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Abstract: The histopathological diagnosis of mycobacterial infection may be improved by a com-
prehensive analysis using artificial intelligence. Two autopsy cases of pulmonary tuberculosis, and
forty biopsy cases of undetected acid-fast bacilli (AFB) were used to train AI (convolutional neural
network), and construct an AI to support AFB detection. Forty-two patients underwent bronchoscopy,
and were evaluated using AI-supported pathology to detect AFB. The AI-supported pathology diag-
nosis was compared with bacteriology diagnosis from bronchial lavage fluid and the final definitive
diagnosis of mycobacteriosis. Among the 16 patients with mycobacteriosis, bacteriology was posi-
tive in 9 patients (56%). Two patients (13%) were positive for AFB without AI assistance, whereas
AI-supported pathology identified eleven positive patients (69%). When limited to tuberculosis,
AI-supported pathology had significantly higher sensitivity compared with bacteriology (86% vs.
29%, p = 0.046). Seven patients diagnosed with mycobacteriosis had no consolidation or cavitary
shadows in computed tomography; the sensitivity of bacteriology and AI-supported pathology was
29% and 86%, respectively (p = 0.046). The specificity of AI-supported pathology was 100% in this
study. AI-supported pathology may be more sensitive than bacteriological tests for detecting AFB in
samples collected via bronchoscopy.

Keywords: tuberculosis; artificial intelligence; bronchoscopy; bronchial lavage; mycobacteria

1. Introduction

Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis, result-
ing in 10 million cases and 1.4 million deaths worldwide annually [1,2]. Additionally, an
increased number of nontuberculous mycobacterial (NTM) infections caused by acid-fast
bacilli (AFB) have been recently observed in many countries, particularly in Asia [3–6].
NTM infections affect the lungs, skin, and lymph nodes, which are difficult to manage,
cementing it as a significant health problem, similar to TB [7].

AFB infections, such as TB and NTM, are diagnosed either by detection of the my-
cobacteria through microscopy or culture tests. The most common route of transmission of
TB and NTM infections is the respiratory tract; therefore, sputum examination is initially

Diagnostics 2022, 12, 709. https://doi.org/10.3390/diagnostics12030709 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12030709
https://doi.org/10.3390/diagnostics12030709
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-2274-4599
https://orcid.org/0000-0002-4203-5696
https://doi.org/10.3390/diagnostics12030709
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12030709?type=check_update&version=1


Diagnostics 2022, 12, 709 2 of 10

performed [2,3]. Fluorescence microscopy is the most accurate method for sputum smear
examination, with a sensitivity of >70% and >50% for TB and NTM, respectively [2,8].
However, in >20–40% of cases, the sputum smear test shows false negatives. In these cases,
a lung biopsy using bronchoscopy may be performed, but is not recommended routinely
due to its invasive nature [2,3]. However, the sensitivity of transbronchial lung biopsy
(TBLB) for the diagnosis of TB only ranges from 42–63%, even when only used to visualize
granulomas, not the mycobacteria [9,10].

The effectiveness of artificial intelligence (AI) in pathological diagnosis, especially
in oncology, has recently been established [11–14], and is associated with technological
innovations, whole slide imaging (WSI) advancements, and digital capturing of histopatho-
logical slides [15–17]. AI is desirable in diagnosing mycobacteria histologically, as its
comprehensiveness may reduce false negatives; however, obtaining a clear image using
WSI is limited by the small size of AFB (0.2–0.6 µm × 1–10 µm). To address this limitation,
recent studies have applied AI-based detection of AFB on WSIs [18–20]. However, the
clinical use of AI in the pathology of mycobacteriosis has not been reported.

This study compared bacteriology and AI-supported pathology in TBLB to validate
the clinical usefulness of AI in supporting the pathological diagnosis of mycobacteriosis.

2. Materials and Methods
2.1. Study Subjects

We selected two representative autopsy cases of pulmonary TB as training data to
develop AI-assisted detection of AFB from tissues. In these autopsy cases, we used one typ-
ical section where numerous AFBs were detected by Ziehl–Neelsen staining. Additionally,
we randomly selected 40 cases who underwent biopsy and had no AFB on Ziehl–Neelsen
staining to train other histopathological specimens: eight surgical lung biopsies, 20 TBLBs,
six transbronchial mediastinal lymph node needle biopsies, and six bone marrow clots or
bone marrow biopsies. Subsequently, 14 consecutive cases that were not used as training
data were selected as validation data; these patients underwent bronchoscopy to diagnose
mycobacteria. All TBLBs were performed with 2.0-mm forceps, and the number of biopsies
was 3–5. We scanned the Ziehl–Neelsen stained tissues at 400× magnification using Motic
EasyScan (Motic, Hong Kong, China), and processed them into WSI.

Additionally, patient information, interferon-gamma releasing assay (IGRA) results,
bacteriological test results, clinical course, and mycobacteriosis onset were collected from
the medical records of the 14 patients used for AI validation.

2.2. Annotation

Annotation was performed by a consensus of three evaluators with expertise in
pulmonary pathology (YZ, YK, and JF). We conducted pre-training of the AI using the
Ziehl–Neelsen stained tissue. At this stage, we examined artifacts that the AI identified as
AFB, but the evaluators judged as false positives compared with WSIs in 40×. Subsequently,
we determined two representative patterns of artifacts that the AI misidentified as AFB:
artifact 1, blue-to-black-stained nuclei of type I epithelial cells resembling AFB in shape;
artifact 2, part of the fibrin and hyaline membrane, which stained pale-purple-to-pale-blue
on Ziehl–Neelsen, and shaped similar to AFB. Subsequently, we annotated the AFB and
two patterns of artifacts in the WSI as training data for AI (Figure 1). Annotation was
performed by importing the WSI tissues into the HALO software (version 3.0; Indica Lab,
Corrales, CA, USA), a quantitative image analysis platform. Short bacilli, with a length of
2–10 µm and a width of 0.3–0.6 µm, which stained red on Ziehl–Neelsen staining, were
annotated as AFB. In the two autopsy cases used as training data, we annotated 506 AFBs
contained in an area of approximately 15 mm2. In the 40 biopsy cases, we annotated two
patterns of artifacts for all specimens.



Diagnostics 2022, 12, 709 3 of 10

Diagnostics 2022, 12, x FOR PEER REVIEW 3 of 11 
 

 

contained in an area of approximately 15 mm². In the 40 biopsy cases, we annotated two 
patterns of artifacts for all specimens. 

 
Figure 1. Examples of annotations: (A) Ziehl–Neelsen staining tissues, which do not contain acid-
fast bacilli (AFB), for the purpose of training the background other than AFB. No annotation was 
performed; (B) We annotated short-rod-shaped bacilli that were stained red in Ziehl–Neelsen stain-
ing as AFB; (C) Nuclei of type I epithelial cells showing AFB-like morphology, annotated as artifact 
1; (D) Part of the fibrin-stained purple, annotated as artifact 2. 
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[21]. The pre-trained HALO AI was integrated with the annotated AFB and two patterns 
of artifacts. First, 50,000 integrations were performed for AFB and background lung an-
notations; subsequently, 73,800 integrations were performed, adding the two types of ar-
tifacts to build the AI algorithm for AFB detection. The analyzed images were automati-
cally annotated with AFB classified by the AI. The evaluators judged each of these anno-
tations as true or false positives. 

This HALO AI used the MXNet engine, DenseNet-121, pre-trained on ImageNet 
backbone with the firt max pooling layer removed, and with a custom semantic segmen-
tation head. The semantic segmentation head extracted features after each max pooling 
layer, and before the final fully connected layer. Each feature was passed through (BN-
Relu-Conv) block resulting in a 256-channel feature map, which is upsampled by a factor 
of 2×, and summed with the next higher resolution embedded feature map. During train-
ing, auxiliary losses are added at the features extracted at lower resolutions by using a 
linear layer to predict the correct output, whereas during analysis, only the highest reso-
lution output is used. The training was conducted on 256 × 256 patches at the defined 
resolution, which were generated by selecting a random class (with equal probability for 
each class), a random image containing annotations for the selected class (with equal prob-
ability), and a random point inside a region of the selected class and image. The patches 
were cropped surrounding the selected point, and were further augmented with random 
rotations and shifts in hue, saturation, contrast, and brightness. The model was pre-

Figure 1. Examples of annotations: (A) Ziehl–Neelsen staining tissues, which do not contain acid-
fast bacilli (AFB), for the purpose of training the background other than AFB. No annotation was
performed; (B) We annotated short-rod-shaped bacilli that were stained red in Ziehl–Neelsen staining
as AFB; (C) Nuclei of type I epithelial cells showing AFB-like morphology, annotated as artifact 1;
(D) Part of the fibrin-stained purple, annotated as artifact 2.

2.3. Construction of AI-Assisted Pathology

We used HALO AI (CNN, Dense network) to construct an AI-assisted pathology using
WSI annotated on the HALO software (version 3.0; Indica Lab, Corrales, CA, USA). To
account for the small size of AFB, the WSI resolution was set at 0.25 µm/px. In this study,
we tried to build an AI algorithm that could detect AFB by transfer learning from an AI
trained to detect malignant diseases, which was constructed in a previous study [21]. The
pre-trained HALO AI was integrated with the annotated AFB and two patterns of artifacts.
First, 50,000 integrations were performed for AFB and background lung annotations;
subsequently, 73,800 integrations were performed, adding the two types of artifacts to build
the AI algorithm for AFB detection. The analyzed images were automatically annotated
with AFB classified by the AI. The evaluators judged each of these annotations as true or
false positives.

This HALO AI used the MXNet engine, DenseNet-121, pre-trained on ImageNet back-
bone with the firt max pooling layer removed, and with a custom semantic segmentation
head. The semantic segmentation head extracted features after each max pooling layer, and
before the final fully connected layer. Each feature was passed through (BN-Relu-Conv)
block resulting in a 256-channel feature map, which is upsampled by a factor of 2×, and
summed with the next higher resolution embedded feature map. During training, auxiliary
losses are added at the features extracted at lower resolutions by using a linear layer to
predict the correct output, whereas during analysis, only the highest resolution output is
used. The training was conducted on 256 × 256 patches at the defined resolution, which
were generated by selecting a random class (with equal probability for each class), a random
image containing annotations for the selected class (with equal probability), and a random
point inside a region of the selected class and image. The patches were cropped surround-
ing the selected point, and were further augmented with random rotations and shifts in
hue, saturation, contrast, and brightness. The model was pre-trained on ImageNet, and
thereafter, trained for the defined number of iterations using Adam using an annealed cyclic
learning rate (max learning rate, 2 × 10−4; minimum learning rate, 1 × 10−6; 100 iterations
of warmup; initial cycle length, 1000 iterations; cycle length decay, 2.0; cycle magnitude
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decay, 0.5) (delta of 0.9) with a learning rate of 1 × 10−3, which was reduced by 10% every
10,000 iterations along with an L2 regularization of 1 × 10−4. During analysis, the tile size
was increased to 896 × 896 without significantly altering the output, while increasing the
performance.

2.4. Validation of the AI-Assisted Pathology

In the 42 patients who underwent bronchoscopy due to suspected mycobacteriosis, or
to rule out mycobacteriosis, one pathologist (JF) first evaluated the Ziehl–Neelsen stained
tissue using manual light microscopy to diagnose the presence of AFB. Subsequently, the
WSIs of these patients were comprehensively analyzed using the constructed AI to iden-
tify AFB. For each annotation the AI recognized as AFB, six evaluators (YZ, YK, SI, YK,
HSY, and JF) determined by consensus whether it was a true or false positive. Similar
to ordinary pathological diagnosis, a positive slide contained at least one true positive
annotation, and a negative slide contained no true positives (Figure 2). The AI-supported
pathology results were compared with bacteriological tests, such as mycobacterium smear,
culture, and nucleic acid amplification test (NAAT) using bronchial lavage fluid (BLF).
TBLB for pathological evaluation, and BLF collection for bacteriology, were performed at
the same bronchus branch. Mycobacterium smear, culture, and NAAT were performed
using auramine-rhodamine staining, mycobacteria growth indicator tubes (Nippon Becton
Dickinson Co., Ltd. Tokyo, Japan), and polymerase chain reaction (Loopamp; Eiken Chemi-
cal Co., Ltd. Tokyo, Japan), respectively. Additionally, we collected information regarding
mycobacteriosis development from the patients’ medical records. Chest computed tomog-
raphy (CT) was performed, and two experienced pulmonologists (YZ and MO) determined
the following imaging features of mycobacteriosis [22]: nodular shadows, bronchiectasis,
consolidation, cavity formation, and lymph node enlargement.
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Figure 2. Examples of acid-fast bacilli (AFB) recognized by AI in the study cohort: (A) AFB observed
in a relatively large group (middle magnification); (B) High magnification; (C) AFB was observed
sporadically at high magnification; (D) An example in which AI determined AFB, but the pathologist
determined it as a false positive.

The histopathological and bacteriological examinations sensitivities were compared
with the final diagnosis (ground truth), which defined true positives as patients with a
confirmed diagnosis of mycobacteriosis using bronchoscopy, or patients who developed
mycobacteriosis during the follow-up period after bronchoscopy; all other patients were
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considered true negatives. Mycobacteriosis was diagnosed by bacteriological tests accord-
ing to the guidelines [2,3].

2.5. Statistical Analysis

The patient characteristics data are presented as median values with a 25–75% in-
terquartile range. The difference between the bacteriological and pathological test sensitiv-
ity was analyzed using the McNemar test. Statistical significance was defined as p < 0.05,
and all statistical analyses were performed using JMP 16.0 (SAS Institute, Cary, NC, USA).

All numerical data are presented as median values with a 25–75% interquartile range.
Statistical significance of the difference between two or three groups was analyzed using
the Wilcoxon rank-sum test, Mann–Whitney U test, or Fisher’s exact test, where applicable.
Statistical significance was defined as p < 0.05, and all statistical analyses were performed
using JMP 14.0 (SAS Institute, Cary, NC, USA).

3. Results
3.1. Patient Characteristics

The information of the 42 patients used for AI validation study is shown in Table 1.
All patients underwent bronchoscopy as the clinical course, and other tests did not provide
a definitive diagnosis. In the mycobacteriosis group, seven patients (44%) each were diag-
nosed with TB and NTM infection; two patients (12%) were not confirmed by subsequent
follow-up, but mycobacteriosis was strongly suspected. Chest CT scan revealed multiple
nodular shadows in 13 (81%) patients, consolidation in nine (56%), cavity formation in
three (19%), and bronchiectasis in six (38%) in the mycobacteriosis group.

Table 1. Patient characteristics.

Mycobacteriosis Non-Mycobacteriosis

Number 16 26
Age 71 (58–76) 63 (46–69)
Sex: Male 8 (50%) 11 (42%)
Serological test: positive

IGRA 8 (50%) 0 (0%)
anti-MAC antibody * 5 (31%) 1 (4%)

HRCT findings
Nodular shadow 13 (81%) 16 (62%)
Consolidation 9 (56%) 10 (38%)
Cavity formation 3 (19%) 3 (12%)
Bronchiectasis 6 (38%) 6 (23%)
LN enlargement 3 (19%) 10 (38%)

Final Diagnosis
TB 7 (44%) 0 (0%)
MAC infection 7 (44%) 0 (0%)
Follow-up † 2 (12%) 0 (0%)
Sarcoidosis 0 (0%) 10 (38%)
Other infectious disease 0 (0%) 4 (15%)
Interstitial lung disease 0 (0%) 3 (12%)
Other ‡ 0 (0%) 9 (35%)

HRCT, high-resolution computed tomography; IGRA, interferon gamma releasing assay; LN, lymph node; MAC,
Mycobacterium avium complex; TB, tuberculosis. * Anti-glycopeptidolipid core IgA antibody. † Mycobacteriosis
group included the follow-up cases with a strong suspicion of mycobacteriosis strongly. ‡ These cases were
diagnosed with bronchiectasis, cryptogenic organizing pneumonia, or diffuse panbronchiolitis. Some cases
withdrew during follow-up.

3.2. Bacteriological Examination by Bronchoscopy

Using BLF, antibacterial smear, antibacterial culture, and NAAT were performed
for all patients (Table 2). In the non-mycobacteriosis group, no cases were positive in
the bacteriological tests. In the mycobacteriosis group, bacteriological examination of
BLF showed a positive smear test in four patients (25%); among them, Mycobacterium
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tuberculosis and NTM were detected in one and three patients, respectively. Mycobacterium
culture was positive in seven (44%) patients, among which, two had TB, and five had NTM
infection. Mycobacterium NAAT test was positive in two NTM infections, in addition to
the positive cases in culture. Among the 16 mycobacteriosis patients, 9 (56%) were positive
for bacteriological tests. Seven cases (44%) had positive smear or culture tests which led to
a definitive diagnosis.

Table 2. Results of the bacteriological and pathological examinations.

TB NTM Infection All Mycobacteriosis Non-Mycobacteriosis

Number 7 7 16 26
Bacteriological tests

Smear 1 (14%) 3 (43%) 4 (25%) 0 (0%)
Culture 2 (29%) 5 (71%) 7 (44%) 0 (0%)
NAAT 2 (29%) 7 (100%) 9 (56%) 0 (0%)

Pathological tests
Pathology w/o AI 2 (29%) 0 (0%) 2 (13%) 0 (0%)
Pathology with AI 6 (86%) 3 (43%) 11 (69%) 0 (0%)

AI, artificial intelligence; NAAT, nucleic acid amplification test; NTM, nontuberculous mycobacteriosis; TB,
tuberculosis; w/o, without.

3.3. Pathological Examination

Initially, one pathologist screened all patients to detect the presence of AFB using oil
immersion microscopy, without AI; among them, two were positive for AFB. Subsequently,
all patients underwent AFB evaluation using WSI with AI support, which identified
11 patients positive for AFB. Additionally, the two patients the pathologist diagnosed with
AFB were also identified by the AI-supported pathology.

3.4. Comparison between Pathology, Bacteriology, and Final Diagnosis

The results of the bacteriological tests and AI-supported pathology in the mycobacte-
riosis and non-mycobacteriosis groups are shown in Table 3. Among all mycobacteriosis,
seven cases (44%) showed positive results in smear or culture, which confirmed the diagno-
sis. Nine cases (56%) were positive in bacteriological tests, including NAAT. AI-supported
pathology was positive in 11 cases (69%). There was no significant difference between the
results of bacteriological tests and AI-supported pathology in all mycobacteriosis cases.

Table 3. Comparison of bacteriological tests and AI-supported pathology.

Smear or Culture All Bacteriology Pathology with AI p-Value * p-Value †

TB (n = 7) 2 (29%) 2 (29%) 6 (86%) 0.046 0.046
NTM infection (n = 7) 5 (71%) 7 (100%) 3 (43%) 0.317 0.046
All mycobacteriosis (n = 16) 7 (44%) 9 (56%) 11 (69%) 0.206 0.527
Non-mycobacteriosis (n = 26) 0 (0%) 0 (0%) 0 (0%) N/A N/A

AI, artificial intelligence; NTM, nontuberculous mycobacteriosis; TB, tuberculosis. * “smear or culture” vs.
“Pathology with AI” † “All bacteriology” vs. “Pathology with AI”.

When limited to TB, AI-supported pathology had significantly better sensitivity com-
pared with bacteriological testing using bronchoscopy (86% vs. 29%; p = 0.046). In NTM
infection cases, AI-supported pathology was less sensitive than in TB cases, as only three
cases (43%) were positive (p = 0.046).

3.5. Comparison of the Number of AFB Detected by AI and Bacteriological Tests

This study also compared the number of AFB observed using bacteriological tests, ra-
diological findings, and the final diagnosis (Table 4). Two patients demonstrated >100 AFB
in their histopathological specimens, and had positive bacteriological tests, such as smear
test, culture test, and NAAT. Additionally, among the seven patients with <10 AFB, three
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were diagnosed with TB, two with NTM, and two were under follow-up. In the seven
patients with mycobacteriosis and no evidence of progressive disease, such as consolidation
or cavitary formation on radiology, the sensitivity of AI-supported pathology was 86%,
which was significantly higher than that of bacteriological tests (29%, p = 0.046).

Table 4. Results of radiological, bacteriological, and pathological examinations in mycobacteriosis
cases.

No Age Sex Dx
Bacteriological Test Pathological Test

Radiological Findings
Smear Culture NAAT Path

w/o AI
Path

with AI AFB Count *

1 64 F TB + + + + + 3+ nodular shadow, consolidation, cavity
2 57 M TB − + + + + 2+ consolidation, LN enlargement
3 30 M TB − − − − + 1+ nodular shadow, consolidation
4 80 F TB − − − − + 1+ nodular shadow, LN enlargement
5 78 F TB − − − − + 2+ nodular shadow
6 55 M TB − − − − + 1+ nodular shadow, LN enlargement
7 30 M TB − − − − − − nodular shadow, bronchiectasis
8 70 M NTM + + + − + 3+ nodular shadow, bronchiectasis
9 74 F NTM + + + − + 1+ consolidation, cavity, bronchiectasis
10 62 F NTM − − + − + 1+ nodular shadow, bronchiectasis
11 71 F NTM + + + − − − nodular shadow, consolidation, bronchiectasis
12 78 F NTM − + + − − − nodular shadow, consolidation
13 70 M NTM − + + − − − nodular shadow, consolidation
14 76 F NTM − − + − − − nodular shadow, consolidation, cavity
15 74 M f/u − − − + 1+ nodular shadow
16 71 M f/u − − − + 1+ consolidation, bronchiectasis

AI, artificial intelligence; COP, cryptogenic organizing pneumonia; Dx, diagnosis; f/u, follow-up; LN, lymph node;
NAAT, nucleic acid amplification test; NTM, nontuberculous mycobacteriosis; Path, pathology; TB, tuberculosis;
w/o, without. * (−): AFB negative, (1+): Less than 10 AFBs observed per biopsied tissue, (2+): 10–100 AFBs
observed per biopsied tissue, (3+) >100 AFBs observed per biopsied tissue.

4. Discussion

This study validated the usefulness of AI-supported pathology in diagnosing my-
cobacteriosis. AI-supported pathology in TBLB had higher sensitivity compared with
bacteriological tests using BLF. This study included 42 patients for validation, and showed
AI-supported pathology had significantly higher sensitivity compared with bacteriological
tests when limited to TB. Furthermore, the specificity of AI-supported pathology in this
study was 100%. This study showed the usefulness of AI in comprehensively screening
AFB, which is frequently missed using bacteriology.

This study also shows the clinical utility of AI-supported pathology. Generally, the
sensitivity of the pathology for mycobacteriosis is approximately 50–80% lower compared
with bacteriological tests [2,23]. However, this study detected AFB using comprehensive
AI screening despite negative results when AI was not used. Notably, Pantanowitz et al.
reported easier diagnosis using AI-assisted review, due to its higher sensitivity, negative
predictive value, and accuracy compared with light microscopy and WSI evaluation without
AI [24]. The current study showed that pathological diagnosis may be better at detecting
AFB than traditionally indicated.

Furthermore, we found a low positive predictive value (PPV) of bacteriological tests
(1/7, 14%) when AFB was low in pathological specimens, even when using AI comprehen-
sive analysis. Additionally, the PPV of bacteriological tests was high (78%) in nine patients
diagnosed with mycobacteriosis who demonstrated cavitary lesions or consolidation on
radiology, which are suggestive of progressive disease; the PPV was low (29%) in the
seven patients with mycobacteriosis with no signs of progressive disease on radiology,
which is consistent with a previous study that found a higher AFB detection rate when
cavity formation was found in TB [25]. In contrast, AI-supported pathology showed an
86% higher sensitivity than bacteriological tests in early-stage mycobacteriosis with no
cavitary lesions or consolidation on CT, suggesting the superiority of AI-supported tech-
nology in detecting early-stage bacterial infections. Particularly, multiple modalities, using
AI-supported pathology and bacteriological tests, may be useful in diagnosing early-stage
mycobacteriosis, especially when using bronchoscopy.
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Few reports examine the usefulness of bronchoscopy, especially TBLB, in mycobacte-
riosis. Bronchoscopy in TB diagnosis is mainly recommended for bronchial brushing and
BLF, whereas TBLB is recommended for patients who require rapid diagnosis [2]. However,
some studies on HIV patients only had TBLB as the available tool to diagnose TB in 10–23%
of patients [9,26]; these studies considered TB diagnosis using characteristic histological
findings, such as caseating granuloma, even if no AFB was found. Among those diagnosed
with TB, AFB was observed in 14–57% of patients [2].

This study demonstrated that comprehensive AI analysis detected AFB in many pa-
tients, even if pathologists without AI were unable to. AI-supported pathology may detect
AFB in patients that can only be diagnosed by TBLB. The small size of the TBLB speci-
men required only <1 min of WSI examination of the specimen. Therefore, AI-supported
pathological diagnosis can be performed without changing daily practice and prolonging
diagnostic time. Additionally, NAAT and whole-genome sequencing (WGS) have recently
been used to determine drug resistance [27–29]. One study found the usefulness of reverse
transcription-polymerase chain reaction in identifying species using tissue biopsy [30].
The combination of NAAT and WGS in AI-supported pathology-confirmed tissue may
also allow for the measurement of drug susceptibility, which is important in developing
treatment strategies, even in negative antibiotic culture tests. Additionally, performing
NAAT and WGS after identifying tissue confirmed to have AFB by AI-supported pathology
may be more cost-effective than performing these tests on all specimens.

This study showed the superior sensitivity of comprehensive AI analysis compared
with a pathologist in detecting AFB. To screen all tissue samples with AI, it is necessary
to process them into WSI. However, AFB detection by AI is greatly affected by the avail-
ability of high-quality images during WSI processing, which may greatly reduce AFB
detection sensitivity. The usefulness of AI-supported pathology can be cited through the
disadvantages and advantages of an increased AFB detection rate. This study demon-
strated the usefulness of AI-supported technology through its advantages. However, other
deep learning models and improved scanning quality for WSI may be used to build more
useful models.

This study has several limitations. First, we only studied WSI produced by a single
scanner and deep learning in one model. It may be important to compare this AI with
other algorithms for the detection of AFB in the future. Second, only autopsy cases of TB
were used as AFB-positive training data to construct the AI; additionally, NTM patients
were not used as training data due to the rarity of biopsies with numerous microorganisms.
In this study, the sensitivity of AI-supported pathology in NTM infection was very low.
Different results may be obtained if NTM infection is added as training data. Third, the AI
detects a high frequency of false-positive AFB: approximately 200–500 false positives for
every true positive. We tried to reduce the number of false positives by recognizing the
typical artifacts separately; however, numerous false positives remained. Previous reports
described methods of combining multiple AI algorithms to improve AI diagnostic accuracy.
Xiong et al. reported that compared with a pathologist, the AI diagnostic sensitivity using
a CNN model was 86%, but increased to 98% after combining random forest classifiers [18],
which was consistent with another study [19]; these reports show the possibility of reducing
false-positive AFBs by combining AI algorithms. However, attempting to reduce false
positives may cause true positives to become false negatives. The clinical utility of AI-
assisted pathology requires a low false-negative rate.

5. Conclusions

AI-supported pathology may be more sensitive than bacteriological tests for detecting
AFB in samples collected by bronchoscopy, especially in the early stages of the disease.
Furthermore, combining multiple modalities may be necessary to detect AFB, since bacteri-
ological tests may be insufficient.
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