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Abstract: Because alkoxyamines are employed in a number of important applications, such as
nitroxide-mediated polymerization, radical chemistry, redox chemistry, and catalysis, research into
their reactivity is especially important. Typically, the rate of alkoxyamine homolysis is strongly
dependent on temperature. Nonetheless, thermal regulation of such reactions is not always optimal.
This review describes various ways to reversibly change the rate of C–ON bond homolysis of
alkoxyamines at constant temperature. The major methods influencing C–ON bond homolysis
without alteration of temperature are protonation of functional groups in an alkoxyamine, formation
of metal–alkoxyamine complexes, and chemical transformation of alkoxyamines. Depending on the
structure of an alkoxyamine, these approaches can have a significant effect on the homolysis rate
constant, by a factor of up to 30, and can shorten the half-lifetime from days to seconds. These methods
open new prospects for the application of alkoxyamines in biology and increase the safety of (and
control over) the nitroxide-mediated polymerization method.

Keywords: nitroxide mediated polymerization; alkoxyamine; tunable rate constants;
protonation; complexation

1. Introduction

Nitroxide-Mediated Polymerization. The General Concept of “Smart Alkoxyamines”

Alkoxyamines are adducts of stable nitroxides with C-centered radicals. Invented as an
initiator for nitroxide-mediated polymerization (NMP), [1,2] nowadays alkoxyamines find a wide
range of applications including tin-free organic radical chemistry, [3] as initiators for radical
cyclization, [4] radical addition reactions, [5,6] creation of self-healing polymers, [7] optoelectronic
materials, [8] and encoding systems, [9] and in biomedicine, as theranostic agents. [10] The majority of
applications involve the ability of alkoxyamines to undergo C–ON bond homolysis after heating, thus
releasing nitroxide and an alkyl radical. Therefore, factors affecting stability of the C–ON bond are
important. An example of such significance is given by Chauvin et al., [11] who studied the influence
of the initiation rate on the regime of NMP. As they demonstrated, a fast initiation rate guarantees
rapid achievement of the controlled mode of polymerization.

The principal application of alkoxyamines is initiation of NMP because the equilibrium between
unimolecular and macromolecular alkoxyamines and nitroxides and C-centered radicals is the main
process in this type of polymerization. The mechanism of NMP is based on the phenomenon known
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as the “persistent radical effect” discovered by Fischer and Fukuda. Due to this effect, at the very
first steps of polymerization, a small excess of nitroxides over C-centered radicals is formed. This
makes the reaction of the nitroxide and polymer radical recombination predominant and reduces
the impact of the cross-coupling reaction. As a result, the majority of polymer chains contain the
alkoxyamine function as an end group, thus making the reinitiation reaction possible so that the
polymer chains become “living”. Another important feature of NMP is a direct linear relation between
monomer conversion and the molecular weight of the polymer obtained. Along with low toxicity of
nitroxides, the two abovementioned key properties make NMP attractive for the synthesis of polymers
with complex structures and composition. The detailed description of the mechanism and kinetics of
controlled radical polymerization is well described in the following papers and reviews: [12–16].

The reaction of C–ON bond homolysis is unimolecular (Figure 1a); thus, for the sake of
simplicity, it is customary to compare the activation energies of this reaction among different types of
alkoxyamines. The vibration factor was determined and turned out to be 2.4 × 1014 s−1 [17] Depending
on the structure, alkoxyamines can be either very labile with Ea below 100 kJ/mol and half-lifetime
in the range of minutes or stable with Ea more than 140 kJ/mol, in which case, alkoxyamines can
hardly undergo homolysis even at elevated temperatures. The optimal range of activation energies for
alkoxyamines suitable for NMP is between 100 and 140 kJ/mol [10]
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perform better in NMP. Consequently, an “ideal” alkoxyamine must possess two antagonistic 
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initiator. This review describes the concept of so-called smart alkoxyamines, which can change their 
reactivity after an external trigger by converting from “stable and safe” to “fast and effective” 
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There are several factors that influence reactivity of alkoxyamines. Among them, 
electron-withdrawing and electron-donating properties of substituents are of special importance in 
terms of the influence on reactivity of the C–ON bond. Because it is polar with δ− located on the 
oxygen atom, all electronic effects that reduce polarity of the bond should favor homolysis (Figure 
2). That is, if an electron-withdrawing substituent is introduced into the alkyl part, one can expect 
the decay of homolysis activation energy and vice versa.  

In this subsection, we review possible scenarios related to reversible switching of 
electron-donating properties of substituents described in the literature. The factors that induce 
changes in polarity without affecting alkoxyamine substituents are described as well. 

Figure 1. (a) The scheme of alkoxyamine hemolysis; (b) An outline of a smart alkoxyamine.
Reproduced/Adapted from Ref. [18] with permission from The Royal Society of Chemistry.

Because alkoxyamines are employed as an initiator for polymerization, they should fulfill all the
safety requirements for this type of compounds [19]. On the other hand, “fast” alkoxyamines perform
better in NMP. Consequently, an “ideal” alkoxyamine must possess two antagonistic properties, that
is be safe to handle and decompose fast when it is needed as a polymerization initiator. This review
describes the concept of so-called smart alkoxyamines, which can change their reactivity after an
external trigger by converting from “stable and safe” to “fast and effective” (Figure 1b) [18].

There are several factors that influence reactivity of alkoxyamines. Among them,
electron-withdrawing and electron-donating properties of substituents are of special importance
in terms of the influence on reactivity of the C–ON bond. Because it is polar with δ− located on the
oxygen atom, all electronic effects that reduce polarity of the bond should favor homolysis (Figure 2).
That is, if an electron-withdrawing substituent is introduced into the alkyl part, one can expect the
decay of homolysis activation energy and vice versa.
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Figure 2. The influence of introduction of electron-withdrawing groups and electron-donating groups
into the alkyl and nitroxyl part of an alkoxyamine on the polarity of the C–ON bond and thus the rate
of homolysis.

In this subsection, we review possible scenarios related to reversible switching of
electron-donating properties of substituents described in the literature. The factors that induce changes
in polarity without affecting alkoxyamine substituents are described as well.

2. Chemical Activation of C–ON Bond Homolysis

Chemical activation did not attract much interest during the first decade despite the unexpected
efficiency of NMP of vinylpyridine under acidic conditions as reported by Fischer et al. in 1999. [20]
A decade later, Marx et al. [21] and Mazarin et al. [22] reported a possible occurrence of chemical
activation but did not provide experimental evidence.

Simultaneously, a new concept of pH-switchable agents for reversible addition−fragmentation
chain transfer (RAFT) polymerization was introduced (Structure 2 in Figure 3) [23,24]. It was shown
that the activation and deactivation parameters of RAFT agents can vary after protonation of functional
groups in dithiocarbamates serving as control agents. By means of this effect, the polymerization of
so-called more activated monomers and less activated monomers can be performed in a controlled
manner with the same initiator or controlling agent. This strategy offers a facile route to the preparation
of block-copolymers. A similar concept can be applied to control the reactivity of alkoxyamines.
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Figure 3. Structure of alkoxyamine 1 and RAFT agent 2 first used for pH-switchable controlled
radical polymerization.

In this subsection, we will consider the experimental and theoretical evidence of the effect of
protonation on C–ON bond homolysis in alkoxyamines. Given that alkoxyamines consist of two parts,
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there are two opportunities for protonation or deprotonation, which have opposite effects of C–ON
bond homolysis, such as the protonation of the alkyl and nitroxyl part. In the text below, we will
go through each of these options and consider different influences on reactivity that are promoted
after protonation.

2.1. Activation by Protonation or Deprotonation

2.1.1. Protonation of the Alkyl Moiety

The very first experimental report on the activation of C–ON bond homolysis by protonation of
the alkyl moiety (Figure 4) was published by Brémond and Marque [25] in 2011, where they compared
activation energies of nonactivated alkoxyamine 3 (Ea = 123.0 kJ/mol) and its protonated form 3H+ (Ea

= 115.0 kJ/mol). As a result, they observed a 10-fold increase in kd after the protonation of 3 (Figure 4).

Materials 2018, 11, x FOR PEER REVIEW  4 of 21 

 

will go through each of these options and consider different influences on reactivity that are 
promoted after protonation. 

2.1. Activation by Protonation or Deprotonation 

2.1.1. Protonation of the Alkyl Moiety  

The very first experimental report on the activation of C–ON bond homolysis by protonation of 
the alkyl moiety (Figure 4) was published by Brémond and Marque [25] in 2011, where they 
compared activation energies of nonactivated alkoxyamine 3 (Ea = 123.0 kJ/mol) and its protonated 
form 3H+ (Ea = 115.0 kJ/mol). As a result, they observed a 10-fold increase in kd after the protonation 
of 3 (Figure 4). 

The same has been observed during protonation of ortho-isomer 4 [26] and meta-isomer 5 [27] 
though the latter has manifested a smaller effect, as expected (vide infra). It should be noted that 
when terpyridine or bipyridine is the substituent of alkyl fragments (as in 6 and 7), the effect of 
protonation also enhances kd. Furthermore, protonation has been investigated for alkoxyamine 8, 
which is composed of TEMPO as a nitroxyl moiety and ethylpyridine as an alkyl part. The 
deprotonated alkoxyamine has a threefold lower kd than the protonated one does [28].  

The effect of the alkyl moiety deprotonation was first investigated with alkoxyamine 9,[29] 
which contains an alkyl moiety carrying a carboxylic function. The differences in Ea between 
carboxylic alkoxyamine 9 and its deprotonated forms carboxylate alkoxyamines 9− are not 
significant: less than 2 kJ/mol (Figure 4). 

 
Figure 4. (a) Structures of alkoxyamines 3–9; (b) Protonation of 3 and (c) deprotonation of 9. 

 

 

 

Figure 4. (a) Structures of alkoxyamines 3–9; (b) Protonation of 3 and (c) deprotonation of 9.

The same has been observed during protonation of ortho-isomer 4 [26] and meta-isomer 5 [27]
though the latter has manifested a smaller effect, as expected (vide infra). It should be noted that
when terpyridine or bipyridine is the substituent of alkyl fragments (as in 6 and 7), the effect of
protonation also enhances kd. Furthermore, protonation has been investigated for alkoxyamine 8,
which is composed of TEMPO as a nitroxyl moiety and ethylpyridine as an alkyl part. The deprotonated
alkoxyamine has a threefold lower kd than the protonated one does [28].

The effect of the alkyl moiety deprotonation was first investigated with alkoxyamine 9, [29] which
contains an alkyl moiety carrying a carboxylic function. The differences in Ea between carboxylic
alkoxyamine 9 and its deprotonated forms carboxylate alkoxyamines 9− are not significant: less than
2 kJ/mol (Figure 4).

2.1.2. Protonation of the Nitroxyl Part

As mentioned above, the protonation of alkyl and nitroxyl parts has different effects on C–ON
bond homolysis. In this subsection, we consider the influence of nitroxyl moiety protonation on Ea

of homolysis.
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The study by Edeleva et al. [30] extends the concept of pH-switchable mediators to NMP by
employing nitroxides with basic or acidic groups as controlling agents. The nitroxides described
there belong to the imidazoline family and are known to be pH sensitive, meaning that the
hyperfine-coupling constant depends on protonation of the imidazoline nitrogen. This phenomenon
implies that protonation affects electron density on the nitrogen atom. Therefore, the authors expected
that protonation would influence electronic properties of the C–ON bond as well.

In the abovementioned article, the first study on the effect of pH on rate constants kd and kc was
conducted by NMR and EPR spectroscopy. The homolysis rate constants for alkoxyamines 10–13
and rate constants kc for recombination of the respective nitroxides with different alkyl radicals were
measured at different pH levels. As the first evidence, NMR spectra of alkoxyamines 10–13 in D2O
revealed pH dependence (see Figure 5 for an example of alkoxyamine 10). Due to a fast exchange of
protonated/deprotonated forms, which results in narrow NMR lines, the authors were able to monitor
pH-associated changes for each isomer separately. Using this pH dependence of NMR resonance,
the authors could build titration curves for protonable groups (Figure 5b). For alkoxyamine 10 (see
Figure 5), kd at acidic pH was found to be 15-fold lower than that in a basic medium; this phenomenon
is likely due to a synergetic effect of the protonation of both the alkyl and nitroxide moiety. For different
diastereomers, the difference in kd values was within the margin of experimental error. It should be
noted that the addition of an acid does not affect kd for TEMPO-based alkoxyamines in organic media.Materials 2018, 11, x FOR PEER REVIEW  6 of 21 
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Figure 5. (a) 1H NMR spectra of 10 (in D2O) recorded at solution pH levels 10.0, 5.3, and 2.0 with signal
attribution as indicated in the structure; (b) Titration curves obtained from signals b (�) and c,c’ (�, •)
(see signal attribution) with a fit, and the values of pKa for pyridine and amidine functions; (c) Kinetics
of homolysis of alkoxyamine 10 (0.02 M solution) at 368 K as determined by 1H NMR in the presence
of 40 eq. of ascorbic acid or ascorbate at different pH levels. Adapted with permission from Ref. [30].
Copyright 2011 American Chemical Society.
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The influence of protonation on recombination rate constants kc has been investigated by laser
flash photolysis in the abovementioned article. The observed impact of protonation on kc is not large
and is opposite to the influence on kd.

Later, Le Du et al. [31] have used a 2,2,5-tri-methyl-4-phenyl-3-azahexane-3-nitroxide type of
nitroxide with a pyridyl substituent to investigate the influence of protonation on noncyclic nitroxides.
As in the work of Edeleva et al., after protonation, they observed a ~1.9-fold decrease in kd at 100 ◦C.

2.1.3. Theoretical Research

To get a deeper insight into the effect of protonation on alkoxyamine homolysis, Parkhomenko
et al. [32]. have performed density functional theory (DFT) calculation of Gibbs free energy of
the homolysis reaction for alkoxyamines 10–13 (Figure 6). In this case, the reactivity was mainly
determined by destabilization of the radical products of C−ON bond scission reactions. Those authors
observed linear correlations between radical stabilization energies of products of homolysis and
calculated ∆r

0G.
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Later, Gryn’ova et al. [33] theoretically evaluated several known and novel nitroxides with
protonable groups as possible mediators of NMP of styrene at room temperature (Figure 7). As a
parameter, they calculated equilibrium constant K of the alkoxyamine decomposition reaction at room
temperature and at 120 ◦C for protonated and deprotonated species. It is well known that TEMPO
successfully mediates styrene polymerization at 120 ◦C; hence, homolysis equilibrium constant K for
the corresponding alkoxyamine TEMPO–STY was used as a reference. Systems with a lower K are
expected to succeed, whereas species with log K > 12 may be too stable to release the propagating
radicals at a sufficient rate. They found that nitroxides 14–26 possess suitable homolysis parameters
when deprotonated but remain stable when neutral. An acidic derivative of nitroxide SG1 18 was
predicted to be suitable for the NMP of styrene at 60 ◦C.
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Figure 7. Logarithms of equilibrium constants for NO–C bond homolysis (a combination is defined
as the forward reaction, and decomposition as the reverse one) obtained from the bond dissociation
free energies for the tested nitroxides with a styryl dimer as a propagating radical, calculated for a
bulk styrene solution at 25 and 120 ◦C. The green line corresponds to log K = 12 (corresponds to
the TEMPO-Sty alkoxyamine used as a reference). Structures of only the anionic forms are depicted.
Adapted from Ref. [33] with permission from the PCCP Owner Societies.

It must be noted that at a high temperature, along with the polymerization, the process of
depolymerization also becomes well pronounced. The impact of the depolymerization process is
described in the review by Tang et al. [34].

2.1.4. Nmp Using Initiators with Reactivity Activated by pH

The influence of protonation on the type of NMP was first demonstrated by application of
imidazoline-based alkoxyamines for the initiation of polymerization of styrene and some water-soluble
monomers, such as acrylamide and styrene sulfonate at temperatures below 100 ◦C. As the first step,
those authors performed Fischer’s diagram [35] analysis for polymerization of styrene at 140 ◦C and
acrylamide at 90 ◦C (Figure 8). This analysis indicates that one can expect controlled polymerization
of styrene mediated by deprotonated and monoprotonated forms of alkoxyamine 10, whereas for
acrylamide polymerization, the alkoxyamine should be in a fully protonated form. NMP of styrene
initiated by all the forms of the alkoxyamine revealed that the deprotonated form affords a polymer
with the polydispersity index (PDI) higher than 1.5. A controlled regime was achieved too for
acrylamide polymerization. The livingness of the polymer was verified in reinitiation experiments. In
all cases, the increase in molecular weight and the absence of macroinitiator traces were observed by
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gel permeation chromatography indicating the living character of the polymerization. The importance
of this work is also exemplified by the expansion of applications of imidazoline-based nitroxides
to aqueous monomers because this type of nitroxides is effective at polymerization of acrylates,
styrene, [15,36–40] and even methacrylate. [41,42]Materials 2018, 11, x FOR PEER REVIEW  9 of 21 
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kinetics plot for polymerization; lines: a linear fit of the experimental data points; (b) Evolution of 
molecular weight and dispersity. ■: pure alkoxyamine, form II; ●: alkoxyamine in the presence of 1 
eq. of CF3COOH, form III; ▲: alkoxyamine in the presence of 10 eq. of CF3COOH, form IV. The solid 
line denotes the theoretical Mn, dashed lines: a linear fit of the experimental data points. Adapted 
with permission from Ref. [30]. Copyright 2011 American Chemical Society. 
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Figure 8. Protonated forms of alkoxyamine 10. Polymerization of styrene at 140 ◦C initiated by
protonated or deprotonated forms of alkoxyamine 10. The monomer-to-initiator ratio is 1000/1. (a)
A kinetics plot for polymerization; lines: a linear fit of the experimental data points; (b) Evolution of
molecular weight and dispersity. �: pure alkoxyamine, form II; •: alkoxyamine in the presence of 1 eq.
of CF3COOH, form III; N: alkoxyamine in the presence of 10 eq. of CF3COOH, form IV. The solid line
denotes the theoretical Mn, dashed lines: a linear fit of the experimental data points. Adapted with
permission from Ref. [30]. Copyright 2011 American Chemical Society.
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The potential usefulness of protonated or deprotonated forms of SG1-based alkoxyamines in
NMP has been tested via polymerization of styrene and styrene sulfonate at 110 and 90 ◦C. [43]
NMP of styrene at 110 ◦C was successful for both 3 and 3H+ (see Figure 4 for structures) judging by
linear kinetics, a linear increase in molar masses Mn with conversion, and a decrease in the PDI with
conversion. NMP of styrene initiated by 3H+ (1000 min, 30% conversion, PDI = 1.20) was as good as
that initiated by BlocBuilderTM (3900 min, 58% conversion, PDI = 1.23) [11], although due to the decay
of the nitroxide under acidic conditions, the polymer’s molecular mass did not change above 30%
conversion. For aqueous polymerization of sodium styrene sulfonate, good results were obtained for
the deprotonated form of the alkoxyamine despite unfavorable kd: 70% conversion in 400 min, linear
evolution of Mn, and PDI = 1.4; these characteristics are comparable to those of BlocBuilderTM [43].

Le Du et al. [31] have utilized pH-switchable alkoxyamines based on
2,2,5-tri-methyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO) to control the polymerization of
styrene and butyl acrylate. For both monomers, a controlled regime of polymerization was observed
with narrow polydispersity of the resultant polymer. Meanwhile, for deprotonated forms, the kinetics
of monomer conversion were faster than those for the deprotonated ones.

Of note, when an alkoxyamine bears a protonable unit in the alkyl part, the influence of
protonation is limited to the initiation step. Therefore, in such cases, protonation is a good way
to influence the initiation rate. In the case of protonation of the nitroxyl part, the overall kinetics of
polymerization are affected.

2.2. Activation by Formation of Metal–Alkoxyamine Complexes

2.2.1. Formation of Metal–Alkoxyamine Complexes: Alkoxyamines with Cu(hfac)2, Zn(hfac)2, or
Tb(hfac)3. Structure and Influence on kd

Aside from protonation, formation of a metal–alkoxyamine complex is another way to alter the
C–ON bond reactivity: by changing the polarity of the bond. A recent series of articles describes the
synthesis of such complexes, research into the influence of complexation on C–ON bond homolysis,
and application to the NMP of styrene and n-butyl acrylate [44–46].

Coordinately unsaturated copper (II) hexafluoroacetylacetonate [Cu(hfac)2], zinc
hexafluoroacetylacetonate, and terbium hexafluoroacetylacetonate are the most suitable compounds for
the synthesis of such complexes because these salts are strong Lewis acids and yield well-crystallizing
coordination compounds. Nevertheless, the interaction of these salts with ligands can form different
types of complexes depending on the conditions [47]. This notion has been validated by careful
evaluation of the crystal structure of the complexes obtained from the salts and alkoxyamines 3–5
based on nitroxide SG1 (Figure 9). The complexes can be intramolecular (M-RS/SR-4), ring-type
(M-RSSR-3), or chain-type (M-(RR/SS)-3) when coordinated to Cu or Zn. The structure of Tb-based
complexes is completely different. X-ray diffraction analysis has uncovered formation of complexes in
which only the nitroxyl part of alkoxyamines is coordinated. These compounds are the first example of
coordination between the center cation and the nitroxyl moiety only. The stability of these complexes
in solution was checked by NMR spectroscopy. For Cu-based complexes, the 31P NMR resonance is
strongly shifted relative to the NMR line of a pure alkoxyamine and broadened by a paramagnetic
copper ion. Given that Zn is diamagnetic, stability of the complex is indicated only by a downfield
shift of the signal. In both cases, pyridine was chosen to decompose the complexes owing to a higher
complexation constant with metals. Indeed, for Cu(II) complexes, pyridine has a valuable property in
that it reacts quickly (and often irreversibly) [48,49] with the Cu(II) ion to displace weakly bonded
ligands. When the concentration of pyridine increased, 31P resonance shifted toward the value of the
pure alkoxyamine (Figure 10a).
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Figure 10. (a) Room temperature data on 31P NMR spectroscopy at 0, 1, 6, and 12 equivalents of
pyridine (from the bottom up) added to Cu-RSSR-3 in C6D6 (the asterisk denotes free (RS/SR)-3 as
an impurity) and data on pure 3-RRSS; (b) Kinetics of Cu-RSSR-3 decomposition in the presence of 3
eq. of TEMPO after gradual addition of pyridine (py) as a competitor. Adapted from Ref. [44] with
permission from The Royal Society of Chemistry.

After careful evaluation of the structure of the complexes in solutions, the influence of
complexation on homolysis rate constants was studied. It should be pointed out that the structure of
the complex determines whether complexation raises or lowers kd. As an example, for the complex
Cu-RSSR-3, the authors observed a 10 kJ/mol decrease in Ea. After the addition of various amounts of
pyridine, a gradual decrease in kd was registered (Figure 10b).

In comparison with protonation, complexation allows for step-by-step alteration of homolysis
rate constants; this approach can help to achieve a controlled regime for different monomers.

When Tb-based complexes were studied by 1H and 31P NMR spectroscopy, the authors observed
a strong paramagnetic shift and broadening of signals because of the paramagnetic properties of the
Tb(III) cation. After the addition of various competitors, the equilibrium between the complexed
and free form of alkoxyamine shifts toward the latter, and the recovery of the NMR signal in spectra
can be seen. The addition of pyridine had almost no effect on the shift of the equilibrium because
no revival of the signal was observed up to 1000 eq. of the competitor added. When 300 eq. of
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tetramethylethylenediamine (TMEDA) or bipyridine was added, a broad 31P NMR signal was detected.
Thus, bipyridine was found to be effective in decomplexation of an alkoxyamine.

2.2.2. NMP of Various Monomers with Initiators in the Form of a Metal–Alkoxyamine Complex

Polymers doped with metals have found a wide variety of applications. NMP with
metal–alkoxyamine initiators means introduction of a straightforward method for preparation of
such compounds. The application of alkoxyamine complexes with zinc hexafluoroacetyl acetonate
for polymerization of styrene and n-Bu-acrylate has been demonstrated by Edeleva et al. [50]. They
observed a poorly controlled regime when a free form of alkoxyamine was applied to the NMP of
styrene. By contrast, when a presynthesized or in situ–generated complex served as the initiator, a
controlled regime was rapidly established. It should be mentioned that NMP initiated by alkoxyamine
complexes of a metal cation has all the features of conventional NMP, that is, good control of molar
masses, PDI below 1.5, and livingness. Moreover, NMP performed using in situ–generated complexes
has the same features as those of the NMP initiated by complexes prepared beforehand, even with a
large excess of the metal cation (Figure 11).
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2.3. Activation via Chemical Transformations

Thus far, we have considered protonation and formation of complexes as a way to alter the
reactivity of alkoxyamines. Other approaches, in particular chemical transformation, can be proposed
too. They include reactions with Lewis acids, quaternization of nitrogen, oxidation, and formation
of complexes with metal-containing enzymes. In the text below, we present the influence of the
abovementioned factors on homolysis rate constants of a series of alkoxyamines.

2.3.1. Lewis Acid and Quaternization

The effect of coordination of alkoxyamine 3 was investigated with a Lewis acid to afford 3BH3

(Figure 12) [51]. The effect on kd was similar to that observed for protonation, that is a 7 kJ/mol
difference in activation energies between active and inactive forms.
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Alkoxyamine 3 was also activated by methylation (alkylation), benzylation, and acetylation, with
all of them yielding salts with positive charges on the nitrogen atom of the pyridyl ring and the
associated counteranion. The differences in Ea were up to 17 kJ/mol.

The findings reported in the aforementioned articles show the importance of polarity of the alkyl
moiety for kd. Because such modifications change the homolysis activation energy up to 20 kJ/mol,
they also generate a substantial gap in half-lifetimes, for example 700 days for the nonactivated form
to 5 h for activated ones. Such a difference is important for NMP applications.

2.3.2. Activation by Oxidation

Oxidation of functional groups of an alkoxyamine is another way to alter the polarity. The
difference between oxidation and activation by acids or metals is that oxidation is irreversible because
it forms neither a salt nor a coordination/dative bond. Furthermore, despite the presence of a
positive charge on the nitrogen atom and of the negative charge on the oxygen atom, changes in
kd are determined by stabilization of the released alkyl radical in sharp contrast to the other types
of activation. In the study by Bremond et al. [51], the influence of oxidation was investigated for
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alkoxyamine 3. Upon oxidation, it was found to form pyridine-N-oxide derivative 3O (Figure 12). Ea

is 9 kJ/mol smaller for the latter than for nonoxidized pyridine-based alkoxyamine 3.

2.3.3. Biological Activation

This mode of activation was recently developed by Marque and colleagues for therapeutic
applications of alkoxyamines. Thus, alkoxyamine 28 is attached to a peptide to form alkoxyamine
27, which is specific for chymotrypsin and subtilisin A as enzymes (Figure 13). It was demonstrated
that in the presence of one of these enzymes, kd of 28 is very similar to kd of 28H+, whereas in the
presence of porcine pancreatic elastase and of bovine trypsin, the kd values are the same as those
of pure 27 (Figure 13). Accordingly, alkoxyamine 27 is hydrolyzed by the targeted enzymes into
28, which is instantaneously protonated into 28H+ (pKa = 7.97) at pH 7.2. The latter is cleaved
faster than the nonenzymatically activated alkoxyamine. As far as we know, this is the first report
concerning homolysis of alkoxyamines activated by enzymes even though homolysis is still too slow
for biological applications.
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2.3.4. Activation of Alkoxyamine Homolysis by 1,3-Dipolar Cycloaddition

An important drawback of the pH control and approaches based on complexation with metals
is the necessity to use extraneous additives, which may affect polymer properties. Recently, Edeleva
et al. [52] presented a new concept of in situ activation of alkoxyamine homolysis by a 1,3-dipolar
cycloaddition reaction with olefins. This concept is rooted in the well-known fact that vinyl monomers
involved in NMP usually show high reactivity in cycloaddition reactions. The authors demonstrated
the possibility of 1,3-dipolar cycloaddition performed on aldonitrone-containing alkoxyamine 29. At
room temperature, this alkoxyamine is relatively stable due to the electron-withdrawing effect of the
nitrone group and is ineffective as an NMP initiator. Under NMP conditions, if the substituent at the
fourth position on the imidazoline ring is hydrogen, then it easily reacts with styrene, acrylonitrile,
or acrylates to form tricyclic adducts, which have a much higher propensity for C–ON bond
homolysis (Figure 14). Figure 15 illustrates the experimental kinetics of nonactivated alkoxyamine 29
decomposition under different conditions and various concentrations of the monomer. The difference
between the activation energy of alkoxyamine hemolysis in the nonactivated and activated state is
~9 kJ/mol for styrene and 13 kJ/mol for butyl acrylate.
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Figure 15. Kinetics of inactive alkoxyamine decomposition under various conditions. (a) Black squares:
pure inactive alkoxyamine 29, white squares: 6 eq. of styrene, crossed squares: 33 eq. of styrene,
half-colored squares: presynthesized with styrene alkoxyamine. (b) Black squares: pure inactive
alkoxyamine, white squares: 33 eq. of styrene, white stars: 30 eq. of MMA, white triangles: 30 eq. of
acrylonitrile, white circles: 35 eq. of butyl acrylate. Red lines: a linear fit of experimental data points.
The temperature in all experiments is 373 K. The solvent is C6D4Cl2. Adapted from Ref. [52] with
permission from The Royal Society of Chemistry.

2.4. Other Factors that Alter Alkoxyamine Reactivity. The Solvent Effect and Intramolecular Hydrogen Bonds

Among other factors that alter alkoxyamine reactivity is the medium. Polarity of the solvent and
its ability to favor or suppress formation of hydrogen bonds can have a major influence on kd. In
this subsection, we review the influence of the solvent and formation of IHBs on the homolysis of
alkoxyamines. By themselves, they cannot be regarded as factors that alter kd, but one should keep
them in mind when planning NMP and synthetic experiments owing to their huge influence.

The effects of the solvent on a homolysis reaction can be classified into the following types: (1)
a basic solvent effect, which is mediated by polarity of the solvent and its ability to form H-bonds;
(2) the solvent effect related to dissociation of a salt; and (3) the solvent effect related to its ability to
cleave H-bonds.

2.4.1. The Basic Solvent Effect

Solvent effects on alkoxyamines have been investigated during the last three decades [53,54],
and it is widely accepted that these effects on alkoxyamines are weak [54], even for activated
alkoxyamines [26,55–57]. Nonetheless, very recently [28], a 1500-fold increase in kd was observed



Materials 2019, 12, 688 15 of 20

for alkoxyamine 30 after a change of the solvent from t-BuPh to a mixture of water and methanol
(Figure 16).
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Figure 16. Structure of alkoxyamine 30.

2.4.2. The Influence of the Counteranion

Bremond et al. [51] have observed a clear-cut difference in activation between 3Me+TsO−

and 3Bn+Br− even though the methyl and benzyl groups are both alkylating agents (Figure 17).
Nonetheless, their respective counteranions are tosylate and bromide, respectively. Therefore, by
means of alkoxyamine 3, protonation by different acids was investigated in t-BuPh and in water–MeOH
as a solvent. It was proved that kd depends on the counteranions, for example, there is a fourfold
increase in kd from CF3COOH to camphorsulfonic acid in t-BuPh, whereas a twofold diminution is
observed in water–MeOH [26]. This difference is ascribed to the presence of an intimate ion pair (low
kd) and a solvent-separated ion pair (high kd) depending on the ability of the solvent to stabilize the
anion; this ability roughly correlates with the H-bond donor properties of the solvent α, that is kd
increases with α. Here, α is an Abraham’s parameter that estimates H-bond donor properties of a
solvent [58].
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2.4.3. IHBs

Despite the weakness of a hydrogen-bonding interaction, it can influence the homolysis of
alkoxyamines. If we take into account the structure of alkoxyamines, then four types of IHB are
possible (Figure 18): [59] (a) intraN for IHB in a nitroxyl moiety, (b) intraR for IHB in an alkyl part, (c)
interR for IHB between nitroxyl and alkyl moieties, the latter carrying the H-donor group, and (d) interN
for IHB between alkyl and nitroxyl parts, the latter carrying the H-donor group. The solvent effect
reported in such cases is not always substantial because several factors are involved and sometimes play
antagonistic roles, in particular: (i) stabilization of a transition state vs. starting materials by the solvent,
(ii) conformational changes suppressing IHB, or (iii) changes in steric hindrance suppressing IHB. In
general, suppression of intraN IHB by changing the solvent from t-BuPh to a water–MeOH mixture
slightly decreases kd as seen with 31. On the other hand, suppressing interN or interR IHB as observed
with 32 and 33, respectively, affords a two- to fivefold increase in kd for their RS/SR diastereoisomers.
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2.5. Photochemical Activation of Alkoxyamine Homolysis

Along with thermal homolysis, UV/Vis irradiation can have a large effect on the rate of
alkoxyamine C–ON bond cleavage. Photopolymerization represents a rapidly growing field of research
because it enables fast polymerization in thin films and raises energy efficiency of the process. A
number of papers and reviews describe this important field [60–67]. We will provide only a brief
introduction into this field.

The type of NMP that includes photochemical initiation, that is NMP2, involves a chromophoric
group directly linked to the aminoxyl function of a nitroxide. As proved by Guillaneuf at al. [61], this
type of alkoxyamines undergoes singlet state cleavage and (to a minor extent) possible triplet state
cleavage. The abovementioned authors used TEMPO-based alkoxyamines and nitroxide to control the
polymerization of n-butyl acrylate and observed linear growth of the molecular weight of the polymer.

Another advance in this field is presented in the work of Morris et al. [62], where they studied
application of chromophoric-substituted alkoxyamines as a dual initiator in UV-initiated and thermally
initiated polymerization for preparation of block-copolymers. Huix-Rotllant et al. [63] performed
quantum-chemical calculation to identify the factors that affect the excitation energy transferred from
the chromophore to the alkoxyamine moiety. It must be emphasized that photochemical initiation is
being developed not only for alkoxyamines but also for other types of polymerization. A number of
reviews, papers, and books give a good overview of this field [60,64–67].

3. Conclusions

This review describes the ways to influence the reactivity of alkoxyamines by external chemical
stimuli. The rate of C–ON bond homolysis in alkoxyamines is a critical parameter, because for NMP,
this parameter can help to achieve a controlled regime of polymerization, whereas for theranostics,
rapid homolysis at a low temperature is the key requirement. The factors that change the C–ON
bond homolysis rate are temperature, stability of an alkyl and nitroxyl radical released, and polarity
of the C–ON bond. The first factor is the most important but also alters the rates of monomer
addition and chain termination in NMP. Furthermore, for theranostics, temperature cannot be increased
above 37 ◦C. Radical stabilization is determined by both steric hindrance of the radical center and
delocalization of electron density, which are the properties of substituents. The electron-withdrawing
or electron-donating characteristics of the latter also affect the polarity of the C–ON bond and thereby
control the homolysis rate constant. Consequently, changing these factors can enhance the C–ON bond
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homolysis rate. Protonation of alkoxyamines and formation of alkoxyamines with metal complexes
are new and promising approaches to changing the rate of alkoxyamine homolysis via alteration
of electronic properties of the substituents. Protonation of the alkyl part of an alkoxyamine and
deprotonation of the nitroxyl part increase the homolysis rate and vice versa. Complexation with
metals exerts a similar action.

The possibility of in situ activation is the greatest advantage of both methods. In the case of too
slow alkoxyamine homolysis for NMP with a deactivated form of an alkoxyamine, it can be activated
by simple addition of an acid or base prior to polymerization. Furthermore, activation by protonation
is reversible. If slow initiation is necessary, it can be attained via a change in the acidity of the medium.

Activation with metal ions has many advantages as well. First, it offers additional flexibility in the
alteration of kinetic parameters to achieve a controlled regime. Second, this approach does not require
additional synthesis because the complex could be obtained in situ. Furthermore, it opens an easy
route to metal-polymer complexes that have many valuable properties. Additionally, metal complexes
of alkoxyamines can act as orthogonal initiators thus facilitating the synthesis of block-copolymers by
different mechanisms.

Nevertheless, various types of activation of alkoxyamines can have some negative effects on
the polymerization. Activation by complexation leads to contamination of the polymer with metals,
whereas acidity in some cases can affect the stability of nitroxides. Therefore, in each specific case, one
should consider both positive and negative consequences of the activation methods.

In our opinion, the most fascinating approach to enhancement of the homolysis rate of an
alkoxyamine is the one that involves a 1,3-dipolar cycloaddition reaction of an aldonitrone-substituted
alkoxyamine with a monomer. It has been demonstrated that due to this reaction, the half-lifetime of
an alkoxyamine shortens from days to minutes. Furthermore, this procedure does not necessitate any
additives because only an alkoxyamine and the monomer react, and therefore the final polymer is not
contaminated. We consider this approach the most attractive for the industry.

Activation methods lead to both greater versatility in the synthesis of block-copolymers and an
increase in NMP energy efficiency, making them more appealing to the industry and academia.
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