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Abstract
The emerging field of pathway-based feature selection that incorporates
biological information conveyed by gene sets/pathways to guide the selection
of relevant genes has become increasingly popular and widespread. In this
study, we adapt a gene set analysis method – the significance analysis of
microarray gene set reduction (SAMGSR) algorithm to carry out feature
selection for longitudinal microarray data, and propose a pathway-based
feature selection algorithm – the two-level SAMGSR method. By using
simulated data and a real-world application, we demonstrate that a gene’s
expression profiles over time can be considered as a gene set. Thus a suitable
gene set analysis method can be utilized or modified to execute the selection of
relevant genes for longitudinal omics data. We believe this work paves the way
for more research to bridge feature selection and gene set analysis with the
development of novel pathway-based feature selection algorithms.
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Introduction
The emerging field of pathway-based feature selection that incor-
porates biological information conveyed by gene sets/pathways  
to guide the selection of relevant genes1,2 has become increasingly 
popular and widespread. Here, a gene set or a pathway refers to 
a collection of genes that function together to influence and even  
regulate a specific biological process. In this study, the phrases 
“gene set” and “pathway” are used interchangeably.

Since biological systems are dynamic, researchers are extremely 
interested in investigating gene expression patterns over a time 
course, in an effort to capture dynamical changes that are bio-
logically meaningful and have casual implications. With the fast  
evolution of microarray technology and RNA-Seq technology,  
longitudinal experiments that collect gene expression profiles over 
a series of time points have become affordable and increasingly 
common in the fields of biomedicine and life science.

The analytical strategy typically employed for such longitudinal  
data is to stratify the whole dataset into separate subsets  
according to time points and then analyze the resulting subsets 
separately. This approach fails to consider the correlations among 
measures of a specific subject at different time points. Additionally, 
it overlooks those genes with trivial changes at individual points  
but non-marginal accumulated effects when taken together.  
Therefore, this approach is usually inefficient and lacks statistical 
power3–5.

On the other hand, some statistical methods that can analyze  
longitudinal gene expression data directly have been proposed. 
Among them, many have adopted a filter method to carry out the 
selection of relevant features for longitudinal gene expression  
profiles by screening genes one by one. For example, the GEE-
based screening procedure by5 fits a GEE model6 to each gene 
and then excludes those non-significant genes (i.e., a gene with 
the corresponding p-value/q-value is larger than a pre-determined  
cutoff). By filtering genes one by one, this GEE-based screening  
is highly likely to include many redundant genes and thus to inflate 
the false positive rate. The redundant genes are irrelevant but  
suggested to be associated with the phenotype of interest by a  
feature selection method, mainly due to their correlations with 
the true relevant genes. Another example is the EDGE method  
proposed by Storey et al.3. The EDGE method is designed 
to identify differentially expressed genes over time between  
different phenotypes. This method utilized spline-based models 
to construct expression value-versus-time curves for individual  
genes and then screened genes one by one according to their  
significance levels. Again, this method has the same drawback  
as the GEE-based screening does, namely, the inclusion of  
many redundant genes.

To the best of our knowledge, there is no pathway-based feature 
selection algorithm for longitudinal gene expression data. Given 
the fact the pathway-based feature selection methods have been  
demonstrated to be superior to the conventional feature selec-
tion methods, there is an urgent need to develop pathway-based  
algorithms, in order to tackle longitudinal data.

Here, we propose one extension to a pathway analysis method – 
significance analysis of microarray gene set reduction (SAMGSR)7 

to conduct feature selection for longitudinal microarray data. In  
this modification, we extend SAMGSR by applying its reduc-
tion step twice. At the first reduction step, the core gene subsets  
corresponding to the selected gene sets are identified. Then, 
the essential time points of the selected genes are obtained  
subsequently. This extension is referred to as the two-level  
SAMGSR algorithm hereafter.

Methods
A previous version of this article is available as a pre-print on 
arXiv at Cornell University Library: https://arxiv.org/ftp/arxiv/
papers/1511/1511.08272.pdf. In that version, the two-level  
SAMGSR algorithm and another extension we have made to 
the SAMGSR algorithm for longitudinal feature selection were 
included. After the preprint submission, we had made substan-
tial modifications. Also we realized that the updated manuscript 
with two extensions together was easy to confuse the readers.  
Therefore, we decided to describe two extensions in separate  
manuscripts.

Experimental data
Data for the injury experiment were downloaded from the 
Gene Expression Omnibus repository. The accession number 
is GSE36809. This experiment was hybridized on Affymetrix 
HGU133 plus2 chips.

In this study, only patients with uncomplicated recoveries and 
patients with complicated recoveries were considered. According 
to Xia et al.8, uncomplicated recovery represents a recovery 
within 5 days while complicated recovery includes a recovery 
after 14 days, no recovery by 28 days, or death. If the recovery 
duration is longer than 14 days, the patient experienced com-
plicated recovery for sure. Therefore, the possible time points 
for an uncomplicated recovery include days 1/2, 1, 4, 7 and 14, 
whereas those for a complicated recovery are days 1/2, 1, 4, 7,14, 
21, and 28. Furthermore, we restricted our focus to the patients 
that had the full compliment of measurements (i.e., complicated  
patients with 7 measures and uncomplicated patients with  
5 measures). The 25 uncomplicated patients and 18 compli-
cated patients who met this request were put together and 
used as the training set. Since there were no measures for  
uncomplicated patients after 14 days, the data for patients with 
complications were truncated at 14 days.

The rest of patients including 50 uncomplicated patients and 23 
complicated patients were used as a test set to validate the proposed 
method. In the test set, the time points considered were days 1/2,  
1, 4, and 7. Of note, the characteristics of patients in the training  
set and the test set may be different since the test set includes 
patients who had been discharged early from the hospitals.

Pre-processing procedures
Since different pre-processing procedures may impact the data 
analysis, we decided to download the summary expression values 
of the experimental data directly from the GEO database.
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Pathway information
The gene sets were downloaded from the Molecular Signatures 
Database (MSigDB) (http://software.broadinstitute.org/gsea/msigdb). 
In this study, we considered the C2 category in this knowledge-
base, which includes gene sets from curated pathways data-
bases such as KEGG9 and those manually curated from the  
literature on gene expression.

Statistical methods
Here, we present a brief introduction to the SAMGSR algorithm7, 
and then discuss our extension for the purpose of feature selection 
for longitudinal gene expression data in detail.

SAMGSR. The SAMGSR algorithm is an extension of the SAMGS 
method10 and provides additional reduction of significant gene sets 
into respective core subsets. According to Dinu et al.7, the SAM-
GSR method may result in an approximately 90% of reduction in 
the size of selected genes, in an effort to improve predictive per-
formance and allow biological patterns to become more obvious.

The SAMGSR method consists of two major steps: the SAMGS 
process to identify important gene sets and the reduction step to 
refine those significant gene sets into their respective core subsets. 
In the SAMGS step10, an SAMGS statistic, the L

2
 norm of the SAM 

statistics11 for all genes within that gene set, is calculated. A p-value 
of the SAMGS statistic is computed using a permutation test by 
permuting phenotype labels of samples. Based on the p-value, the 
statistical significance of a gene set is determined. Second, focus-
ing on those significant gene sets, the reduction step orders genes 
within a significant gene set j based on the magnitude of its SAM 
statistic and then gradually partitions the entire gene set into two 
subsets: the reduced subset R

k
 which includes the first k genes 

with largest SAM statistics, and the residual subset kR being the  
complement of R

k
 for k=1,…, |S-1|. Here S is the size of gene set 

j. Let c
k
 be the SAMGS p-value of the residual subset kR . The  

optimal size of reduced set R
k
 is the smallest k such that c

k
 is  

larger than a pre-specified cut-off for the first time.

SAMGSR extension for longitudinal feature selection. In 
our modification to the SAMGSR method for the purpose of  
longitudinal feature selection, a gene set has two different  
meanings. First, it refers to a set of genes in a curated biological 
pathway. Second, it refers to a gene’s expression profiles across 
time. Correspondingly, the reduction step of SAMGSR is applied 
in an ordered manner at two levels: a lower level on gene sets and 
an upper level on the time points. First, the reduction procedure of 
SAMGSR is applied to identify the reduced core subsets within 
the selected/reduced gene sets obtained by the SAMGS step. Then  
upon the union of genes involved in those core subsets, the reduc-
tion procedure is applied again to determine exact time points where 
the expression values of those genes differ significantly between  
phenotypes. In the two-level SAMGSR algorithm, the SAMGS  
statistic is modified to as,

       
| |

2
0

1 1

, ( ( ) ( )) /( ( ) )
k i

k

GS t

GS ij ij d c j
i j

SAMGS d d x ij x ij s ij s
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where d
ij
 is the SAM statistic11 of gene i (i=1,…, |GS

k
|) at time point 

j (j=1,…, t
i
) and |GS

k
| is the size of gene set GS

k
 (k=1,…,K, and  

K is the total number of gene sets). ( )dx ij  and ( )cx ij  are the 

sample averages of gene i at time point j for the diseased group 
and the control group, respectively. Parameter s(ij) is a pooled 
standard deviation that estimated by pooling all samples together,  
while s

0j
 is a small positive constant used to offset the small  

variability in microarray expression measurements. Of note, 
both s(ij) and s

0j
 are time-point specific because the variability of  

expression measurements differs at different time points. In the 
reduction step, SAMGS is calculated sequentially first to a series 
of subsets (for the size of 1,…, |GS

k
|-1) of a significant gene set, 

aiming to identify a core subset that makes an essential contribution 
to the statistical significance of this gene set. Then the algorithm 
moves to the level of time points, with the objective of determin-
ing which combination of time points contributes substantially 
to the importance of the specific gene. At this level, each gene’s  
expression profiles over time were viewed as a gene set. Our rational 
is that a gene’s expression values for the same individual over  
time are highly correlated, mimicking a gene set. Figure 1  
elucidates the two-level SAMGSR algorithm.

In a separate study (unpublished study; Suyan Tian, Chi Wang, 
Howard H. Chang), we proposed another extension to the SAMGSR 
method for the purpose of longitudinal feature selection, which is 
referred to as the longitudinal SAMGSR method. The longitudi-
nal SAMGSR method first applies the SAMGS step to select the  
relevant genes and then determines exact time point(s) that the 
expression values for a gene differ between two phenotypes. A 
potential disadvantage of this SAMGSR extension is it does not 
incorporate valuable biological information contained in pathways, 
which provides knowledge on how genes function in unison to 
impact on biology processes.

In both SAMGSR extensions, c
k
 is regarded as a tuning parameter. 

Using the sequence of 0.05, 0.1, …, 0.5, the optimal value of c
k
  

corresponds to the one associated with the minimum 5-fold cross-
validation (CV) error. In a 5-fold CV, a dataset was randomly 
divided into 5 roughly equal-sized folds, and 4 of these folds were 
used to train a classifier and the misclassification error rate was  
calculated upon the held-out fold. This step was repeated for each 
of the 5 folds as the held-out fold, and the error rates were aver-
aged. Given the fact the SAMGSR extensions cannot estimate 
the coefficients of selected genes, support vector machine (SVM)  
models were fitted to estimate those coefficients. Then the posterior 
probability for a sample can be calculated for each time point.

Performance metrics
In this study, we use four metrics - Belief Confusion Metric (BCM), 
Area Under the Precision-Recall Curve (AUPR), Generalized 
Brier Score (GBS), and the misclassified error – to evaluate the  
performance of a classifier. Our previous study1 provided detailed 
descriptions on those metrics. In summary, all these metrics have 
a range in between 0 and 1. For the first two, the closer to 1 the 
better a classifier is. In contrast, a value of 0 is optimal for the 
last two metrics. Given the SAMGSR extensions tend to identify 
those genes that are insignificant at isolated time points but sig-
nificant jointly over time, an evaluation on individual time points 
using these statistical metrics might be unfair for the SAMGSR  
extensions, we also averaged the resulting posterior probabilities at 
each time point and then calculate the performance metrics using 
those averages.
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Statistical language and packages
Statistical analysis was conducted in the R language version 3.1.2 
(www.r-project.org). The Venn-diagram plot was made with the aid 
of an online bioinformatics tool. R codes of the two-level SAMGSR 
algorithm are given in the Supplementary File 1.

Results and Discussion
Real world application
Traumatic injury with subsequent infection was a common 
cause of death in ancient times. Even today massive injury such 
as combat wounds remains life threatening12,13. A large clini-
cal study that examined the genome-wide expression patterns of 
blood leukocytes in the immediate post-injury period was carried 
out several years ago8. A primary objective of that study was to 
explore if different patterns of gene expression existed for the two 
extremes of clinical recovery: the uncomplicated recovery and the  
complicated recovery. We used the longitudinal gene expression 
data collected specifically for this objective to evaluate our  
proposed method.

First, the comparison between the two SAMGSR extensions 
and the SAMGSR separately at each time point was made. The  
two-level SAMGSR extension incorporates both the interaction 
information among genes inside a pathway and the correlations 
among the expression values of one specific gene over time. In  
contrast, the longitudinal SAMGSR extension only accounts for the 

correlations among the expression values of one specific gene over 
time, while the application of SAMGSR at individual time points 
only considers the interactions among genes inside a pathway. 
This comparison allows us to identify which factor - the interac-
tions among genes inside pathways or the correlations among the 
same gene over time have significant impact on the performance 
of resulting signatures. The results were given in Table 1, from 
which we found the two-level SAMGSR method performs the  
best at the second and third time points while the longitudinal 
SAMGSR method does so at the first and fourth time points.  
Overall, the implementation of SAMGSR at separate time points 
has the worst performance.

As we mentioned in the previous section, a separate evaluation  
on an algorithm at single time points might be unfair for both  
SAMGSR extensions, and an integrated evaluation that takes 
all time points into account is necessary. Therefore, we did such  
analysis. When taken all time points together, the superiority of 
the longitudinal SAMGSR method over the two-level SAMGSR 
method and the original SAMGSR method at separate time points 
has been established. The respective performance statistics are  
provided in Table 2.

In summary, incorporation of the pathway information inside gene 
sets, the clusters of genes that might be potentially co-expressed/
co-regulated together, did not result in the two-level SAMGSR 

Figure 1. Flowchart illustrates the two-level SAMGSR algorithm.
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having substantially superior performance. One possible expla-
nation relates to the information quality of the pathway database 
itself. The canonically curated databases on pathways/gene sets 
are biased toward the well-studied diseases such as cancers, and 
with substantial less works investigating traumatic injury using 
gene expression profiles, the pathway knowledge contained  
inside those curated pathways may be uninformative for this  
specific disease.

In Figure 2, Venn-diagrams illustrate how the selected genes by 
the two-level SAMGSR method at different time points overlap. 
We observed that these two SAMGSR extensions perform  
comparably in term of overall model parsimony. Namely, the 
two-level SAMGSR algorithm identifies 94 unique genes while 
the longitudinal SAMGSR algorithm identifies 97 unique genes. 

Moreover, we observed that in the 94-gene signature identified 
by two-level SAMGSR, there is a substantial proportion  
of overlaps at all time points (24/94; 25.53%), while the number 
of genes being significant only at one specific time point is one 
half of this number. Again, this highlights the ability of our  
SAMGSR extensions (both the longitudinal SAMGSR method 
and the two-level SAMGSR method) to identify genes that present 
mild but concordant change across time points between two  
different phenotypes.

Upon the overlapped 5 genes by both SAMGSR extensions, a 
plot (Figure 3) was made to compare the expression patterns 
over time between the complicated injury and the uncompli-
cated injury. It is observed that the pattern of change across time 
points for complicated patients versus uncomplicated ones is not 

Table 1. Performance of the SAMGSR algorithm and our SAMGSR extensions for 
longitudinal feature selection, evaluating on individual time points.

5-fold CV Test set

Day 1/2 Day 1 Day 4 Day 7 Day 14 Day 1/2 Day 1 Day 4 Day 7

A. Using two-level SAMGSR (94-gene signature, cutoff for ck = 0.2 on the whole training set)1

# of genes 40.6 31.6 33.2 38.6 45 63 55 49 63

GBS 0.304 0.266 0.306 0.274 0.278 0.298 0.272 0.240 0.288

BCM 0.514 0.565 0.536 0.556 0.526 0.491 0.534 0.560 0.495

AUPR 0.533 0.690 0.610 0.617 0.575 0.494 0.551 0.594 0.527

B. Using simple SAMGSR (97-gene signature, cutoff for ck = 0.2 on the whole training set)1

# of genes 51 32.6 35 36.2 39.2 69 53 45 77

GBS 0.279 0.210 0.279 0.323 0.262 0.262 0.309 0.307 0.257

BCM 0.501 0.598 0.501 0.498 0.559 0.499 0.513 0.498 0.534

AUPR 0.551 0.739 0.514 0.522 0.609 0.503 0.521 0.514 0.572

C. Using SAMGSR at each time point (the size of signature >1000, cutoff for ck = 0.1 on the 
training set)1

# of genes 230.2 23 59 74.6 453.6 360 30 61 42

GBS 0.257 0.231 0.327 0.305 0.272 0.264 0.295 0.266 0.296

BCM 0.506 0.551 0.478 0.497 0.520 0.491 0.486 0.515 0.492

AUPR 0.535 0.655 0.482 0.518 0.584 0.490 0.482 0.529 0.512

Note: 1 the posterior probabilities were calculated using an SVM classifier. Here, the cutoff for q-value in SAM-
GS part is set at 0.05. # of genes represents the average number of genes over 5-fold cross-validated data 
selected by an algorithm at each time point for the five columns on the training set.

Table 2. Performance of the SAMGSR algorithm and our SAMGSR extensions for longitudinal 
feature selection, when all time points considered together.

Method # of 
genes

5-fold CV Test set

Error GBS BCM AUPR Error GBS BCM AUPR

Two-level SAMGSR1 94 0.419 0.258 0.507 0.541 0.356 0.239 0.525 0.566

L-SAMGSR1 97 0.442 0.268 0.515 0.576 0.356 0.230 0.535 0.622

SAMGSR separately1 >400 0.419 0.246 0.510 0.559 0.428 0.243 0.511 0.553

Note: 1 the posterior probabilities were calculated using an SVM classifier. Here, the cutoff for q-value in 
SAM-GS part is set at 0.05. # of genes represents the number of the union of individual genes selected at 
each time point. L-SAMGSR: the longitudinal SAMGSR method.
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Figure 2. Selected genes by the two-level SAMGSR algorithm in the traumatic injury application. (A) Venn-diagram illustrates the 
overlap of selected genes by the two-level SAMGSR method at different time points. (B) Venn-diagram illustrates the overlap of concordantly 
differentially expressed genes across all time points by the two-level SAMGSR algorithm and the longitudinal SAMGSR algorithm.

Figure 3. Characteristics of 5 common significant expressed genes across all time points by both two-level SAMGSR method and 
the longitudinal SAMGSR in the traumatic injury application. Subgroup sample means versus time plot for the 5 common genes that were 
identified as to be significant at all 5- time points between uncomplicated and complicated patients. Red line represents the complicated 
group while black line represents the uncomplicated group.
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quite unique or simple. Thus the results of our analysis provide no 
evidence on either the paradigm that complicated outcomes are  
associated with second hits or multiple inflammatory events which 
thus subsequently cause a secondary genomic response14,15, or 
its counterpart stating complication results from simultaneous 
and rapid induction of innate and suppression of adaptive  
immunity genes8. Further investigation is in demand.

Simulated data
In order to investigate the properties of both SAMGSR exten-
sions, we used observed expression values from the injury 
application to design two sets of simulations as in our previous 
study. Briefly, we chose two causal genes – F13A1 and GSTM1 
– and then randomly selected 998 genes from the data serving as 
noise in the first simulation setting. Denote the expression value 
of gene i (F13A1 or GSTM1) at time j (j=1,…, 5) as X

i.j
, the  

logit function of a complicated injury versus an uncomplicated 
injury is as following,

logit
clu

 = 0.18X
F13A1.1

 + 0.57X
F13A1.2

 + 0.29X
F13A1.3

 + 0.41X
F13A1.4

 + 1.02X
GSTM1.3

Here, we considered one gene whose significance arises from 
its moderate joint contribution over time and the other whose  
association with the outcome is large at one specific time 
point. The aim of this simulation was to illustrate the inferred  

advantage possessed by the two SAMGSR extensions, namely, 
both of them incorporate the accumulated effect of genes over 
time, recognizing genes with mild or moderate change at each  
time point but with a coordinated change over time.

In the second simulation, we chose two genes – COX4I2 and RP9 
as the relevant genes. The logit function was,

                            logit
clu

 = 0.56X
COX4I2.1

 − 0.91X
RP9.5

For both simulation settings, 50 replicates were created. The 
results for these two simulations are given in Table 3 and Table 4, 
respectively. Unexpectedly, the longitudinal SAMGSR showed 
no inferiority to the two-level SAMGSR in both correctly  
selecting relevant genes and achieving a better model parsimony. 
Regarding model parsimony, the inferiority of two-level SAM-
GSR may stem from the pathway level; a relevant gene would be  
involved in many gene sets. Consequently, the number of highly 
correlated genes with the relevant ones might increase and since 
these genes are included in the final model, the parsimony of 
two-level SAMGSR naturally suffers. Regarding correct selec-
tion of causal genes, since two simulations are based on the 
injury data in which the biological knowledge might add no extra 
value to feature selection, as shown in the real-world application,  
it is unsurprising to have both algorithms correctly identify the 
causal genes.

Table 4. The results of simulation 2.

Method Time 1 Time 2 Time 3 Time 4 Time 5

L-SAMGSR
(Ave. # 291.98)

# of genes 182.38 56.18 35.44 30.94 123.84

COX4I2 96 % 0 % 0 % 0 % 4 %

RP9 10 % 4 % 4 % 6 % 96 %

Two-level SAMGSR
(Ave. # 327.56)

# of genes 209.44 73.40 48.04 49.38 138.66

COX4I2 100 % 0 % 0 % 0 % 0 %

RP9 4 % 0 % 0 % 0 % 92 %

Note: # of genes represents the average number of genes selected by either the longitudinal 
SAMGSR algorithm or the two-level SAMGSR algorithm at each time point over 50 replicates. 
Ave # represents the average number of unique genes across 5 time points. The percentages 
of the causal genes being correctly selected at each time point over these 50 replicates are 
presented in the corresponding cells.

Table 3. The results of simulation 1.

Method Time 1 Time 2 Time 3 Time 4 Time 5

L-SAMGSR
(Ave. # 32.06)

# of genes 19.84 19.14 13.68 9.30 11.00

F13A1 72 % 100 % 100 % 92 % 68 %

GSTM1 0 % 0 % 62 % 22 % 0 %

Two-level SAMGSR
(Ave. # 61.74)

# of genes 38.88 32.66 21.44 18.96 20.50

F13A1 64 % 92 % 90 % 84 % 52 %

GSTM1 2 % 62 % 94 % 80 % 36 %

Note: # of genes represents the average number of genes selected by either the longitudinal 
SAMGSR algorithm or the two-level SAMGSR algorithm at each time point over 50 replicates. 
Ave # represents the average number of unique genes across 5 time points. The percentages 
of the causal genes being correctly selected at each time point over these 50 replicates are 
presented in the corresponding cells.
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Supplementary material
Supplementary File 1: The R-codes for the two-level SAMGSR method.

Click here to access the data.

Although in the second simulation the number of relevant time 
points was less than that in the first one, the number of selected 
genes by both algorithms was dramatically larger in the second 
simulation. This might be because the relevant genes in the  
second simulation were highly correlated with other genes  
compared to the first simulation. The highly correlated structure 
between relevant features and irrelevant ones produced a large 
number of redundant features that both SAMGSR extensions,  
especially the two-level SAMGSR, cannot exclude. To our best 
knowledge, however, many feature selection algorithms, espe-
cially those based on filtering, may suffer from this drawback. As 
illustrated in our previous work16,17, an additional filtering using 
a relevant algorithm such as bagging18 may provide a solution  
to alleviate or eliminate this problem.

Conclusions
Both of the SAMGSR extensions incorporated the correlated 
structure of an expression’s profiles over time in the framework 
of gene sets, and were more likely to identify genes with coor-
dinated and aggregated effects over time, while their effect size 
at individual time points may be insignificant. The naïve strat-
egy of implementing feature selection separately at individual 
time points would overlook these genes. The employed proc-
ess explains why the overlaps among the selected genes by  
both extensions over time were very large.

The curated pathways in major databases such as KEGG9 
and GO19 tend to be enriched in the most prevalently studied  
diseases, e.g., cancers. Moreover, the pathways are far from 
completeness even for these diseases20. These facts potentially 
introduce biases and unfairness to an algorithm that utilizes  
pathway information to guide feature selection, e.g., the two-
level SAMGSR method. One solution is to consider a statisti-
cal method to construct data-driven gene sets e.g., 21. Future 
work to construct such gene sets for longitudinal microarray data 
is needed, particularly to determine whether gene sets are sta-
ble or dynamic over time. Based on these facts, we suggest the  
longitudinal SAMGSR algorithm should be considered first, 
especially for an entry-level data analyst. If the diseases under  

investigation are cancers or the lab has its own customized  
pathways for the diseases, the two-level SAMGSR algorithm is 
recommended because the biological information contained in 
those pathways could provide more values on selecting relevant  
genes.

In this article, we adapted the SAMGSR method for feature 
selection of longitudinal gene expression profiles. To the best 
of our knowledge, this study is one of the few efforts to explore 
how to execute feature selection for longitudinal gene expression 
data, with additional consideration on pathway knowledge. 
Given that the two-level SAMGSR extension only performs 
comparable at individual time points and is even outperformed 
by the longitudinal SAMGSR method when considerer all time 
points together, our try here is not fruitful. Nevertheless, we 
believe this work paves the way for more research to incorporate  
pathway information to guide feature selection, with the develop-
ment of novel algorithms to tackle longitudinal gene expression 
data.

Data availability
The microarray data were downloaded from the Gene Expression 
omnibus (GEO) repository, accession number GSE36809. The 
R codes of the two-level SAMGSR algorithm were given in  
Supplementary File 1.
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