

Environmental influences on neurodevelopmental outcomes
after preterm birth are particularly important to understand
because these insights can be exploited to inform the devel-
opment of interventions and support measures. While it is clear
that very-preterm-born infants are exposed to an increased
risk of disrupted neurodevelopment, understanding how
adverse effects of preterm birth can be mitigated by external
factors is of paramount importance. Similarly, understanding
the neural correlates of childhood outcomes that are less
amenable to environmental factors is critical in facilitating early
identification of individuals who may need greater support.

Here, we investigate relative effects of neonatal brain
structure and cognitively stimulating parenting on behavioral
outcomes in children born very preterm. By summarizing a
range of outcomes spanning temperament, psychopathology,
and cognitive functioning using principal component analysis
(PCA), we aim to characterize the latent structure of behaviors,
experiences, and symptoms typically observed in very preterm
children. PCA allows for the identification of groups of symp-
toms and behaviors that tend to co-occur within subjects,
resulting in orthogonal behavioral components that offer a
more parsimonious description of all observed outcomes. We
apply non-negative matrix factorization (NNMF) to voxelwise
brain volumetric data collected at term-equivalent age to
identify SCNs in the neonatal preterm brain and assess the
effect of regional volumes of these networks, as well as
cognitively stimulating parenting (37), on childhood outcomes.

METHODS AND MATERIALS

Sample

Study participants were 511 very-preterm-born infants (birth at
,33 weeks’ GA) enrolled in the Evaluation of Preterm Imaging
study (ePrime, EudraCT: 2009-011602-42). Infants were
recruited at birth in 2010–2013 from hospitals within the North
and Southwest London Perinatal Network. Full details of the
ePrime study can be found in Edwards et al. (39). Infants un-
Biological Psychiatry: Global
derwent magnetic resonance imaging (MRI) at term-equivalent
age (38–44 weeks postmenstrual age [PMA]). Between the
ages of 4 and 7 years, 251 children from the cohort underwent
a neurodevelopmental follow-up assessment at the Centre for
the Developing Brain, St Thomas’ Hospital, London. Written
informed consent was obtained from participants’ caregiver(s)
following procedures approved by the Stanmore Research
Ethics Committee (14/LO/0677). The study was carried out in
accordance with the Code of Ethics of the World Medical
Association. We report findings based on 384 neonatal scans
and 206 follow-up assessments. Combined data for both
neonatal scans at childhood follow-up were available for 157
subjects.

Perinatal and Demographic Data

Perinatal clinical and sociodemographic data were collected
from the Standardized Electronic Neonatal Database. Parental
postcode at the time of infant birth was used to derive an Index
of Multiple Deprivation (IMD) score (Department for Commu-
nities and Local Government, 2011; https://tools.npeu.ox.ac.
uk/imd/) as a measure of socioeconomic status. IMD is
based on seven domains of deprivation within each neigh-
borhood: income, employment, education, skills and training,
health and disability, barriers to housing and services, and
living environment and crime. Higher IMD values indicate
higher deprivation.

MRI Acquisition and Processing

Infants underwent MRI (T2-weighted turbo spin echo) at term-
equivalent age. Scanner details and acquisition parameters
can be found in the Supplement. Scans were classified by an
experienced perinatal radiologist as containing major lesions
(cystic periventricular leukomalacia, periventricular hemor-
rhagic infarction), minor (any other), or no lesions, and infants
with major lesions were excluded from MRI analyses. For
detailed processing procedures, see the Supplement. Defor-
mation tensor fields (i.e., warps) from the nonlinear registration
to a study-specific template were used to obtain a logarithm
transformation of Jacobian determinant maps, reflecting local
expansion/shrinkage of each voxel with respect to the tem-
plate (40). Jacobian determinants did not include the affine
registration component and are therefore corrected for global
differences in head size. Log Jacobian maps were smoothed
(4-mm full width at half maximum) and downsampled to 2-mm
isotropic resolution. Only brain tissue voxels defined within the
neonatal version of the Automated Anatomical Labeling atlas
(41,42) were included in the analysis (resulting in 37,947 vox-
els). All voxel values were exponentiated before submitting to
NNMF analysis to ensure non-negative input data.

Outcome Assessments

Parents completed the following questionnaires indexing
children’s temperament, behavior, and executive functioning:
the Children’s Behavior Questionnaire Very Short Form (43);
the Empathy Questionnaire (44); the Strengths and Difficulties
Questionnaire (45); the ADHD-IV rating scale (46); the Social
Responsiveness Scale (47); and the Behavior Rating Inventory
of Executive Function, Preschool version (48). We used raw
scores of the subscales for all parent-report measures. To
Open Science August 2021; 1:146–155 www.sobp.org/GOS 147
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assess general intelligence, children were administered the
Wechsler Preschool and Primary Scale of Intelligence, Fourth
Edition (WPPSI-IV) (49).
Cognitively Stimulating Parenting

Parents completed a questionnaire adapted from the Cogni-
tively Stimulating Parenting Scale reported in the study by
Wolke et al. (37). It consists of 21 items included in the Home
Observation for Measurement of the Environment Inventory
(50) and was shown to have acceptable internal consistency
(Cronbach a = 0.77) in children aged 6 years (37). Briefly, it
assesses the availability and variety of experiences that pro-
mote cognitive stimulation in the home. This includes avail-
ability of educational toys, parental interactions such as
teaching words or reading stories, and cognitively stimulating
activities such as family excursions (see the Supplement and
Table S1 for details on individual items).
PCA of Outcome Data

Subscales of all outcome measures were included in PCA.
Before conducting PCA, all scores were scaled to a mean of
0 and unit variance. All scores except for WPPSI scores (which
were already normalized with respect to the relevant age
group) were regressed against age at the follow-up assess-
ment. Residuals from these regressions were used in subse-
quent PCA analyses. We used permutation testing and
repeated split-half analyses to identify significant and reliable
components. See the Supplement for details of this procedure.
NNMF of Imaging Data

We used NNMF (see the Supplement for more information) to
identify SCNs in the neonatal preterm brain in which regional
brain volumes consistently covary across individuals (N = 384).
NNMF is an unsupervised multivariate dimension reduction
technique that is particularly suited for investigating brain
structural covariance (26,51). In contrast to seed-based ap-
proaches (52), NNMF derives networks in a data-driven
manner. Furthermore, because of non-negativity constraints
of the decomposition, NNMF results in a parts-based repre-
sentation of brain structure, which is readily interpretable.
Compared with whole-brain voxelwise approaches, assessing
brain structure at the SCN level not only considers biologically
meaningful spatial patterns of covariation across the brain but
also maximizes statistical power by reducing the number of
comparisons.

NNMF factorized voxelwise Jacobian values (37,947
voxels 3 384 subjects) into matrices W (37,947 voxels 3 k
SCNs) and H (k SCNs 3 384 subjects). The procedure to es-
timate the optimal rank k is detailed in the Supplement. Once
the final NNMF (k = 15) had been estimated, we derived the
weighted mean regional volumes for each of the k resulting
SCNs for every subject. For each SCN, we calculated the
mean log Jacobian for each subject with every voxel weighted
by its relative contribution to the SCN (i.e., the voxelwise log
Jacobian map multiplied by the column in W pertaining to that
SCN, averaged for each subject). The resulting k SCN volumes
per subject were used in subsequent analyses.
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Statistical Analysis

PCA identified three PCs, which were used as behavioral
outcome variables throughout. First, we assessed the rela-
tionship between regional volumes of NNMF networks and
behavioral outcome (n = 157). For each of the 15 SCNs, an
omnibus test was conducted using multivariate linear regres-
sion, testing the effect of SCN volume on all three outcome
PCs (PC1, PC2, and PC3) simultaneously, controlling for GA,
PMA at scan, sex, and IMD. Where the multivariate effect of
SCN volume on outcomes was significant at a corrected sig-
nificance threshold of .05/15 = .003 (Bonferroni correction for
15 separate models; one for each SCN), individual follow-up
linear regressions on each of the three PCs were performed
to elucidate the nature and direction of associations,
Bonferroni-corrected for multiple comparisons (i.e., three
models).

Next, we assessed the relationship between behavioral
outcome PCs and cognitively stimulating parenting (n = 206).
An omnibus test was conducted, assessing the effects of
cognitively stimulating parenting on all three outcome PCs
simultaneously, controlling for GA, sex, and IMD. Significant
effects were further investigated with individual follow-up linear
regressions for each PC, Bonferroni-corrected for multiple
comparisons.

Finally, for SCNs showing a significant effect on any
outcome measure, we constructed a full model testing the
combined additive effects of SCN volume and cognitively
stimulating parenting on behavioral outcome PCs, controlling
for GA, PMA at scan, sex, and IMD, to ascertain whether
observed effects of SCN volume (or cognitively stimulating
parenting) were significant over and above the effects of
cognitively stimulating parenting (or SCN volume). We also
tested whether the addition of an interaction between cogni-
tively stimulating parenting and SCN volume significantly
improved model fit for any behavioral outcome using likelihood
ratio F tests. This tests explicitly whether parenting moderates
an existing effect of SCN volume on behavior.

Analysis code is available at https://github.com/lucyvanes/
preterm-outcomes.

Sensitivity Analyses

We conducted several sensitivity analyses to ensure that
observed effects were not driven by outliers or incidental
sample characteristics. Analyses were repeated 1) after
removing individuals from sets of twins and triplets at random;
2) after removing outliers (mean 6 3 3 standard deviation) on
any of the behavioral variables, SCN volumes, or cognitively
stimulating parenting; 3) controlling for severity of brain le-
sions; and 4) controlling for maternal education (as an alter-
native measure of socioeconomic status to IMD) and maternal
age.

RESULTS

Sample characteristics for the full sample and follow-up
analysis subsamples can be found in Table 1. The complete
follow-up sample did not differ from the baseline sample in
terms of GA (t539 = 0.11, p. .05), PMA at scan (t539 = 0.25, p.

.05), IMD (t526 = 1.72, p . .05), or sex distribution (c2
1 = 0.14, p

. .05). Results of all sensitivity analyses can be found in the
55 www.sobp.org/GOS
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Table 1. Sociodemographic Sample Characteristics

Characteristics
Baseline MRI

Sample, n = 384
Follow-up Behavioral
Sample, n = 206

Complete MRI1Behavioral
Sample, n = 157

GA at Birth, Weeks, Median [Range] 30.29 [23.57–32.86] 30.14 [23.86–32.86] 30.29 [24–32.86]

PMA at Scan, Weeks, Median [Range] 42.57 [37.86–44.86] 42.57 [38.29–52.86] 42.57 [38.29–44.86]

Female, n (%) 195 (50.8%) 102 (49.5%) 75 (47.7%)

IMD, Mean (SD) 20.02 (11.82) 18.27 (11.87) 18.08 (11.76)

Days in Intensive Care, Median [Range] 2 [0–52] 2 [0–54] 2 [0–51]

Minor Lesions, n (%) 218 (56.8%) 115 (55.8%) 94 (59.9%)

Major Lesions, n (%) – 14 (6.8%) –

Mother’s Age at Infant’s Birth, Years, Mean (SD) 32.84 (5.70) 33.83 (5.99) 33.92 (5.90)

Mother’s Age When Leaving FT Education, Years, n (%)

#16 39 (10.2%) 13 (6.3%) 8 (5.1%)

17–19 61 (15.9%) 29 (14.1%) 24 (15.3%)

$19 272 (70.8%) 160 (77.7%) 122 (77.7%)

Still in FT 12 (3.1%) 4 (1.9%) 3 (1.9%)

Mother’s Ethnicity, n (%)

White/White British 202 (52.6%) 120 (58.3%) 90 (57.3%)

Asian/Asian British 91 (23.7%) 44 (21.4%) 35 (22.3%)

Black/Black British 73 (19.0%) 32 (15.5%) 22 (14.0%)

Mixed race 7 (1.8%) 3 (1.5%) 3 (1.9%)

Other 6 (1.6%) 4 (1.9%) 4 (2.5%)

N/A 5 (1.3%) 3 (1.5%) 3 (1.9%)

Age at Follow-up Assessment, Years, Median [Range] – 4.65 [4.19–7.17] 4.60 [4.19–7.17]

Cognitively Stimulating Parenting Scale, Mean (SD) – 17.68 (2.43) 17.60 (2.39)

Age at follow-up assessment corrected for GA.
FT, full-time; GA, gestational age; IMD, Index of Multiple Deprivation; MRI, magnetic resonance imaging; N/A, data not available; PMA,

postmenstrual age.
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Supplement. In sum, direction and significance of effects re-
ported in the following remained largely unchanged.
PCs of Childhood Outcome

PCA on outcome variables with permutation testing and
repeated split-half analysis (see the Supplement for detailed
results) identified three significant and reliable PCs (PC1–PC3),
jointly explaining a cumulative 59% of total variance. Individual
behavioral loadings as well as significant correlations with
outcome variables for PC1–PC3 are depicted in Figure 1 and
are listed in Table S2.

PC1 was driven by positive loadings of questionnaire sub-
scales capturing ADHD symptoms (Strengths and Difficulties
Questionnaire: hyperactivity-inattention; ADHD-IV: inattention;
ADHD-IV: hyperactivity), autism spectrum symptoms (all sub-
scales of the Social Responsiveness Scale), and executive
deficits (Behavior Rating Inventory of Executive Function,
Preschool version: inhibit, shift, working memory, and plan-
ning/organizing subscales), as well as negative loadings of
scales capturing generalized cognitive abilities (nonverbal and
general subscales of the WPPSI). Given the preponderance of
ADHD and autism spectrum symptoms in conjunction with
executive dysfunction typically observed in preterm cohorts,
we termed this the “preterm phenotype” component. We
interpret it as reflecting a measure of general (psychological
and cognitive) dysfunction often observed in preterm children.
Biological Psychiatry: Global
PC2 was driven by positive loadings of all subscales of the
WPPSI (verbal comprehension, visuospatial skills, fluid
reasoning, working memory, processing speed, vocabulary,
non-verbal skills, general abilities, and cognitive proficiency).
Notably, increased cognitive functioning reflected in this
component does not appear to co-occur with decreased
behavioral symptomatology (as is the case with PC1). Rather,
loadings and correlations of symptom subscales tended to be
positive rather than negative, although they did not on the
whole load meaningfully onto this component. The exception
to this is the emotional control subscale of the Behavior Rating
Inventory of Executive Function, although its loading was less
pronounced than that of WPPSI subscales (see Figure 1). This
component therefore does not appear to reflect general
behavioral (dys)function spanning cognition and psychopa-
thology. Instead, we interpret this component to reflect purer
aspects of cognition that are more independent from psy-
chopathology and therefore termed it the “cognitive”
component.

PC3 was driven by positive loadings of scales capturing
childhood temperament (Children’s Behavior Questionnaire
Very Short Form: negative affect, surgency, and effortful con-
trol) and empathy (Empathy Questionnaire: emotion contagion,
attention to others’ feelings, and prosocial actions) as well as
the Strengths and Difficulties Questionnaire prosocial behavior
subscale. We termed this the “socioemotional” component.
Owing to lower split-half reliability of PC3 compared with PC1
and PC2 (see the Supplement), we interpret this component
Open Science August 2021; 1:146–155 www.sobp.org/GOS 149
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Figure 1. (A) Heatmap of loadings of each variable on principal component (PC) 1, PC2, and PC3, thresholded at 0.18 and (B) heatmap of significant
correlations between each variable and PC1, PC2, and PC3. ADHD, ADHD-IV rating scale; BRIEF, Behavior Rating Inventory of Executive Function, Preschool
version; CBQ-VSF, Children’s Behavior Questionnaire Very Short Form; EmQue, Empathy Questionnaire; SDQ, Strengths and Difficulties Questionnaire; SRS,
Social Responsiveness Scale; WPPSI, Wechsler Preschool and Primary Scale of Intelligence.
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with caution; however, we opted to retain it for further analysis
to provide a more comprehensive summary of outcomes.

NNMF-Derived SCNs

The rank selection procedure identified a 15-network solution
as optimal (see the Supplement). All 15 SCNs are depicted in
Figure 2. A brief summary of associations of SCN volumes with
PMA and GA can be found in the Supplement.

Association Between SCN Volumes and Outcomes

Omnibus multivariate regression analyses for each SCN,
testing the effect of SCN volume on all three outcomes (PC1,
PC2, and PC3) and controlling for GA, PMA, sex, and IMD
indicated a significant effect of regional volume in SCN 12 (p =
.003, passing Bonferroni correction), symmetrically encom-
passing anterior cingulate cortex, bilateral inferior frontal gyrus,
bilateral insula, bilateral inferior parietal cortices, and bilateral
middle occipital gyrus extending to precuneus. Follow-up
univariate linear regressions revealed that this was driven by
an (Bonferroni-corrected) association between greater volume
150 Biological Psychiatry: Global Open Science August 2021; 1:146–1
of SCN 12 and greater expression of the cognitive component,
PC2 (b = 5.12, p = .012) (Figure 3). A negative effect of SCN 12
volume on PC1 (preterm phenotype) did not survive Bonferroni
correction (b = 28.15, p = .022), and the effect on PC3 (soci-
oemotional) was nonsignificant (p. .05). Detailed results of the
multivariate omnibus test and individual regressions, as well as
sensitivity analyses, can be found in Table S3.
Association Between Cognitively Stimulating
Parenting and Childhood Outcomes

Multivariate regression of all three outcome variables (PC1,
PC2, and PC3) on total Cognitively Stimulating Parenting scale
score, controlling for GA, sex, and IMD, revealed a significant
effect of cognitively stimulating parenting overall (p = .002).
Follow-up univariate regression analyses revealed that this
was driven by a (Bonferroni-corrected) significant negative
effect of cognitively stimulating parenting on PC1 (b = 20.34, p
, .001), indicating that a more stimulating home environment
was associated with a reduction in symptom load on the
preterm phenotype component (Figure 4). There was no effect
55 www.sobp.org/GOS
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Figure 2. Structural covariance networks derived
from non-negative matrix factorization on cortical
and subcortical gray matter Jacobian volumes. For
visualization purposes, voxelwise component
weights were thresholded at 25% of the range for
each network. Images are shown in radiological
convention.
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of total cognitively stimulating parenting score on PC2 or PC3,
all ps . .05. Detailed results and sensitivity analyses can be
found in Table S4.

SCN Volume, Cognitively Stimulating Parenting,
and Outcomes

Finally, we constructed a full multivariate model of all three
outcomes testing the effects of regional volume in SCN 12 and
cognitively stimulating parenting score, controlling for GA,
PMA, sex, and IMD. Both the effects of network volume (p =
.004) and cognitively stimulating parenting (p = .047) were
Figure 3. (A) Positive association between network 12 volume and
cognitive component (principal component 2 [PC2]), adjusting for gestational
age, postmenstrual age at scan, sex, and socioeconomic status. (B) Visual-
ization of network 12. For visualization purposes, voxelwise component
weights were thresholded at 25% of the range of values. Images are shown in
radiological convention. NNMF, non-negative matrix factorization.

Biological Psychiatry: Global
significant in the multivariate test. Follow-up linear regression
analyses revealed that this was due to an effect of cognitively
stimulating parenting on PC1 (preterm phenotype) (b = 20.26,
p = .021) and an effect of SCN 12 volume on PC2 (cognitive)
(b = 5.02, p = .016). The effects of cognitively stimulating
parenting and SCN volume on PC3 (“socioemotional”) were
nonsignificant. None of the models showed improvement by
inclusion of an interaction term between SCN volume and
cognitively stimulating parenting, as tested using likelihood
ratio F tests, all ps . .05, indicating that cognitively stimulating
parenting did not significantly moderate the effect of SCN 12
volume on behavioral outcomes.

DISCUSSION

We investigated the relative effects of neonatal brain structure
and cognitively stimulating parenting on childhood outcomes
in children born very preterm. We used PCA to characterize the
latent structure of cognitive and behavioral outcomes at age
4–7 in this preterm cohort. The first identified component (PC1)
reflected cognitive and behavioral features classically associ-
ated with very preterm birth (inattention, autism spectrum be-
haviors, and executive deficits), which varied as a function of
the home environment: more cognitively stimulating parenting
was associated with reduced symptom load on this compo-
nent. A component reflecting improved cognitive performance
(PC2) was, by contrast, predicted by greater regional volumes
at term-equivalent age in an SCN encompassing bilateral
inferior frontal gyrus, insula, and inferior parietal and middle
occipital cortices. A third behavioral component (PC3)
reflecting socioemotional problems was not related to either
cognitively stimulating parenting or tissue volume in any of the
15 identified neonatal SCNs.

Our finding of an association between cognitively stimu-
lating parenting and reduced preterm phenotype features is
both intriguing and encouraging. It suggests that practical
steps can be taken in the home environment to foster the
development and well-being of very preterm children. Preterm-
born individuals have been found to exhibit increased
Open Science August 2021; 1:146–155 www.sobp.org/GOS 151
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Figure 4. Negative association between cognitively stimulating parenting
and preterm phenotype component (principal component [PC1]), adjusting
for gestational age, sex, and socioeconomic status.
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inattentive (nonhyperactive) ADHD symptoms (53) and, spe-
cifically, socializing problems associated with autism spectrum
disorder (ASD) (54), both of which are associated with a
detrimental impact on daily-life functioning (55,56). Inattention
has been suggested to constitute the central behavioral deficit
associated with preterm birth (57), which may even partially
account for socializing difficulties observed in preterm children
(57,58). Inattention and social difficulties are further associated
with executive function deficits, which in turn mediate effects
on daily-life functioning (55,59). PC1 appears to capture this
behavioral tendency toward increased inattention, social
dysfunction, and executive function deficits dimensionally in
our cohort.

Parenting style is an important moderator of childhood
cognitive and behavioral outcomes (60,61). Studies of cogni-
tively stimulating parenting have focused on cognitive out-
comes in childhood: intellectual and language abilities at age 5
(62) and school success from ages 6 to 13 years (37) were
predicted by cognitively stimulating parenting in both preterm-
and term-born individuals. Our findings expand on this by
demonstrating that the benefits of cognitive stimulation for
preterm children are not restricted to cognition, but rather
affect behavioral aspects of development known to be most
affected by preterm birth (encompassing both ADHD/ASD
symptomatology and executive functioning) (1). In turn,
improvement on this dimension is likely to translate into
improved functioning in daily life, reflected in measures
152 Biological Psychiatry: Global Open Science August 2021; 1:146–1
previously associated with cognitively stimulating parenting,
such as school success (37). Notably, our sensitivity analyses
showed that results held after controlling for severity of brain
lesions, suggesting that the findings are applicable across the
wider preterm population including those with no or minor
injury, for whom prediction of outcome continues to be
difficult.

It is important to note that while we did not find significant
associations between neonatal regional brain volumes and
PC1, this does not imply that this behavioral profile is alto-
gether unrelated to neurobiology. Indeed, the causative
pathway underlying both ADHD and ASD in preterm pop-
ulations is generally thought to be more strongly character-
ized by neurobiological factors as a result of altered brain
development following preterm birth (1). These neuro-
developmental alterations may be more readily detected in a
direct comparison with term-born control subjects (63) and
likely affect brain regions implicated in ADHD, anxiety, and
ASD symptoms, including frontostriatal circuits and fronto-
limbic regions (14,64,65). However, our findings suggest that
despite this likely neurodevelopmental disadvantage, preterm
children can benefit from being provided with a cognitively
stimulating home environment in the preschool years. There
is evidence for reduced involvement in cognitive stimulation
by parents of preterm children compared with parents of
term-born children (62), suggesting that there is potential for
targeted interventions here. Previous studies suggest that
parental interventions for families of preterm and low-birth-
weight infants can be effective in improving developmental
outcomes such as behavioral problems (66) as well as
attentional and autism spectrum symptoms (67), despite the
strong neurobiological etiology of this type of symptom-
atology in this population.

In contrast to these findings, PC2, which we interpret as
reflecting cognitive abilities more specifically (i.e., as being less
related to behavioral outcomes), was predicted by larger
neonatal regional tissue volumes in an SCN including fron-
toinsular, inferior parietal, and middle occipital cortices. The
most pronounced involvement was that of bilateral anterior
insula and inferior frontal gyrus, showing notable overlap with
anterior portions of the salience network. The insula is one of
the most densely connected regions of the developing brain
(68); it is a major source of transient bursting events critical for
brain maturation in preterm infants (69), and its connections
are preferentially disrupted following preterm birth (70). The
insula plays an important role in mediating among relevant
networks to modulate behavior (71) and enable goal-directed
cognitive processes (72,73). Coordination between regions
belonging to the salience network, particularly anterior insula,
and the default mode network has been shown to be disrupted
in preterm-born adults (74), providing a potential mechanistic
explanation for the emergence of cognitive deficits in this
population.

Reduced tissue volumes have been observed in preterm
individuals in predominantly temporal cortices, but extending
to frontal, subcortical, and insular regions in neonates and
children (75–77) as well as sensory and motor cortices in ad-
olescents and adults (78,79). Furthermore, there is notable
overlap between regions showing volumetric alterations and
55 www.sobp.org/GOS

http://www.sobp.org/GOS


Brain Structure and Environment Following Preterm Birth
Biological
Psychiatry:
GOS
those associated with cognitive outcome across different age
groups in preterm cohorts (13,79,80). For example, neonatal
subcortical and insular volume predicted childhood working
memory and mathematical skills in preterm, but not term-born,
children (81). Interestingly, in young adults, lower IQ is asso-
ciated with reduced white matter volumes beneath the left
inferior frontal gyrus (79) and inferior frontal gyrus surface area
(82), implicating that this as an important region underpinning
general cognitive abilities in preterm individuals, in line with our
findings in neonates.

A distinct advantage of the current procedure lies in the
inclusion of several outcome measures spanning both cogni-
tive and behavioral domains, from which we were able to
derive components consisting of systematically covarying
features within our cohort. This way, we were able to identify
brain structural correlates of a specific cognitive component
that is orthogonal to behavioral psychopathology observed in
our sample. Our findings suggest that the effects of neuroan-
atomical disruption to an SCN encompassing inferior frontal,
parietal, and insular cortices associated with cognitive
outcome are already anchored in infancy. Note that our anal-
ysis did not show that the effect of SCN volume on behavior
was moderated by cognitively stimulating parenting. It is
possible that reduced neonatal regional volume of the insula in
particular, as an important hub region for monitoring and
switching (71), constrains the development of structural and
functional within- and between-network connectivity neces-
sary to flexibly adapt to changing cognitive demands. Finally, it
is worth considering the possibility of common genetic effects
underlying the observed association between volume in these
regions and childhood cognition, given the role of genetic
factors in precipitating preterm birth (83), modulating altered
brain development in preterm infants (including that of insular
connections) (70,84), and mediating developmental outcomes
following prematurity (62,85).

Taken together, our results provide novel insights about the
neonatal neurobiology underlying cognitive abilities in preterm
children and the impact of the home environment on broader
developmental psychopathology and executive deficits typi-
cally observed in this population. These findings carry impor-
tant implications for the development of behavioral
interventions in the care of preterm children. Future research
can usefully address the mechanisms by which cognitively
stimulating parenting fosters improvements in behavioral out-
comes in preterm children, as well as potential interactions
with neurobiological substrates of behavior not captured in this
study.
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