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Abstract: A dual-controlled tunable broadband terahertz absorber based on a hybrid graphene-Dirac
semimetal structure is designed and studied. Owing to the flexible tunability of the surface
conductivity of graphene and relative permittivity of Dirac semimetal, the absorption bandwidth can
be tuned independently or jointly by shifting the Fermi energy through chemical doping or applying
gate voltage. Under normal incidence, the device exhibits a high absorption larger than 90% over a
broad range of 4.06–10.7 THz for both TE and TM polarizations. Moreover, the absorber is insensitive
to incident angles, yielding a high absorption over 90% at a large incident angle of 60◦ and 70◦ for TE
and TM modes, respectively. The structure shows great potential in miniaturized ultra-broadband
terahertz absorbers and related applications.
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1. Introduction

Terahertz (THz) absorbers have been widely investigated due to their wide applications in
electromagnetic radiation, radiation, sensation, and thermal imaging [1–3]. A conventional terahertz
absorber unit cell is typically composed of metallic materials, which can only operate at fixed
predesigned frequencies with a relatively narrow absorption bandwidth [4,5]. In recent years,
graphene and 3D bulk Dirac semimetal (BDS) are emerging as promising candidates for dynamically
tunable broadband absorbers in the terahertz range [6]. Graphene, a new type of two-dimensional
material, has attracted great interest due to its remarkable optical properties, high carrier mobility,
and tunable surface conductivity within the terahertz frequency range [7]. Similarly, the relative
permittivity of BDS, a material that can be considered as “3D graphene”, can also be dynamically
controlled by an external gate voltage [8,9]. Up to now, some graphene- or Dirac-semimetal-based
devices have been reported in the terahertz range [10–18]. Nevertheless, the bandwidth of these
absorbers is not wide enough, and the tuning method is relatively monotonous. Therefore, it is
worthwhile to develop advanced THz absorbers with much higher bandwidth and more flexible
tuning ways.

In this work, a dual-controlled ultra-broadband THz absorber based on a hybrid graphene-Dirac
semimetal multilayer structure is proposed and studied. By simply shifting the Fermi levels of graphene
and Dirac semimetal, the proposed structure shows tunable absorption over a broadband wavelength
range. The simulated results show that under normal incidence, the device exhibits a high absorption
larger than 90% over a broad range of 4.06–10.7 THz for both TE and TM polarizations. Moreover,
the absorber is insensitive to incident angles, yielding a high absorption over 90% at a large incident
angle of 60◦ and 70◦ for TE and TM modes, respectively. The physical mechanisms are also elucidated
by the impedance matching theory and electric field analyses.
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2. Materials and Design

2.1. Graphene Material

It is known that graphene is a potential material to design reconfigurable THz devices due to the
tunable surface conductivity σg(ω), which can be indicated by the Kubo’s formula [19]:

σg(ω) =
e2kBT
πh2

( µ

kBT
+ 2 ln

(
e−

µ
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))
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−ie2
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where µ is the Fermi energy (or chemical potential) of graphene which can be controlled by applying
bias voltage or chemical doping, T is the temperature, i is the imaginary unit, e is the charge number
of an electron, kB is Boltzmann’s constant, h = h/2π is the reduced Plank’s constant, and τ is the
relaxation time. In the following simulations, we set the parameters as T = 293 K and τ = 0.1 ps.
From Equation (1), we can learn that the conductivity σg(ω) is related to frequency ω and Fermi
energy µ adjusted by gate voltage. Furthermore, the surface impedance of graphene Zg is expressed
as Zg = 1/σg, Rg = Re(Zg), and Xg = Im

(
Zg

)
, where Rg is the resistance of graphene and Xg is

reactance of graphene. The frequency-dependent resistance Rg and reactance Xg are shown in Figure 1a.
It can be found that at a fixed Fermi energy, the resistance Rg keeps almost constant, while reactance
Xg increases linearly with increasing frequency.
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2.2. BDS Material

In the THz range, the relative permittivity of BDS can be expressed as [20]:

ε = εb + i
σ
ε0ω

(2)

where ε0 is the permittivity of vacuum and εb = 1.
The dynamic conductivity σ can be written as [21]:
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where h is the reduced Plank’s constant, kF = EF/hνF is the Fermi momentum, EF is the Fermi energy
applied to the BDS, νF= 106 ms−1 is the Fermi velocity, τ = 4.5× 10−13, g = 40, εc = 3, and θ(t) is
the Riemann–Siegel theta function θ(t), which can be illustrated as [22]:
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2

)]
−

t ln(π)
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From Equations (2)–(5), we can see that the permittivity of BDS can also be controlled by Fermi
energy. Figure 1b displays the frequency-dependent real and imaginary parts of BDS at different
Fermi energies. It reveals that the real and imaginary parts of permittivity vary quickly in the range of
1–5 THz. The resonance frequency is mainly influenced by the real part of permittivity, while the loss
is affected by the imaginary parts.

2.3. Design Method

The schematic diagram of the dual-controlled ultra-broadband THz absorber is illustrated in
Figure 2. The structure is composed of five parts, which are top monolayer graphene pattern film,
upper Al2O3 layer with a relative permittivity of 2.28 and loss tangent of 0.04, BDS complementary
pattern layer, lower Al2O3 layer, and gold layer with conductivity σ = 4.56 × 107 S/m from top to
bottom. In this work, AlCuFe is used as the BDS material [16].
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Figure 2. Schematic diagram of the proposed THz absorber.

The top graphene patterned layer is to match the impedance of free space at a specific working
frequency band, so as to achieve no reflection of the incident wave. The BDS pattern of the middle layer
is to expand the absorption bandwidth. The basic function of the Al2O3 layer is to provide resonance
absorption space, and the bottom gold layer is used to reflect the incident wave. In order to satisfy
the polarization and incident angle insensitivity, we have designed a symmetrical structure as shown
in Figure 2.

The reasons for designing this structure are as follows: (1) In the patterned graphene structure,
due to the localized surface plasmon resonance, most of the electric field will be limited to the edge of
the annular graphene. This resonance can effectively capture light energy to enhance the absorption rate.
More circular channels in the graphene pattern can be arranged to limit the electric field distribution on
the edge of the graphene, thereby increasing the absorption rate. Therefore, in our proposed structure,
we use w1, w2, R1, R2, and R3 to construct circular rings and square channels in the graphene pattern.
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(2) In the design of the patterned BDS structure, on the one hand, the method of designing multiple
small channels similar to the graphene layer is continued to be used; on the other hand, the structure
is supposed to complement to the upper graphene pattern. In this case, the two absorption layers
would resonate at different frequencies, thus extending the absorption bandwidth of the structure.
In our proposed structure, the BDS pattern is controlled by w1, w2, a, and b. (3) In the conventional
absorbing material model, in order to ensure that the wavelength in the dielectric layers forms a stable
standing wave of electromagnetic waves, the thickness of the dielectric layer satisfies h = (2n + 1) λ/4,
where n = 0, 1, 2.... In that case, the incident electromagnetic wave would interfere destructively with
the reflected wave from the bottom metal layer, leading to the absorption of the electromagnetic wave
energy by the structure. But for the metamaterial absorber, the thickness of the dielectric layer does not
need to be a quarter wavelength as the dielectric constant and permeability of the metamaterial are
controllable, which facilitates the realization of the absorber structure. In our work, the size of the
two dielectric layers of graphene-BDS hybrid absorber is 4 µm and 2.8 µm, which are obtained from
scanning optimization in the simulation software in consideration of the requirements of structural
miniaturization and high absorption performance.

Ansys HFSS is used for the simulation of the proposed structure. The THz wave impinges on
the graphene pattern from the air. Periodic linked boundary conditions (primary and secondary) are
adopted in the x- and y-directions and Floquet port excitation in the z-direction. To better describe
a graphene film, the graphene layer is considered as a two-dimensional conductive surface with
the impedance boundary of resistance and reactance in the software simulations. For BDS material,
the relative permittivity is created by importing relevant data obtained from Equations (2)–(5). Since the
thickness of the bottom gold film is considerably larger than the skin depth, the electromagnetic waves
can hardly be transmitted through the bottom metal plate, leading to S21 = 0 and absorbance
A = 1 − |S11|2. The detailed dimensional parameters of the proposed absorber are listed in
Table 1. These specific parameter values are generated by setting optimization goals that express as
1-(mag(S(FloquetPort1:1,FloquetPort1:1)))ˆ2 > 0.9 in Ansys HFSS.

Table 1. Detailed dimensional parameters of the proposed absorber structure.

Parameter Size (µm) Parameter Size (µm) Parameter Size (µm)

d1 0.2 P 6 R2 1.4
d2 0.2 a 2.9 R3 (a – 2 × w1)/2
h1 4 b 1.8 w1 0.1
h2 2.8 R1 0.5 w2 0.9

3. Results and Discussions

The absorption properties of different structures under normal incident TE and TM polarizations
are shown in Figure 3. It can be seen that the BDS absorber exhibits a poor absorption lower
than 90% over a broadband wavelength range of 1–13 THz. The graphene absorber shows high
absorption above 90% from 4.72 THz to 9.83 THz, yielding an effective absorption bandwidth of
5.11 THz. By combining graphene and BDS, the absorption bandwidth is significantly increased. At a
Fermi energy of 1.5 eV and 60 meV for graphene and BDS, respectively, the hybrid graphene-BDS
structure exhibits effective absorption (above 90%) from 4.06 THz to 10.7 THz, yielding a much broader
absorption bandwidth of 6.64 THz. To the best of our knowledge, the metamaterial absorber with
an absorption bandwidth higher than 6.6 THz has not been reported yet. The center frequency fc is
defined as fc = ( f− + f+)/2 = 7.38 THz, where f− and f+ are the low- and high-frequency edges of
90% absorptance, respectively. Therefore, the fractional bandwidth (BW), the ratio of the absolute
bandwidth to the center frequency is as high as 89.97%. To further illustrate the performance of the
hybrid absorber, main parameters of reported THz absorbers based on graphene or BDS are listed in
Table 2 for comparisons. Compared with other structures, the hybrid absorber exhibits significantly
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larger bandwidth and higher fractional BW with a small number of layers, showing great potential in
miniaturized broadband THz applications.Micromachines 2020, 11, x FOR PEER REVIEW 5 of 11 
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Table 2. Comparison of parameters of THz absorbers based on graphene or BDS.

References Absorption
Band (THz)

Fractional
BW Layers Tunable Material Polarization-Insensitivity Angle-Insensitivity

[4] 3–7.8 88.8% 8 Graphene insensitive 50◦

[23] 5.50–9.10 8.2% 3 Graphene insensitive 60◦

[17] <0.1 <5% 1 BDS insensitive 60◦

[24] 1.05–1.6 42.5% 2 Graphene and
vanadium dioxide insensitive 50◦

This paper 4.06–10.7 89.97% 2 Graphene and BDS insensitive 60◦

Next, we studied the influence of graphene Fermi energy on absorption performance. Figure 4a,b
display the absorption spectra of the proposed hybrid structure as a function of frequency and Fermi
energy µ under normal incidence TE and TM polarizations, respectively. The Fermi energy EF of BDS
is fixed at 60 meV. When the Fermi level of graphene µ is 0, only BDS functions as the absorption layer,
and the effective absorption (above 90% absorption) is 0. As µ increases, the absorption gradually
increases, and multiple absorption peaks gradually appear, leading to a significantly broader bandwidth.
It can be learned from Equation (1) and Figure 1a that the conductivity σg(ω) and surface impedance
in graphene are related with Fermi energy µ. As the Fermi level increases, the surface conductivity
in graphene increases, and the plasma oscillation effect also increases, which ultimately leads to an
increase in the absorption bandwidth. Therefore, the absorption performance of the hybrid structure
can be effectively controlled by tuning the Fermi level of graphene in a broad wavelength range from 0
to 6.64 THz.
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20 meV, 40 meV, and 60 meV for (c) TE and (d) TM polarizations.

BDS offers another possibility to tune the absorption performance of the hybrid structures.
Figure 4c,d present the absorption with different BDS Fermi energy EF of 0 meV, 20 meV, 40 meV,
and 60 meV under normal incidence for TE and TM polarizations, respectively. The graphene Fermi
energy µ is fixed at 1.5 eV. With the increase of the BDS Fermi level, the first absorption peak exhibits
a redshift while the second and third absorption peaks show a blueshift, resulting in an increasing
absorption bandwidth. It can be explained as follows: in the low terahertz band, the resonance
frequency is mainly influenced by the real part of permittivity. It can be learned from Figure 1b
that as the Fermi level increases, the real part of permittivity decreases, which leads to the decrease
of resonance frequency and redshift of the absorption peak. In the high terahertz frequency band,
the real part of BDS permittivity is close to 0 in Figure 1b. In this case, the resonance frequency is
mainly affected by the localized plasmon resonance effect. As the Fermi level increases, the carrier
density increases, leading to an increase of the plasmon resonance frequency and blueshift of the
absorption peak. Thus, it can be concluded that the absorption performance of the hybrid absorber can
be effectively regulated by means of tuning the resonance absorption peaks.

To sum up, owing to the tunability of absorption bandwidth by graphene Fermi energy and the
control of resonance absorption peaks by BDS Fermi energy, our proposed absorber combines the
advantages of being broadband-controlled and frequency-adjusted.

For THz absorbers, the sensitivity of polarization and incident angle is a significant issue in
practical applications. Here, the absorption properties of the proposed structure under different
polarization waves and incident angles are investigated, as shown in Figure 4. Here, the Fermi
energy µ and EF of graphene and BDS are fixed at 1.5 eV and 60 meV, respectively. As shown in
Figure 5a,b, the absorbance is almost independent of the incident angle up to 50◦ and 60◦ for TE and
TM modes, respectively. For TE, the absorptance remains over 80% when the incident angle is θ up
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to 60◦. With increasing incident angle θ, the absorptance gradually decreases and the absorption
frequency is slightly expanded to a higher position. For TM polarized wave, the absorption is higher
than 80% for incident angle up to 70◦. However, the absorptance bandwidth slightly increases when
θ becomes larger. Hence, the proposed absorber can tolerate a wide incident angle for both TE and
TM polarizations. Figure 5c depicts the absorption spectra under normal incidence with different
polarization angles ϕ. It can be seen that the absorptance is insensitive to the polarization angle,
which is attributed to the symmetry of the structure. Therefore, the proposed structure can be utilized
as a polarization- and incident angle-insensitive broadband THz absorber.Micromachines 2020, 11, x FOR PEER REVIEW 7 of 11 
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Figure 5. (a,b) Absorption maps as a function of incident angles θ for TE and TM polarization,
respectively. (c) The absorption map for various polarization angles ϕ under normal incidence.

To clarify the working principle, the absorption peaks located at 4.49, 6.738, and 9.66 THz are
explained according to the impedance matching theory. The relative impedance (Zr) is calculated
using Equations (6)–(10), where d is the travelled distance and k0 is the propagation constant of the
wave at free space. The calculated values of the constitutive parameters for three absorption peaks are
listed in Table 3. At all three frequencies, the real and imaginary parts of relative impedance Zr are
very close to 1 and 0, respectively. More generally, Figure 6 presents the real and imaginary parts of
the relative impedance for TE polarized wave in full terahertz band. We can see that in the frequency
range from 4.58 THz to 10 THz, the real and imaginary parts of relative impedance are close to 1 and 0,
respectively, which means the impedance of the absorber matches well with the free space, resulting in
a broad absorption bandwidth.

χes =
2i
k0

1− S11

1 + S11
(6)

χms =
2i
k0

1 + S11

1− S11
(7)

εe f f = 1 +
χes

d
(8)

µe f f = 1 +
χms

d
(9)

Zr =

√
µe f f

εe f f
(10)

Table 3. Calculations of relative impedance of the proposed structure at peak frequencies.

Frequency (THz) Real Part of Zr Imaginary Part of Zr

Peak I 4.49 1.027 −0.01
Peak II 6.73 1.021 −0.1673
Peak III 9.66 0.9495 −0.02
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In order to illustrate the working principle more intuitively, the electric field distributions on the
x-y plane at frequencies of 4.49, 6.73, and 9.66 THz corresponding to absorption peaks I-III for TE
polarization are shown in Figure 7. Figure 7a–c show the two-dimensional electric-field profiles of
the graphene layer at the three frequencies, while Figure 7d–f present the two-dimensional electric
field distribution of the BDS layer. At 4.49 THz, the electric field distribution of the graphene layer is
mainly concentrated in the narrow gaps along the x and y directions and the internal oblique gaps,
while the electric field distribution of the BDS layer is mainly concentrated in the wide channels along
the x direction. At 6.73 THz, the electric field of the graphene layer is concentrated in each slit except
for the four internal oblique slits, while the electric field of the BDS layer is scattered in the square
blank channels. At 9.66 THz, the electric field of the graphene layer is concentrated in each slit except
for the four slits in the x direction, and the electric field of the BDS layer is concentrated on the four
sides of the x direction of the outer frame.
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Figure 7. Absolute electric field distributions of graphene at (a) 4.49 THz, (b) 6.73 THz, and (c) 9.66 THz.
Absolute electric field distributions of BDS at (d) 4.49 THz, (e) 6.73 THz, and (f) 9.66 THz.

On the whole, as the frequency increases, the intensity of the electric field first increases and then
decreases as the frequency increases in the graphene layer. As for the BDS layer, the change trend is
opposite and firstly decreases and then increases. This is because that the incident wave excites carriers
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to oscillate along the x-axis and induce tangential electric fields on both graphene and BDS layers,
which will cause energy loss. The energy consumption inside the loss materials including graphene,
BDS and Al2O3 can be calculated by:

A( f ) = 2π fε′′
∫

v
|El|

2dV (11)

where ε′′ is the imaginary part of dielectric constant, V is the volume of lossy material, and El is the
electric field inside the lossy materials. In the range of 1–13 THz, the imaginary parts of graphene and
BDS are large. Therefore, the electromagnetic energy of THz wave will be dissipated where the electric
field is strong.

In order to understand how the energy is located at the resonance frequency, the electric field
distribution in the y-z plane is simulated to reveal where absorption mainly occurs. Figure 8a–c
show the cross-sectional views of the electric field |E|. It can be seen that the electric field is not only
concentrated in different parts of the graphene and BDS patterns, but also trapped inside the dielectric
layer, which means that the graphene pattern and BDS pattern, as well as the Al2O3 layer play an
important role in absorption. The absorption contribution rate of each part is shown in Figure 9.
We can see that the absorption in the graphene and BDS patterns is stronger than that in the Al2O3

layer, which is consistent with the absolute electric field distributions in Figures 7 and 8. It could be
mainly attributed to that the imaginary part of the dielectric constant of graphene and BDS is larger
than that of the Al2O3 layer in the THz frequency range. Due to the symmetry of the structure, the TM
polarization is the same as the TE polarization.
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4. Conclusions

In summary, a tunable hybrid graphene-BDS broadband THz absorber is designed and studied.
Due to the combination of advantages of graphene and BDS, the structure can achieve a high absorption
exceeding 90% over a broad wavelength range of 6.64 THz. By adjusting the Fermi energy level
of graphene and BDS, the absorption peaks and bandwidth can be dynamically tuned without
reconstructing the structure. Besides, the absorber is insensitive to incident angles, yielding a high
absorption over 90% at a large incident angle of 60◦ and 70◦ for TE and TM modes, respectively. Owing to
its excellent performance, the proposed absorber has great potential in miniaturized ultra-broadband
THz devices and microsystems.
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