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Introduction: Endothelial dysfunction is a major risk factor for several of the vascular
complications of diabetes, including ischemic stroke. Nitroxyl (HNO), the one electron
reduced and protonated form of nitric oxide (NO•), is resistant to scavenging by
superoxide, but the role of HNO in diabetes mellitus associated endothelial dysfunction
in the carotid artery remains unknown.

Aim: To assess how diabetes affects the role of endogenous NO• and HNO in
endothelium-dependent relaxation in rat isolated carotid arteries.

Methods: Male Sprague Dawley rats were fed a high-fat-diet (HFD) for 2 weeks prior to
administration of low dose streptozotocin (STZ; 35 mg/kg i. p./day) for 2 days. The HFD
was continued for a further 12 weeks. Sham rats were fed standard chow and
administered with citrate vehicle. After 14 weeks total, rats were anesthetized and
carotid arteries collected to assess responses to the endothelium-dependent
vasodilator, acetylcholine (ACh) by myography. The combination of calcium-activated
potassium channel blockers, TRAM-34 (1 μmol/L) and apamin (1 μmol/L) was used to
assess the contribution of endothelium-dependent hyperpolarization to relaxation. The
corresponding contribution of NOS-derived nitrogen oxide species to relaxation was
assessed using the combination of the NO• synthase inhibitor, L-NAME (200 μmol/L) and
the soluble guanylate cyclase inhibitor ODQ (10 μmol/L). Lastly, L-cysteine (3 mmol/L), a
selective HNO scavenger, and hydroxocobalamin (HXC; 100 μmol/L), a NO• scavenger,
were used to distinguish between NO• and HNO-mediated relaxation.

Results: At study end, diabetic rats exhibited significantly retarded body weight gain and
elevated blood glucose levels compared to sham rats. The sensitivity and the maximal
relaxation response to ACh was significantly impaired in carotid arteries from diabetic rats,
indicating endothelial dysfunction. The vasorelaxation evoked by ACh was abolished by
L-NAME plus ODQ, but not affected by the apamin plus TRAM-34 combination, indicating
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that NOS-derived nitrogen oxide species are the predominant endothelium-derived
vasodilators in sham and diabetic rat carotid arteries. The maximum relaxation to ACh
was significantly decreased by L-cysteine in both sham and diabetic rats, whereas HXC
attenuated ACh-induced relaxation only in sham rats, suggesting that diabetes impaired
the contribution of NO•, whereas HNO-mediated vasorelaxation remained intact.

Conclusion: Both NO• and HNO contribute to endothelium-dependent relaxation in
carotid arteries. In diabetes, NO•-mediated relaxation is impaired, whereas HNO-
mediated relaxation was preserved. The potential for preserved HNO activity under
pathological conditions that are associated with oxidative stress indicates that HNO
donors may represent a viable therapeutic approach to the treatment of vascular
dysfunction.

Keywords: nitric oxide, nitroxyl, Diabetes, endothelium, carotid arteries, nitroxyl mediated relaxation in diabetes

INTRODUCTION

Diabetes is a metabolic disease associated with progressive
damage to the vascular wall, which can promote the
development of macrovascular and microvascular
complications (Stratton et al., 2006; Cade, 2008; Fowler, 2008;
Fatehi-Hassanabad et al., 2010). The hallmark of these vascular
complications is the development of endothelial dysfunction and
increased reactive oxygen species (ROS) production (Schalkwijk,
2005; Sharma et al., 2012). This is characterized by reduced
production of endothelium-derived relaxing factors including
prostacyclins (Moncada et al., 1976), nitrogen oxide species
such as nitric oxide (NO•) (Palmer et al., 1988) and a non-
NO•/non-prostanoid mediator of endothelium-dependent
hyperpolarization (EDH, previously associated with the
definition of endothelium-derived hyperpolarizing factors)
(Coleman et al., 2017; Garland and Dora, 2017; Leung and
Vanhoutte, 2017). In addition, endothelial dysfunction is
associated with atherosclerotic plaque formation, which can
lead to arterial stenosis and thrombosis (Endemann and
Schiffrin, 2004; Sitia et al., 2010; Zardi and Afeltra, 2010)
Atherothrombotic occlusion is more prevalent in large arteries,
such as carotid arteries, rather than smaller, resistance vessels.
Thus, carotid artery stenosis is widely used to predict the
likelihood of stroke (Dempsey et al., 2010; Kwee et al., 2013)
and carotid plaque formation (Spagnoli et al., 2004; Ding et al.,
2008). Given the relationship between endothelial dysfunction,
atherosclerosis, and ischemic stroke, it is likely that the extent of
endothelial dysfunction in the carotid vasculature may reflect the
risk of an individual developing ischemic cerebrovascular disease.

There are multiple mechanisms of endothelium-dependent
relaxation including via endogenous NO• (Palmer et al., 1988),
HNO, the one-electron reduced and protonated form of NO•
(Dutton et al., 2004; Andrews et al., 2009; Bullen et al., 2011), the
arachidonic acid metabolite prostacyclin (Moncada et al., 1976)
and EDH, which causing hyperpolarization in the smooth muscle
layer and affecting conducted vasodilatation in arteries (Coleman
et al., 2017; Garland and Dora, 2017; Leung and Vanhoutte,
2017). Importantly, like NO•, there is evidence to suggest that

HNO is endogenously generated and serves as an endothelium-
derived vasodilator in both conduit and resistance arteries (Ellis
et al., 2000; Andrews et al., 2009; Bullen et al., 2011; Leo et al.,
2012; Tare et al., 2017). While there are a range of chemical
reactions that may lead to the endogenous synthesis of HNO
(Marti et al., 2017), the strongest body of evidence indicates it is
synthesized as a co-product of endothelial nitric oxide synthase
(eNOS) during the conversion of L-arginine to NO• (Stoll et al.,
2010; Paolocci et al., 2016; Marti et al., 2017). Importantly, it has
also been shown that where eNOS is uncoupled due to oxidative
stress or where there is a deficiency of the cofactor,
tetrahydrobiopterin (BH4), the production of HNO by eNOS
is promoted over NO• (Fukuto et al., 1992; Rusche et al., 1998;
Adak et al., 2000; Tantillo et al., 2000). Thus, in disease states,
where eNOS is uncoupled, HNO may be generated. While it is
well established that diabetes has a detrimental effect on
endothelial function which then contributes to diabetes-
induced morbidity and mortality due to cardiovascular disease,
it is less well established how the different mechanisms of
endothelium-dependent relaxation are individually impacted.
It is however clear that diabetes impairs NO• mediated
relaxation associated with diabetes-induced oxidative stress.
Unlike NO•, HNO is resistant to scavenging by reactive
oxygen species (ROS) such as superoxide (•O2

−) (Miranda
et al., 2002; Leo et al., 2012), suggesting that the actions of
HNO may be preserved in diabetes and HNO may be able to
compensate for impaired NO•-mediated signaling. Our previous
studies have shown that HNO is preserved in the diabetic aorta
(Leo et al., 2012), femoral and mesenteric arteries (Kahlberg et al.,
2016; Tare et al., 2017) however it is unknown if this is also the
case in the carotid artery, a clinically important blood vessel given
the prevalence of carotid artery stenosis and stroke in patients
with diabetes.

There are contradictory findings in regard to the impact of
diabetes on EDH-mediated vascular relaxation with some reports
that relaxation is impaired (Kamata et al., 2000; Wigg et al., 2001;
Matsumoto et al., 2003; Leo et al., 2011; Matsumoto et al., 2017)
contrasted by others that EDH relaxation is maintained (Kagota
et al., 2011; Cho et al., 2013; Mokhtar et al., 2016a) or even
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enhanced in human subcutaneous arteries (Mokhtar et al.,
2016b). Although EDH does not make a significant
contribution to endothelium-dependent relaxation in carotid
arteries under non-disease conditions, there is evidence that it
may be upregulated early in the development of diabetes (Leo
et al., 2010; Centeno et al., 2019) and there is an associated
increase in IKCa (Kagota et al., 2011; Schach et al., 2014). As such
when considering the interplay between endothelium-derived
relaxing factors in diabetes, it is important to evaluate the role
of NO•, EDH and HNO.

It remains unclear whether endogenous HNO-mediated
vasorelaxation and the release of basal HNO is affected by
diabetes-induced endothelial dysfunction in conduit vessels
such as the carotid arteries. We hypothesized that basal and
stimulated release of endogenous HNO is preserved, whereas
endothelial function is impaired, in diabetic rat carotid arteries.
Therefore, this study aims to characterize the relative
contribution of NO• and HNO to endothelium-dependent
relaxation in rat carotid arteries both in terms of their basal
and stimulated release.

MATERIALS AND METHODS

Animal Model
All animal research and procedures involved in this project were
conducted in accordance with the National Health and Medical
Research Council of Australia Code of Practice for the Care and
Use of Animals for Scientific Purposes and approved by the
Alfred Medical Research Educational Precinct (AMREP)
Animal Ethics Committee (AEC; under the ethics approval
number: E/1759/2017/B). Male Sprague Dawley (SD) rats
were bred and housed within the AMREP precinct animal
center at an ambient temperature of 22°C, with a 12-h light/
dark cycle. At 8 weeks of age, pre-adolescent male SD rats (n �
39; body weight: 200–350 g) were randomly allocated to one of
two groups, sham or diabetic. Rats were fed an HFD (SF03–002,
36% fat and 19.4% protein with total 59% digestible energy
intake from lipids, Specialty Feeds, WA, Australia) (Marsh et al.,
2009) for two weeks, after which the rats were administered two
low-doses of streptozotocin (STZ, 24 h apart, each 35 mg/kg
i.p., in 0.1 mol/L citrate, pH4.5, n � 20). The HFD then
continued for a further 12 weeks. The sham group received
two injections of vehicle (24 h apart, 0.1 mol/L citrate vehicle,
pH 4.5) and were fed standard laboratory chow (n � 19).
Throughout the 14-weeks study period, blood samples were
collected fortnightly through a small cut on the tail end and
blood glucose levels were assayed by a one-touch glucometer
(Roche, Sydney, NSW, Australia). The upper limit of detection
of the glucometer was 33.3 mmol/L. Hence, any reading above
this point was recorded as 33.3 mmol/L (Ritchie et al., 2012).
One week following STZ administration, diabetic rats with
blood glucose levels exceeding 28 mM received subcutaneous
insulin (1–2 U as required, Humulin NPH, Lilly) to prevent
complications of severe hyperglycemia. At 21 weeks of age, a
glucose tolerance test (GTT) was performed. To perform the
GTT, after a 6 h fast, the animals were injected with 3 ml/kg

body weight of glucose solution (10% glucose w/v, i.p.) and
blood glucose levels were measured at 0, 15, 30, 45, 60, 90 and
120 min via the tail vein. Body composition was determined
using an EchoMRI 3-in-1 Body Composition Analyzer (Echo
Medical Systems, Houston, TX, USA) to determine the body
composition according to the manufacturer’s protocol. Blood
glucose and glycated hemoglobin (HbA1c) levels were measured
before exsanguination, using the one-touch glucometer and a
Cobas HbA1c analyser (Roche, Sydney, NSW, Australia),
respectively. Any reading is shown as “Low”, was recorded as
3% as the lower limit of detection of the HbA1c analyser (Genc
et al., 2012). Rats were then anesthetized by a combined dose of
ketamine and xylidine (100 and 20 mg/kg, respectively, i.p.).
Once anesthetized, whole blood was collected from the hepatic
vein for further measurement of plasma insulin, and animals
were euthanized by exsanguination (Hickman and Johnson,
2011). Both carotid arteries were collected for myography
experiments. Plasma insulin was measured using
commercially available Rat Ultrasensitive Insulin ELISA kits
(ALPCO, Salem, NH, USA) (French et al., 2017) according to
the manufacturer’s instructions.

Myograph Experiments
Isolation and Equilibration of Rat Carotid Arteries
Carotid arteries were isolated and immediately placed in ice-
cold Krebs’ solution (in mmol/L: 120 NaCl, 5 KCl, 1.2 MgSO4,
1.2 KH2PO4, 25 NaHCO3, 11.1 D-glucose and 2.5 CaCl2).
Indomethacin (10 μmol/L), a non-selective cyclooxygenase
inhibitor, was added to the Krebs’ solution to prevent the
synthesis of prostanoids by the artery segments in all studies,
as described previously (Leo et al., 2010; Kahlberg et al., 2016).
Carotid arteries were cleared of all loose connective tissue and
fat and cut into two- to 3-mm ring segments. Each ring was
mounted on a myograph (model 610M, Danish Myo
Technology, Aarhus, Denmark) containing Krebs’ solution
gassed with carbogen (95% O2 and 5% CO2) at 37°C. After
the arteries were mounted on the myograph, they were adjusted
to a passive tension of 15 mN, which was continuously recorded
using LabChart 8 Pro software (ADInstruments, Hastings,
United Kingdom). Twenty minutes after equilibration, Krebs’
solution was replaced with a high K+-containing physiological
saline solution (KPSS in mmol/L: KCL 125, MgSO4 1.2, KH4PO4

1, NaHCO3 25, D-glucose 11.1, CaCl2 2.5) for 20 min to induce
maximal contraction (Supplementary Table S2). Vessels were
then rinsed with Krebs’ solution and allowed to regain basal
tension. Arteries were then precontracted to 50–70% of their
maximal contraction to KPSS, using PE (0.01–1 μmol/L) in all
studies. In a limited number of experiments, the thromboxane
A2 receptor agonist 9, 11-dideoxy-9α, 11α-methanoepoxy-
PGF2α (U-46619; 1–10 nmol/L) was also added when arteries
failed to reach optimal stable contraction with PE alone, as
previously described (Kahlberg et al., 2016; Leo et al., 2020)
(Supplementary Table S2). Endothelial integrity was
determined by exposure to a single concentration of
acetylcholine (ACh 10 μmol/L), with relaxation >80% of pre-
constriction levels accepted as indicative of a functionally intact
endothelium.
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Assessment of Vascular Reactivity Ex Vivo
After further rinses and recovery of basal tension, arteries were
again pre-contracted to 50–70% of the maximum contraction
(KPSS response) using phenylephrine (PE; 0.01–1 μmol/L) either
alone or in combination with U-46619 (1–10 nmol/L). The effects
of different treatments on relaxation responses in carotid arteries
were assessed via cumulative concentration-response curves to
the endothelium-dependent vasodilator, ACh (0.1–10 μmol/L)
and the endothelium-independent vasodilator, sodium
nitroprusside (SNP; 0.1 nmol/l-10 μmol/L). Responses to ACh
and SNP were also examined following 20 min incubation with
different combinations of Nω-nitro-L-arginine methyl ester
(L-NAME; 200 μmol/L, a NOS inhibitor); 1H-[1,2,4]oxadiazolo
[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/L, a soluble guanylate
cyclase (sGC) inhibitor); apamin (1 μmol/L, small-conductance
Ca2+-activated K+ channel (SKCa) blocker); and 1-[(2-
chlorophenyl) (diphenyl)methyl]-1H-pyrazole (TRAM-34;
1 μmol/L, a selective intermediate-conductance Ca2+-activated
K+ channel (IKCa) blocker). In addition, the KCa channel
blockers were also incubated either alone or in combination
with L-cysteine (3 mmol/L), a selective HNO scavenger, or
hydroxocobalamin (HXC), a selective NO• scavenger
(100 μmol/L), as described previously (Ritchie et al., 2013;
Marshall et al., 2020).

Assessment of Basal Nitrogen Oxide, NO• and HNO
Activity Ex Vivo
In another set of myograph experiments, the impact of diabetes
on the basal release of eNOS-derived nitrogen oxides were
determined. Endothelium-intact carotid artery rings were sub-
maximally precontracted to ∼20% of the KPSS response with PE
(10–100 nmol/L) (Supplementary Figures S2, S5). After
stabilization of contraction, carotid artery rings were either
exposed to L-NAME (200 μmol/L), L-cysteine (3 mmol/L) or
HXC (100 μmol/L) (Leo et al., 2011; Kahlberg et al., 2016).
Under these conditions, contractile response to L-NAME was
considered to reflect the level of basal eNOS-derived nitrogen
oxides (NO• and HNO). The contractile response to L-cysteine or
HXC were considered to reflect the basal level of HNO or NO•,
respectively.

Reagents
All reagents were purchased from Sigma-Aldrich (St Louis, MO,
USA) except for ODQ and U46619 (Cayman Chemical, Ann
Arbor, MI, USA), and all compounds used were of analytical
grade or higher. Aliquots of drugs were dissolved in distilled
water and stored at −20°C, except indomethacin, which was
dissolved in 0.1 mol/L sodium bicarbonate, as well as both
ODQ and TRAM-34, which were dissolved in 100% dimethyl
sulfoxide (DMSO, final concentration less than 0.1%), and U-
46619, which was dissolved in absolute ethanol as a 1 mM stock
solution, with subsequent dilutions in distilled water.

Statistical Analysis
All data are expressed as mean ± SEM, where n is the number of
animals per group. Individual concentration-response curves

from rat isolated carotid arteries were computer-fitted to a
sigmoidal logistical equation using non-linear regression
(GraphPad Prism 7.0 Software, CA, USA) to calculate
the–log10 of the concentration of each agonist causing a 50%
relaxation (pEC50; mol/L). Maximum relaxation (Rmax) evoked
by ACh and SNP were expressed as a percentage reversal of the
precontraction to phenylephrine and/or U46619. Group pEC50,
Rmax and systemic characteristics were compared using Student’s
t-test or one-way ANOVA followed by a post-hoc Dunnett’s test
as appropriate. Body weights and blood glucose levels were
analyzed using a two-way ANOVA with Sidak’s post-hoc
analysis for multiple comparisons. p values of <0.05 were
considered statistically significant.

RESULTS

Systemic Characteristics In Vivo
Twelve weeks after STZ or vehicle administration and fourteen
weeks after commencing HFD or standard laboratory diet, weight
gain was evident in both groups, however, diabetic rats exhibited
significantly lower body weight (Figure 1A) and fat mass
(Figure 1D) than sham rats at end point, indicative of
retarded body weight gain. Both blood glucose levels and
HbA1c of diabetic rats were significantly greater than those of
sham rats (Figure 1B,E).

Glucose Tolerance Test and Plasma Insulin
Level
To determine the level of glucose tolerance a GTT was performed
during the final week of the study. Blood glucose levels of both
sham and diabetic rats increased following an i. p. injection of
glucose (3 ml/kg, 10% glucose w/v) (Figure 1C). In sham rats, the
maximal rise in blood glucose concentration was evident 15 min
post-injection but returned to baseline within 90 min of glucose
administration. In contrast, blood glucose concentration
remained elevated in diabetic rats throughout the test and did
not return to baseline at test completion (120 min post-injection).
These findings suggest that glucose tolerance is impaired in the
diabetic group. Serum insulin concentrations measured at study
endpoint did not differ significantly between the two groups
(Figure 1F).

Effect of Diabetes on Relaxation to
Acetylcholine and Sodium Nitroprusside
Relaxation responses to ACh and SNP in carotid arteries from
sham and diabetic rats are shown in Figure 2. Diabetes
significantly reduced the sensitivity and maximal relaxation
to ACh compared to sham (Figure 2A, Table 1). However,
the relaxation to the endothelium-independent vasodilator SNP
was not significantly different between the two groups
(Figure 2B, Table 1), suggesting that there was a selective
impairment of endothelial function in the carotid arteries
from diabetic rats.
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FIGURE 1 | Systemic characteristics in vivo. Body weight (A) and blood glucose level (B) of sham (■) and diabetic (C) rats thought out the study period. The Blood
glucose level of sham (■) and diabetic (C) rats throughout the glucose tolerance test (C). Fat mass (D), % HbA1c (E) and serum insulin level (F) of sham (blue bar) and
diabetic (red bar) groups at the end of the experimental period. Body weight and blood glucose level (Two-way ANOVA with Sidak’s multiple comparisons test); Fat
mass, % HbA1c and serum insulin level (Unpaired Student’s t-test); Glucose tolerance test (Two-way ANOVA with Tukey’s multiple comparisons test). Diabetic
n � 20; sham n � 19 experiments. Values are mean ± SEM *p < 0.05, **p < 0.01, ****p < 0.0001 vs sham animals. #p < 0.05, ####p < 0.0001 vs. zero time point.

FIGURE 2 |Cumulative concentration-response curves to ACh and SNP. Acetylcholine (A) (n � 14–16) and sodium nitroprusside (B) (n � 14–16) in isolated carotid
arteries from sham (■) and diabetic (C) rats. Indomethacin (10 µM) was always present in the Krebs’ buffer. Values are shown as mean ± SEM, where n � number of
animals. pEC50 *p < 0.05 vs sham animals, Rmax #p < 0.05 vs sham animals (Unpaired Student’s t-test). See Table 1 for pEC50 and Rmax values.
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Impact of Diabetes on the Relative
Contribution of EDH and NOS-Derived
Nitrogen Oxide Species to ACh-Evoked
Relaxation
Vascular reactivity to ACh was further assessed in the presence of
either the combination of small and intermediate conductance
Ca2+ activated K+ channel blockers (apamin and TRAM-34,
respectively), or the combination of L-NAME and ODQ to
determine the relative contribution of EDH and NOS-derived
nitrogen oxide species, respectively, to endothelium-dependent
relaxation in sham and diabetic rat carotid arteries (Figure 3,
Table 1). In carotid arteries from both sham and diabetic groups,
ACh-induced relaxation was not affected by the presence of
apamin and TRAM-34, but virtually abolished by the
combination of L-NAME and ODQ, indicating that a NOS-
derived nitrogen oxide species is the predominant
endothelium-derived vasodilator in carotid arteries rather than

EDH (Figures 3A,B, Table 1). Furthermore, in carotid arteries
from all groups, the relaxation response to ACh was completely
abolished in the presence of apamin, TRAM-34, L-NAME and
ODQ combined, which suggests that there was no contribution of
non-nitrogen oxide species/non-EDH to relaxation (Figures
3A,B, Table 1).

Effect of Diabetes on the Relative
Contribution of Endothelium-Derived NO•
and Nitroxyl to Endothelium-Dependent
Relaxation
In order to determine the contribution of endothelium-derived
NO• vs. HNO to relaxation in the carotid artery, the EDH
component of endothelium-dependent relaxation was
eliminated with KCa blockers (apamin + TRAM-34). Under
these conditions, the relaxant response to ACh in the presence
of HXC (NO• scavenger) or L-cysteine (HNO scavenger) is

TABLE 1 | Pharmacological parameters of endothelial function ex vivo. A comparison of sensitivity (pEC50) and maximum relaxation (Rmax) to ACh or SNP in the absence or
presence of various inhibitors in endothelium-intact carotid arteries isolated from sham and diabetic rats. All experiments were conducted in the presence of
indomethacin (10 μmol/L). n � the number of experiments. Results are given as mean ± SEM. *p < 0.05 Vs. sham, one-way ANOVA with Dunnett’s post-hoc test. #p <
0.05,####p < 0.0001 vs. control within each group, one-way ANOVA with Dunnett’s test. ND: not determined.

ACh n Sham n Diabetic

pEC50 Rmax (%) pEC50 Rmax (%)

Control 14 7.24 ± 0.15 96 ± 1 16 6.72 ± 0.18* 90 ± 3*
Apamin + TRAM 34 13 6.82 ± 0.22 93 ± 2 16 6.43 ± 0.16 88 ± 3
L-NAME + ODQ 6 ND 22 ± 7#### 7 ND 17 ± 8####

Apamin + TRAM 34 + L-NAME + ODQ 6 ND 9 ± 6#### 5 ND 13 ± 8####

Apamin + TRAM 34 + L-cysteine 6 6.77 ± 0.66 62 ± 9#### 8 6.55 ± 0.26 60 ± 12####

Apamin + TRAM 34 + HXC 7 6.50 ± 0.17 72 ± 11# 8 6.44 ± 0.23 84 ± 6
SNP n Sham n Diabetic

pEC50 Rmax (%) pEC50 Rmax (%)
Control 6 8.10 ± 0.18 98 ± 1 7 8.15 ± 0.11 97 ± 1
Apamin + TRAM 34 6 8.12 ± 0.28 100 ± 1 5 7.97 ± 0.11 95 ± 3
L-NAME + ODQ 6 ND 18 ± 8#### 7 ND 28 ± 10####

Apamin + TRAM 34 + L-NAME + ODQ 6 ND 17 ± 8#### 5 ND 41 ± 9####

Apamin + TRAM 34 + L-cysteine 6 6.65 ± 0.21#### 87 ± 9 8 6.89 ± 0.19#### 97 ± 2
Apamin + TRAM 34 + HXC 7 6.31 ± 0.21#### 97 ± 1 8 6.86 ± 0.15#### 97 ± 1

FIGURE 3 | Relative contribution of EDH and NOS-derived nitrogen species to ACh-induced Relaxation in rat carotid arteries. Cumulative concentration response
curves to ACh in the absence (control) and presence of either apamin + TRAM 34 (n � 6), L-NAME + ODQ (n � 6–7) and apamin + TRAM 34 + L-NAME + ODQ (n � 6).
Carotid arteries isolated from (A) Sham (B) Diabetic rats. Indomethacin (10 µM) was always present in the Krebs’ buffer. Values are mean ± SEM, where n � number of
animals. ####Rmax vs control (p < 0.0001, one-way ANOVA, Dunnett’s post-hoc test). See Table 1 for pEC50 and Rmax values.
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mediated by HNO or NO•, respectively. In sham carotid artery,
the maximum relaxation response to ACh was significantly
attenuated either by the presence of the NO• scavenger, HXC
or the HNO scavenger, L-cysteine (Figure 4A, Table 1). Thus
NO• and HNO both contributed to endothelium-dependent
relaxation in the carotid arteries from sham rats. In contrast,
in carotid arteries from diabetic rats, there was a significant
decrease in the Rmax to ACh in the presence of the HNO
scavenger, L-cysteine, but not the NO• scavenger, HXC
(Figure 4B, Table 1), indicating that NO•-mediated
endothelium-dependent relaxation was impaired by diabetes
whereas HNO-mediated relaxation was intact.

Impact of Diabetes on Basal Levels of
Nitrogen Oxide/NO•/Nitroxyl Bioavailability
Diabetes did not affect the maximum contraction to KPSS
(125 mmol/L) (Supplementary Figure S1). Similarly, L-NAME
induced arterial contraction, attributed to the basal release of
nitrogen oxides, was not significantly different between the two
groups (Figure 5A). In contrast, the HXC-induced contraction,
which reflected the basal level of NO•, was significantly reduced

in carotid arteries from diabetic compared to sham rats
(Figure 5B, p < 0.005). Furthermore, the contractile responses
to L-cysteine, attributed to the basal level of HNO, was not
significantly different in carotid arteries from diabetic compare
to sham rats (Figure 5C). Together these findings suggest that the
basal activity of endogenous NO• is reduced by diabetes whereas
the basal release of HNO is preserved.

Effect of Diabetes on the Relative
Contribution of NO• and Nitroxyl to Sodium
Nitroprusside-Induced Relaxation
As indicated previously, diabetes had no the effect on relaxation
response to SNP (Figure 2B, Table 1). The relative contribution
of NO• and HNO to the endothelium-independent, SNP-
induced relaxation in the carotid artery was examined. Similar
to the assessment of endothelium-dependent relaxation, the EDH
component was eliminated with KCa blockers (apamin + TRAM-
34). The sensitivity, but not maximum relaxation response was
significantly impaired by the presence of either a NO• scavenger
(HXC with KCa blockers) or a HNO scavenger (L-cysteine with
KCa blockers) in carotid arteries from both sham and diabetic rats

FIGURE 4 | Relative contribution of NO• and HNO to ACh-induced relaxation in rat carotid arteries. Cumulative concentration response curves to ACh in the
presence of apamin + TRAM 34 plus either L-cysteine (n � 7–8) or HXC (n � 8). Carotid arteries isolated from (A) Sham (B) Diabetic rats. Indomethacin (10 µM) was
always present in the Krebs’ buffer. Values are mean ± SEM, where n � number of animals. Rmax vs control (#p < 0.05, ####p < 0.0001, one-way ANOVA, Dunnett’s
post-hoc test). See Table 1 for pEC50 and Rmax values.

FIGURE 5 | Basal level of nitrogen oxide, NO• and HNO bioavailability ex vivo. Diabetes did not affect maximum contraction to the eNOS inhibitor L-NAME (A),
which negates both NO• and HNO, but was associated with loss in endogenous bioavailability of (B) NO• (HXC-induced contraction) (C) Basal HNO bioavailability
(L-NAME-induced contraction) was maintained in diabetic rat carotid arteries. Carotid arteries isolated from sham (blue bar) and diabetic (red bar) rats. Indomethacin
(10 µM) was always present in the Krebs’ buffer. Results are shown as mean ± SEM, where n � 11–12 per group. **p < 0.005 vs sham rats (Unpaired Student’s
t-test).
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(Figures 6A,B, Table 1), which demonstrated that both NO• and
HNO contribute to relaxant responses to SNP and diabetes did
not impair the responses to either of these mediators when
released from SNP rather than the endothelium.

We then looked the contribution of sGC in SNP-mediated
relaxation in carotid arties from sham or diabetic vessels. The
response to SNP could almost be abolished either by the presence
of L-NAME + ODQ or the presence of apamin, TRAM-34,
L-NAME and ODQ combined (Figure 7A, Table 1) in carotid
arteries from sham and diabetic rats (Figure 7B, Table 1),
indicating that nitrogen oxide species largely acts on sGC.

DISCUSSION

Diabetes is a known risk factor for stroke, a component of stroke
risk is likely associated with diabetes-induced endothelial
dysfunction (Sitia et al., 2010; Douglas and Channon, 2014).
In this study, the endothelial function of carotid arteries, as well as

the endothelium-derived nitrogen oxide-mediated relaxation was
assessed in diabetic rats. Rats that received the HFD and two low-
doses of STZ exhibited hyperglycaemia, elevated HbA1c and
reduced glucose tolerance. Endothelial dysfunction was evident
in the carotid artery of diabetic rats, which was mainly due to a
decreased contribution of NO•-mediated relaxation, whereas the
contribution of HNO was maintained. There was no evidence of
an EDH contribution to endothelium-dependent relaxation of
carotid arteries from either control or diabetic rats. Diabetes also
caused a decrease in basal NO• bioavailability in carotid arteries,
but the basal HNO release was preserved (Figure 8). Our study
demonstrated for the first time that although there was selective
impairment of endothelial function, the stimulated and basal
release of HNO was preserved in the carotid artery of diabetic
animals.

T2DM is a complex metabolic disorder essentially
characterized by insulin resistance and a defect in pancreatic
β-cell mass and function, and that is strongly influenced by
lifestyle and diet (Guilherme et al., 2008; Podell et al., 2017;

FIGURE 6 | Relative contribution of NO• and HNO to SNP-induced relaxation in rat carotid arteries. Cumulative concentration response curves to SNP in the
presence of apamin + TRAM 34 plus either L-cysteine (n � 6–8) or HXC (n � 7–8). Carotid arteries isolated from (A) Sham (B) Diabetic rats. Indomethacin (10 µM) was
always present in the Krebs’ buffer. Values are mean ± SEM, where n � number of animals. pEC50 vs control (*p < 0.05, ****p < 0.0001, one-way ANOVA, Dunnett’s post-
hoc test). See Table 1 for pEC50 and Rmax values.

FIGURE 7 | Relative contribution of SNP-induced relaxation in rat carotid arteries. Cumulative concentration response curves to SNP in the absence (control) and
presence of either apamin + TRAM 34 (n � 5–6), L-NAME + ODQ (n � 6–7) or apamin + TRAM 34 + L-NAME +ODQ (n � 5–6). Carotid arteries isolated from (A) Sham (B)
Diabetic rats. Indomethacin (10 µM) was always present in the Krebs’ buffer. Values are mean ± SEM, where n � number of animals. Rmax vs control (

#p < 0.05, one-way
ANOVA, Dunnett’s post-hoc test). See Table 1 for pEC50 and Rmax values.
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Ritchie and Abel, 2020). Previous studies have indicated that
an animal model that incorporates an HFD to induce
peripheral insulin resistance (Sankar et al., 2012; Podell
et al., 2017; Sampath et al., 2017), is often associated with
limited end-organ damage. Additional low dose STZ
administration with HFD only destroys a portion of (not
all) the pancreatic β-cells to increase plasma glucose
moderately. This phenotype closely mimics the
pathogenesis of human T2DM (Reed et al., 2000;
Asrafuzzaman et al., 2017). The HFD + low dose STZ
approach has been gaining popularity in recent years,
providing an alternative to the existing genetic model of
T2DM (e.g. db/db mice, Zucker rats). This model was first
reported by the Reed group (Reed et al., 2000), where they
have demonstrated that rats that were fed an HFD exhibited
high blood insulin levels but essentially normal blood glucose
concentrations. The additional low dose of STZ injection led
to mild impairment in insulin secretion, closely resembling
the key characteristics of insulin resistance and pancreatic
β-cell dysfunction in human T2D. Since then, different
combinations of diet and STZ dosage have been developed.

In the present study, we have adopted a model similar to
Marsh et al. (Marsh et al., 2009), using a combination of HFD
(SF03-002; total digestible energy: 59% lipids, 15% protein; wt/
wt: 34.6% sucrose; Specialty Feeds, WA, Australia) and two
low-dose injections of STZ (30 mg/kg, 24-h apart). Our model
of HFD/STZ rats exhibited hyperglycaemia and elevated
HbA1c, which was apparent as early as 2 weeks following
the second injection of STZ. Accompanying this
hyperglycaemia, the rats displayed many characteristics of
T2DM including reduced glucose tolerance and retarded
weight gain, which are consistent with previous studies
where an HFD was combined with multiple low-doses of
STZ in rats (Zhang et al., 2008; Albersen et al., 2011). The
combination of elevated plasma glucose but with a maintained
plasma insulin level in these HFD/STZ rats is consistent with

insulin resistance (Reed et al., 2000; Sharma et al., 2011; Guo
et al., 2012). However, the lower body weight and fat mass at
study endpoint compared to controls is not entirely reflective of
obese T2DM (Lin et al., 2018; Bai et al., 2019), but rather as a
model of T2DM, an emerging clinical feature in many diabetic
populations (Balasubramanyam et al., 2011; Florez and
Castillo-Florez, 2012).

T2DM-associated vascular dysfunction is a major clinical
problem that is linked with a higher incidence of coronary
artery, peripheral vascular and microvascular disease (Laakso,
1999; Eleftheriadou et al., 2019). Endothelial dysfunction has
been defined as a common biomarker of diabetes (Iellamo
et al., 2006; Vanhoutte et al., 2017), with compromised
signaling of endothelium-derived relaxing factors playing a
major role. Endothelial dysfunction has been well-
characterized in the STZ-induced model of experimental
type 1 diabetes mellitus (T1DM) (Makino et al., 2000;
Matsumoto et al., 2003) as well as in db/db mice, which are
spontaneously diabetic as a result of inherited gene mutation
(Pannirselvam et al., 2002; Gao et al., 2010; Lee et al., 2011;
Park et al., 2011). In the present study, carotid arteries isolated
from HFD plus STZ-induced diabetic rats exhibited impaired
endothelium-dependent relaxation in response to ACh. By
contrast, the response to the endothelium-independent
vasodilator, SNP, was not affected by diabetes, indicating
that vascular smooth muscle function was intact. Thus,
endothelial function was selectively impaired by diabetes,
suggesting that endothelial cells are more vulnerable than
smooth muscle cells to diabetes-induced impairment. These
observations are consistent with other studies that have
demonstrated that diabetes causes endothelial dysfunction
but does not affect smooth muscle function, in either
conduit or resistance vasculature (Leo et al., 2011; Kahlberg
et al., 2016).

In order to evaluate nitrogen oxide-mediated relaxation,
EDH-induced relaxation was inhibited by IKCa and SKCa

FIGURE 8 | Schematic diagram to summarize the impact of diabetes on rat carotid artery function. Both NO• and HNO contribute to endothelium-dependent
relaxation in carotid arteries. In diabetes, NO•-mediated relaxation is impaired, whereas HNO-mediated relaxation was preserved.
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channel blockers, apamin and TRAM-34, respectively. Thus,
the residual vascular relaxation response to ACh was attributed
to nitrogen oxide species (i.e. NO• and HNO). We observed
here that endothelium-dependent relaxation was not affected
by the presence of KCa blockers in either sham or diabetic
carotid arteries, indicating that endothelium-derived nitrogen
oxide species are the main contributors to endothelium-
dependent vasodilatation in large conduit carotid arteries.
This observation is consistent with several other studies
(Joannides et al., 1995; Woodman et al., 2000; Takaki et al.,
2008; Feletou et al., 2012).

In addition, similar observations have been made in the SNP-
mediated relaxation in the current study. We found that the
vasorelaxation response to SNP was only affected by the presence
of the NOS inhibitor plus sGC inhibitor (L-NAME + ODQ) in
both sham and diabetic carotid arteries, demonstrating that
nitrogen oxide species acting on sGC are the predominant
dilator mechanisms of SNP-induced relaxation in the carotid
arteries.

To examine whether EDH contributed to endothelium-
dependent relaxation of carotid arteries in diabetes, the
combination of L-NAME and ODQ were used to inhibit
NOS and sGC activities, respectively. The presence of
L-NAME and ODQ (and the cyclooxygenase inhibitor-
indomethacin) abolished the ACh-induced vasodilatation
response in diabetic as well as sham rats, but not the KCa

blockers, indicating that EDH does not contribute to
endothelium-dependent relaxation in carotid arteries. It has
been reported that the contribution of EDH to endothelium-
dependent relaxation is predominantly found in resistance
arteries (i.e. small arteries with diameters of less than
500 μM) (Mulvany and Aalkjær, 1990; Tomioka et al., 1999;
Shimokawa and Godo, 2016; Garland and Dora, 2017) and more
likely to be preserved, or even upregulated, to compensate for
the loss of NO•-mediated relaxation in a disease state, such as
diabetes (Cho et al., 2013; Kobuchi et al., 2015; Mokhtar et al.,
2016a; Mokhtar et al., 2016b). Whereas it has been reported that
EDH may play a role in the carotid in diabetes as there is
increased expression of IKCa and a contribution of EDH early in
the disease process in carotid arteries from diabetic animals (Leo
et al., 2010; Centeno et al., 2019). In contrast, in this study with
more advanced diabetes there was no compensation from EDH
for diabetes-induced impairment of endothelium-dependent
relaxation in the carotid artery, which is consistent with a
previous study (Shi et al., 2006).

To investigate the potential role of endogenous HNO as an
endothelium-derived vasodilator in carotid arteries, we employed
the well-characterized pharmacological tools, L-cysteine (HNO
scavenger) (Pino and Feelisch, 1994; Ellis et al., 2000; Irvine et al.,
2003; Andrews et al., 2009) and HXC (NO• scavenger) (Li and
Rand, 1993; Wanstall et al., 2005; Andrews et al., 2009). In the
current study, we provide evidence that both endogenous, eNOS-
derived NO• and HNO exist in carotid arteries from sham or
diabetic rats. These findings confirm that the endogenous eNOS-
derived NO• and HNO are both released in the conduit
vasculature. This observation is consistent with a recent study
that demonstrated that there was endogenous eNOS-derived

nitrogen oxide (NO• and HNO) present in resistance vessels
(Kahlberg et al., 2016).

We demonstrated that in the presence of either HXC or
L-cysteine, the maximal relaxation response to ACh was
decreased when compared to control arteries. Such
observations indicate that both NO• and HNO contribute to
ACh-induced relaxation in carotid arteries from sham rats. The
HNO scavenger L-cysteine also attenuated ACh-induced
maximal relaxation in the diabetic vasculature, whereas the
NO• scavenger HXC did not. Further, we observed a significant
reduction in the basal level of NO• as a result of diabetes
evidenced by a significant reduction in HXC-induced
contraction in carotid arteries from diabetic compared to
sham rats. In contrast, there was no difference in the basal
level of HNO between the sham and diabetic group as
L-cysteine-induced contraction was not changed. Together
these findings suggest that the bioavailability of endogenous
NO• and NO•-mediated relaxation was impaired in diabetes,
whereas the component of HNO is preserved in the context of
experimental diabetes. Additionally, as mentioned previously,
there was a significant reduction in the basal release of NO• as a
result of diabetes. In contrast, there was no difference in the
contractile response to either inhibition of basal HNO or
nitrogen oxide release between the two groups. This may be
due HNO scavenger that was employed in the present study (i.e.
L-cysteine), which may not only attenuate HNO but also
enhance and prolong the actions of NO• (Pino and Feelisch,
1994; Ellis et al., 2000; Wanstall et al., 2001) and thus may
increase endogenous NO• bioavailability along with a loss of
endogenous HNO.

The major mechanism implicated in diabetes-induced
endothelial dysfunction includes increased oxidative stress
and compromised NO• signaling (De Vriese et al., 2000;
Fatehi-Hassanabad et al., 2010; Leo et al., 2010; Leo et al.,
2011). The impairment of NO•-mediated relaxation in the
diabetic vasculature occurs through several pathways
including a deficiency in L-arginine or BH4 levels. This
critical substrate and cofactor, respectively, are required for
NO• synthesis by eNOS (Boucher et al., 1999; Luiking et al.,
2010). Decreased levels of L-arginine or BH4 can lead to
uncoupling of eNOS, which consequently results in the
generation of ROS instead of NO• in the vasculature (Chang
et al., 1993; Beckman and Koppenol, 1996). ROS such as •O2

−

reacts rapidly with NO• to produce peroxynitrite (ONOO─)
(Paolocci et al., 2001), simultaneously increasing ONOO─

-induced cellular toxicity (Beckman and Koppenol, 1996;
Beckman and Zu Ye, 1996). It has been reported that
peroxynitrite can lead to eNOS uncoupling through oxidation
of BH4 to dihydrobiopterin (BH2), thus further promoting
overproduction of •O2

− (Zou et al., 2004). This
overproduction of •O2

− is likely an early feature of diabetic
vascular disease, which contributes to impaired NO• synthesis/
activity and endothelial dysfunction (Guzik et al., 2002;
Pennathur and Heinecke, 2007; Velagic et al., 2020). There is
an accumulating body of evidence to demonstrate that NO•-
mediated relaxation is impaired in diabetes. For example,
several studies have demonstrated that endothelial
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dysfunction is associated with a significant reduction in
endothelium-dependent NO•-mediated relaxation in diabetic
mesenteric arteries which was caused by increased oxidative
stress (Makino et al., 2000; Matsumoto et al., 2003; Leo et al.,
2011). In addition, in the db/db mouse model of T2DM,
impaired NO•-mediated vasodilatation was observed in the
coronary vasculature (Park et al., 2008).

Previous studies have also demonstrated that the
contribution of HNO to endothelium-dependent relaxation
is preserved in arteries from hypertensive mice (Wynne et al.,
2012), T1DM rats (Leo et al., 2012; Kahlberg et al., 2016; Tare
et al., 2017) and hypercholesterolaemic mice (Bullen et al.,
2011; Jelinic et al., 2014) where oxidative stress is also evident.
Pharmacological studies have provided evidence to suggest
that HNO is resistant to scavenging by •O2

− and lacks
reactivity with •O2

− to form ONOO− (Miranda et al., 2002;
Leo et al., 2012), thus resulting in preserved HNO-mediated
vasodilatation (Miranda et al., 2002). Furthermore, HNO itself
can limit •O2

− production by directly inhibiting vascular
NADPH oxidase (Nox2) (Miller et al., 2009), supporting
our results that endogenous generation and/or
bioavailability of HNO is preserved in the large conduit
artery in this model of diabetes. Our demonstration that, in
the rat carotid artery, diabetes impairs responses to
endogenous NO• whereas endogenous HNO activity is
preserved provides further support to the proposal that
HNO donors may prove more effective than classical NO•
donors in the treatment of cardiovascular disease (Andrews
et al., 2016; Chin et al., 2016; Qin et al., 2020). It has been
previously demonstrated that in diabetes, and other causes of
oxidative stress, there is impairment of vascular and cardiac
responses to NO• donors (Van Etten et al., 2002; Okon et al.,
2005; Shemyakin et al., 2012; Qin et al., 2020) referred to as
NO• resistance. Further, while tolerance to the chronic use of
NO• donors is a well-established phenomenon, HNO donors
maintain their efficacy with continued use (Irvine et al., 2007;
Kemp-Harper, 2011; Dautov et al., 2013; Tare et al., 2017).
Efforts are underway to develop new generation HNO donors
with optimal half-lives to enhance their therapeutic utility
(Cowart et al., 2019). Although the current studies are directed
toward their potential use in congestive heart failure. Our
study suggests that it may be worthwhile investigating their
vascular-protective effects in diabetes.

The relative contribution of NO• and HNO to SNP-induced
relaxation was also investigated. Interestingly, we found that
sensitivity to SNP in rat carotid arteries was impaired by both
HXC and L-cysteine, indicating that both NO• and HNO can be
released from SNP. This finding is in agreement with those of
other investigators (Ellis et al., 2000; Irvine et al., 2003). In
addition, there is no significant differences between sham and
diabetic vessels for the same inhibitors used, suggesting that
exogenous nitrogen oxide (either NO• or HNO) was not
affected by diabetes, though endogenous nitrogen oxide could
be reduced in the disease state. This observation strengthens the
concept that the release of NO• from the endothelium is
impaired by diabetes rather than the action of NO• on the
smooth muscle.

Limitations of the Study
Despite the findings obtained regarding the likely effect of
diabetes on endogenous NO• and HNO-mediated relaxation
and their basal level in carotid arteries, there are limitations of
the current study that should be noted. In this study, we
investigated the effect of L-cysteine and HXC individually on
the relaxation response to ACh, but not the impact of both
inhibitors in combination. While in our earlier studies, we have
assessed the combined effects of HXC + L-cysteine in the rat
aorta (Leo et al., 2012), femoral arteries (Tare et al., 2017) and
mesenteric arteries (Kahlberg et al., 2016). In all vessels, the
combination of HXC + L-Cysteine abolished NO/HNO
mediated relaxation to a similar extent as NOS inhibition.
Moreover, it is also important to note, however, that
definitive evidence for endogenous production of HNO could
not be acquired in the present study, since there remains a lack
of validated methods to measure HNO at the tissue level
(Kahlberg et al., 2016).

CONCLUSION

In conclusion, we have confirmed that nitrogen oxide species
(NO• and HNO) are the major contributors to endothelium-
dependent relaxation in the rat carotid artery, with no
contribution by EDH. Importantly, this study has
demonstrated that diabetes impairs NO•-mediated
vasorelaxation and basal release of NO•, while the HNO-
mediated vasorelaxation is preserved, as is basal HNO release.
The preservation of HNO bioavailability found in this study
indicates that there is a potential for HNO donors to be employed
as therapeutic agents for the treatment of vascular dysfunction
associated with diabetes.
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GLOSSARY

ACh acetylcholine

BH4 tetrahydrobiopterin

Ca2+ calcium

COX cyclooxygenase

DMSO dimethyl sulfoxide

EDH endothelium-dependent hyperpolarization

eNOS endothelial nitric oxide synthase

GTT glucose tolerance test

HFD high fat diet

HNO nitroxyl

HXC hydroxocobalamin

IKCa, intermediate-conductance Ca2+-activated K+ channel

KCa, calcium-activated potassium channel

KPSS, high K+-containing physiological saline solution

L-Cys L-cysteine

L-NAME Nω -nitro- L-arginine methyl ester

NO• nitric oxide

Nox2 NADPH oxidase 2

•O2- superoxide

ODQ 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one

ONOO–
peroxynitrite

PE phenylephrine

pEC50 negative log of half-maximal effective concentration

Rmax maximum relaxation

ROS reactive oxygen species

SD Sprague Dawley

sGC soluble guanylate cyclase

SKCa, small-conductance Ca2+-activated K+ channel

SNP sodium nitroprusside

STZ streptozotocin

T2DM type 2 diabetes mellitus

TRAM-34 1-[(2-chlorophenyl)(diphenyl)methyl]-1H-pyrazole

U46619 9, 11-dideoxy-9α, 11α-methanoepoxy-PGF2α.
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