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Many methods used in multi-locus genome-wide association studies (GWAS) have been
developed to improve statistical power. However, most existing multi-locus methods are
not quicker than single-locus methods. To address this concern, we proposed a fast score
test integrated with Empirical Bayes (ScoreEB) for multi-locus GWAS. Firstly, a score test
was conducted for each single nucleotide polymorphism (SNP) under a linear mixedmodel
(LMM) framework, taking into account the genetic relatedness and population structure.
Then, all of the potentially associated SNPs were selected with a less stringent criterion.
Finally, Empirical Bayes in a multi-locus model was performed for all of the selected SNPs
to identify the true quantitative trait nucleotide (QTN). Our newmethod ScoreEB adopts the
similar strategy of multi-locus random-SNP-effect mixed linear model (mrMLM) and fast
multi-locus random-SNP-effect EMMA (FASTmrEMMA), and the only difference is that we
use the score test to select all the potentially associated markers. Monte Carlo simulation
studies demonstrate that ScoreEB significantly improved the computational efficiency
compared with the popular methods mrMLM, FASTmrEMMA, iterative modified-sure
independence screening EM-Bayesian lasso (ISIS EM-BLASSO), hybrid of restricted and
penalized maximum likelihood (HRePML) and genome-wide efficient mixed model
association (GEMMA). In addition, ScoreEB remained accurate in QTN effect
estimation and effectively controlled false positive rate. Subsequently, ScoreEB was
applied to re-analyze quantitative traits in plants and animals. The results show that
ScoreEB not only can detect previously reported genes, but also can mine new genes.

Keywords: computational efficiency, score test, empirical bayes, linear mixed model, genome-wide association
studies, multi-locus

INTRODUCTION

Genome-wide association studies (GWAS) have become a powerful approach in the genetic
dissection of quantitative traits in human, animal and plant genetics (Buniello et al., 2019; Jiang
et al., 2019). A number of statistical methods for GWAS have been developed to facilitate the
discovery of potentially associated genetic variants. Linear mixed model (LMM) approaches have
been widely used due to the capacity to correct genetic relatedness and population structures, thereby
minimizing false positives (Zhang et al., 2005; Yu et al., 2006; Aulchenko et al., 2007). Consequently,
the number of LMM-based computational tools for genetic studies is rapidly increasing, and includes
efficient mixed model association (EMMA) (Kang et al., 2008), a compressed MLM with population
parameters previously determined (P3D) (Zhang et al., 2010), factored spectrally transformed linear
mixed models (FaST-LMM) (Lippert et al., 2011), genome-wide complex trait analysis (GCTA) (Yang

Edited by:
Hua Zhong,

Wuhan University, China

Reviewed by:
Sheng Yang,

Nanjing Medical University, China
Julong Wei,

Wayne State College, United States
Haohao Zhang,

Wuhan University of Technology,
China

Hao Chen,
Novartis Institutes for BioMedical

Research, Switzerland

*Correspondence:
Wen-Long Ren

wenlongren@ntu.edu.cn

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 16 July 2021
Accepted: 13 September 2021

Published: 01 October 2021

Citation:
Xiao J, Zhou Y, He S and

RenW-L (2021) An Efficient Score Test
Integrated with Empirical Bayes for
Genome-Wide Association Studies.

Front. Genet. 12:742752.
doi: 10.3389/fgene.2021.742752

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7427521

ORIGINAL RESEARCH
published: 01 October 2021

doi: 10.3389/fgene.2021.742752

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.742752&domain=pdf&date_stamp=2021-10-01
https://www.frontiersin.org/articles/10.3389/fgene.2021.742752/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.742752/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.742752/full
http://creativecommons.org/licenses/by/4.0/
mailto:wenlongren@ntu.edu.cn
https://doi.org/10.3389/fgene.2021.742752
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.742752


et al., 2011), genome-wide efficient mixed model association
(GEMMA) (Zhou and Stephens, 2012), BOLT-LMM (Loh et al.,
2015), and the rapid and efficient linear mixed model approach
using the score test (LMM-Score) (Chang et al., 2019b). Although
these methods have successfully detected a number of variants
among various traits, they still have some shortcomings. Most
adopt single-locus screening, so that the combined effects of
multiple loci are ignored and the threshold in multiple test
correction is often difficult to determine (Wang et al., 2016; Ren
et al., 2018; Wen et al., 2018).

Several classical approaches have been proposed to address these
issues, such as, the least absolute shrinkage and selector operator
(Lasso) (Tibshirani, 1996), Elastic-Net (Zou and Hastie, 2005),
Bayesian Lasso (Park and Casella, 2008), and Empirical Bayes
(Xu, 2010). These approaches have been shown to perform
better than single-locus approaches, but most are
computationally unfeasible in GWAS. It brings great challenge
when the number of predictors is significantly larger than the
number of observations. An available solution is to perform
dimensionality reduction prior to variable selection. For example,
the multi-locus random-SNP-effect mixed linear model (mrMLM)
uses the Wald test based on a random-SNP-effect linear mixed
model to reduce dimensionality, then, all the selected markers are
placed into a multi-locus model, showing advantage in controlling
complex population structure (Wang et al., 2016), integration of the
Kruskal-Wallis test with Empirical Bayes with polygenic
background control (pKWmEB) uses the non-parametric
Kruskal-Wallis test to perform initial screening of all SNPs,
which is more powerful in the case in which the phenotypic
value violates the assumption of a normal distribution (Ren
et al., 2018), fast multi-locus random-SNP-effect EMMA
(FASTmrEMMA) first chooses all putative quantitative trait
nucleotides (QTNs) with p-values ≤ 0.005 and then includes
them in a multi-locus model for true QTN detection (Wen et al.,
2018), iterative modified-sure independence screening EM-
Bayesian lasso (ISIS EM-BLASSO) uses an iterative modified-
sure independence screening (ISIS) approach in reducing the
number of SNPs to a moderate size, and next estimates all the
selected SNP effects in the reduced model (Tamba et al., 2017),
hybrid of restricted and penalized maximum likelihood (HRePML)
performs restricted maximum likelihood on single-locus LMM to
remove unrelated markers, and then carries out penalized
maximum likelihood to select true QTN (Ren et al., 2020), a fast
Empirical Bayes method (Fast-EB-LMM) uses a modified kinship
matrix accounting for individual relatedness to avoid competition
between the locus of interest and its counterpart in the polygene
(Chang et al., 2019a), and multi-locus mixed-model (MLMM)
adopts stepwise mixed-model regression with forward inclusion
and backward elimination, and handles the confounding effects of
large numbers of loci well (Segura et al., 2012). Although these
multi-locus methods have achieved good results in many GWAS
analyses, their computational efficiency is not very satisfactory.

Fortunately, the score test can greatly decrease computational
time. Furthermore, a major advantage of the score test is that it
only requires imputation under the null model of no association,
and working within the framework of the score test makes other
extensions feasible. Xiong et al. (2002) proposed a generalized

Hotelling’s T2 test for the analysis of quantitative and qualitative
traits, and Wallace et al. (2006) extended it to a marker-based
score test for linkage disequilibrium mapping by selective
genotyping. To further improve computational efficiency, Tang
et al. (2009) developed a principal component-based score test
within a variable-sized sliding-window. To incorporate additional
phenotypic information of relatives who are not genotyped,
Thornton and McPeek (2007) proposed the more powerful
quasi-likelihood score (MQLS) test. Uh et al. (2009) extended
the MQLS to the genotypic MQLS (gMQLS) test to accommodate
different genetic models. However, the aforementioned score
tests are unable to estimate quantitative trait nucleotide (QTN)
effects, and are weak in controlling confounding.

In this study, we proposed an efficient association analysis
approach by integrating the score test with Empirical Bayes,
named ScoreEB, under the framework of the mrMLM (Wang
et al., 2016) and FASTmrEMMA (Wen et al., 2018) approaches.
Firstly, the score test is performed to select all of the markers that
are potentially associated with the trait, taking into account the
genetic relatedness and population structure within the linear
mixed model. The mixed model equations were solved using
preconditioned conjugate gradient iteration (PCG), which
requires only performing matrix-vector products. The PCG
algorithm is one of the best known iterative methods for solving
linear systems with symmetric, positive definite matrix (Legarra
and Misztal, 2008; VanRaden, 2008). Secondly, all of the selected
markers are placed into a multi-locus model and their effects are
estimated by Empirical Bayes. Then, all of the nonzero effects are
further identified by a likelihood ratio test. Our new method
ScoreEB adopts the similar strategy of mrMLM (Wang et al.,
2016) and FASTmrEMMA (Wen et al., 2018), and the only
difference is that we use the score test to select all the
potentially associated markers. ScoreEB fills the gap between
existing multi-locus and single-locus method, and it not only
has high computational efficiency, but also can control
confounding well. To validate the effectiveness of our method,
we compare it with other five methods, mrMLM (Wang et al.,
2016), FASTmrEMMA (Wen et al., 2018), ISIS EM-BLASSO
(Tamba et al., 2017), HRePML (Ren et al., 2020), and GEMMA
(Zhou and Stephens, 2012) using a series of simulation studies and
real data analysis in plants and animals.

METHODS

Genetic Model
Random QTN Effect Linear Mixed Model
A conventional linear mixed model used for association testing
can be expressed as

y � Xb + xβ + u + ε (1)

where y denotes an n × 1 quantitative phenotype vector for n
individuals; X denotes the n × c fixed effect design matrix, c
denotes the number of covariates, including unit vector,
population structure (Yu et al., 2006) or principle component
(Price et al., 2010), and b denotes their effect sizes including the
intercept μ; x denotes an n × 1 genotype vector of the focal QTN,
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and β ∼ N(0, σ2g) denotes random QTN effect; the variable u is a
random vector and can be used to account for additional additive
effects, such as polygenic effects and other additive confounding
factors, u ∼ MVN(0,Kσ2

k) is multivariate normal distribution, σ2k
denotes the variance component of polygenic effects, K denotes an
n × n genetic relatedness matrix; and ε ∼ MVN(0, σ2eIn) denotes
independent and identically distributed noise, σ2e is residual error
variance, and In is an n × n identity matrix.

Parameter Inference and Score Test for Association
Test
For parameter inference, a marginalized form of Model (1) is
considered, which is obtained by integrating over the QTN effects
β and the polygenic random effect component u

y ∼ N
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝Xb, σ2

gxx
T︸��︷︷��︸

QTN

+ σ2kK︸�︷︷�︸
u

+ σ2
eIn︸�︷︷�︸
noise

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2)

Note that various methods of inferring a genetic relatedness
matrix have been proposed. In this study, we used a marker-
inferred genetic relatedness matrix (Price et al., 2010) defined as

K � 1
m
∑m
i�1

xix
T
i � 1

m
GGT (3)

Here, G � (x1, x2,/, xm) is the whole genotype matrix, m is the
number of markers. Let Σ � σ2gxx

T + σ2kK + σ2eIn, and Σ is a
positive semi-definite symmetric matrix. Now the multivariate
normal distribution is

f(y) � 1�������(2π)n|Σ|√ exp{ − 1
2
(y − Xb)TΣ−1(y − Xb)} (4)

The following log likelihood function can be easily obtained

L(θ) � −n
2
log(2π) − 1

2
log|Σ| − 1

2
{(y − Xb)TΣ−1(y − Xb)} (5)

where θ � (σ2g, λ), nuisance parameter λ � (b, β, σ2k, σ2e ). We note
that the hypothesis for β, H0: β � 0, H1: β≠ 0 is equivalent to
H0: σ2g � 0, H1: σ2g > 0. The score test statistics can be computed
analogously to the procedure described in Wu et al. (2011).

Tscore � 1
2
(y − Xb̂)TM−1

0 xxTM−1
0 (y − Xb̂) � 1

2
yTPxxTPy � 1

2

����xTPy����2
(6)

where we have defined

P � M−1
0 −M−1

0 X(XTM−1
0 X)−1XTM−1

0 (7)

In the model in Eq. 6, the vector b can be estimated via null model
maximum likelihood estimation (MLE):

b̂ � (XTM−1
0 X)−1XTM−1

0 y (8)

The matrix M0 denotes the total covariance matrix estimated
under the null model

M0 � σ̂2kK + σ̂2eIn (9)

where σ̂2k and σ̂
2
e correspond to the null model moment estimation

of σ2k and σ2e (Wu and Sankararaman, 2018). The introduction of
theKmatrixmakesM0 a densematrix, which presents a significant
challenge in computation. However, we adopt preconditioned
conjugate gradient iteration to solve this problem (Legarra and
Misztal, 2008; VanRaden, 2008), i.e., computation of expressions of
the form M−1

0 y and [M−1
0 X1,/,M−1

0 Xc], which can improve
computing speed and reduce memory usage, particularly for
large individuals. The statistics Tscore follows the chi-square
distribution with one degree of freedom

Tscore ∼ χ21 (10)

p-values can be computed via Davies method (Davies, 1980).

Empirical Bayes Estimation for QTN Effects
We conduct variable selection in a multi-locus model

y � Xb +∑q
i�1

xiβi + ε (11)

where y, X, b and ε are the same as those in Model (1); q is the
number of markers selected in single-locus scanning; βi is the
random effect for marker i, and xi is the corresponding designed
matrix for βi. Obviously, the parameters of interest to be
estimated are (β1, β2,/βq).

Empirical Bayes Xu (2010) was performed to estimate the
QTN effects in Model (11). In this method, each QTN effect βi is
viewed as random. With the Bayesian hierarchical model, a
normal prior is adopted for βi ∼ N(0, σ2i ), and the scaled

inverse χ2 prior for σ2i , P(σ2i |τ,ω)∝ (σ2i )−
1
2 (τ+2) exp(− ω

2σ2
i
),

here, (τ,ω) � (0, 0) is used, that is the Jeffrey’s prior
(Figueiredo, 2003). The following shows the procedure of
Empirical Bayes for parameter estimation.

1) Initial-step: Assign initial values to parameters with

b � (XTX)−1XTy

σ2
e �

1
n
(y − Xb)T(y − Xb)

σ2
i � [(xTi xi)−1xTi (y − Xb)]2 + (xTi xi)−1σ2

e

(12)

2) Expectation-step: QTN effect can be estimated by

E(βi) � σ2i x
T
i Σ

−1(y − Xb) (13)

where Σ � ∑q
i�1 xixTi σ2i + Iσ2e .

3) Maximization-step: Update parameters b, σ2e , σ
2
i

b � (XTΣ−1X)−1XTΣ−1y

σ2e �
1
n
(y − Xb)T⎛⎝y − Xb −∑q

i�1
xiE(βi)⎞⎠

σ2
i �

E(βTi βi) + ω

τ + 3
(14)
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where E(βTi βi) � E(βTi )E(βi) + tr[var(βi)], var(βi) � Iσ2i −
σ2i x

T
i Σ

−1xiσ2i and (τ,ω) � (0, 0).
Repeat 2) and 3) until convergence. All the markers with∣∣∣∣∣β̂i∣∣∣∣∣≤ 10−4 were excluded in the first step, the likelihood ratio

test was then conducted on the estimate of other marker effect βi.
Because Empirical Bayes is a multi-locus model, there is no
requirement for Bonferroni correction (Wang et al., 2016).
Instead of using 0.05/m as a significant threshold, where m is
the number of markers, the criterion of logarithm of the odds
(LOD) � 3.0 was set up (Wang et al., 2016; Ren et al., 2018; Wen
et al., 2018). This criterion is frequently adopted in linkage analysis
and is the equivalent of P � Pr(χ21 > 3.0 × 4.605) ≈ 0.0002, where
LOD follows a χ21 distribution and LOD � LR/4.605.

Simulation Study
We performed three simulation experiments to validate ScoreEB.
In the first simulation experiment, 216,130 SNPs in Atwell et al.
(2010) was used as the simulated genotype. The sample size was
equal to the number of individuals, that was 199. Six QTNs were
simulated and placed on the SNPs with allelic frequencies of 0.30,
their heritability was set as 0.10, 0.15, 0.05, 0.05, 0.05, and 0.05,
and their positions and effects are listed in Table 1. Three level of
heritability (0.05, 0.10 and 0.15) was to investigate the ability of
different methods to detect QTNs with different heritability. The
differences between our simulation study and previous methods
mrMLM (Wang et al., 2016) and ISIS EM-BLASSO (Tamba et al.,
2017) were as follows: 1) We used 216,130 SNPs as the simulated
genotype rather than employed 10,000 SNP genotypes. If the
computational capacity allowed, more SNP markers could reflect
the reality. 2). The genotype coding was different. We used 0, 1
and 2 to represent “aa”, “Aa” and “AA”, however, they used −1, 0
and 1 to represent “aa”, “Aa” and “AA”. 3). The order of QTNs
was sorted based upon the heritability of 0.10, 015, 0.05, 0.05, 0.05
and 0.05 in our study. The SNPs in high LD (linkage
disequilibrium) with the assumed QTNs are listed in Table 2.
The phenotype including a polygenic background was
simulated by the model y � μ +∑6

i�1 xiβi + u + ε, where
u ∼ MVN(0, σ2k × K) is the polygenic effect and
ε ∼ MVN(0, σ2eIn) is the residual error. The mean value of
the phenotype μ was set to 10.0. Here we set residual
variance σ2e � 10.0 and polygenic variance σ2k � 2.0. With
h2t � σ2g/(σ2g + σ2e + σ2k) � 0.05 × 4 + 0.10 + 0.15 � 0.45, that is

σ2g/(σ2g + 10 + 2) � 0.45, total genetic variance σ2g and each
QTN genetic variance σ2i (i � 1,/, 6) could be obtained.
The heritability of polygenic effect h2k is
σ2k/(σ2g + σ2e + σ2k) � 2/(9.82 + 10 + 2) ≈ 0.092, which is nearly
one QTN with heritability 0.10, this can make polygenic effect
having a moderate impact. Each QTN true effect can be obtained
from βi �

��������������������������������������
[h2t (σ2e + σ2k)/(1 − h2t ) + σ2e + σ2k]h2i /[4ηi(1 − ηi)]

√
,

where ηi denotes the minor allele frequency (MAF), and h2i
denotes the heritability of each QTN. The simulation
experiment was repeated 1,000 times. The false positive rate
(FPR) was defined as the ratio between the number of non
QTNs wrongly categorized as positive and the total number of
actual non QTNs. To evaluate the variance and bias of each QTN
effect estimate, the mean squared error (MSE) was calculated. We
defined MSE as

MSEi � 1
Ri
∑R
s

(β̂is − βi)2 (15)

where Ri is the total number of detected ith QTN, i � 1,/, 6 is
the ith QTN, β̂is is the estimated effect of QTN i from the sth
repeat, and βi is the true effect of QTN i.

In the second simulation experiment, the phenotypes
without polygenic effect were simulated by the model
y � μ +∑6

i�1 xiβi + ε, where ε ∼ MVN(0, σ2e × In). Other
parameters were the same as those in the first experiment, and
all the parameters are listed in Supplementary Table S1.

In the third simulation experiment, we intended to investigate
the influence of the sample size on the running time. The sample
size was set to 200, 500, 1,000, and 2,000, respectively. Meanwhile,
the number of markers was fixed at 50,000. And repetition times
was set to 100. In addition, five-fold cross-validation test was
performed to decide the choice of two hyperparameters in
Empirical Bayes step of ScoreEB at different sample sizes
(Supplementary Table S2).

Real Datasets
We use previously published datasets from multiple species that
includes Arabidopsis thaliana, rice, maize, cattle and pig.

TheArabidopsis thaliana dataset consists of 199 accessions each
with 216,130 genotyped SNPs (Atwell et al., 2010), and the
phenotype FRI gene expression levels (FRI) is re-analyzed. The

TABLE 1 | Comparison of mean squared errors (MSE) for each QTN among ScoreEB, mrMLM, FASTmrEMMA, ISIS EM-BLASSO, HRePML and GEMMA methods in the
first simulation studya.

QTN Chr. Pos. (bp) R2 Effect Mean squared errors (MSE)

ScoreEB mrMLM FASTmrEMMA ISIS EM-BLASSO HRePML GEMMA

1 1 11,298,364 0.10 1.6171 0.1000 0.1064 0.5052 0.1258 0.2841 0.3925
2 2 5,134,228 0.15 1.9806 0.2108 0.1929 0.3803 0.2046 0.6025 0.2303
3 2 5,066,968 0.05 1.1435 0.0793 0.1051 0.4022 0.0838 0.0871 10.4514
4 2 5,464,675 0.05 1.1435 0.0721 0.1024 0.6352 0.0886 0.0524 11.2228
5 2 6,137,189 0.05 1.1435 0.0690 0.0728 0.2705 0.0828 0.0942 0.7748
6 1 11,655,607 0.05 1.1435 0.0692 0.0652 0.2568 0.0940 0.1128 10.8202

Average MSE 0.1001 0.1075 0.4084 0.1132 0.2055 5.6487

aIn the first simulation study, the dataset consists of 199 individuals and 216,130 single nucleotide polymorphism (SNP) markers with 1,000 replicates. Six true QTNs are set in each
replicate.
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rice dataset is conducted analysis based on 44,100 genotyped SNPs
across 413 diverse accessions (Zhao et al., 2011). The phenotype
2007 year flowering time at Arkansas is used to be analyzed. The
maize genotype dataset consists of 2,279 inbred lines, each with
681,258 SNPs. The phenotype is flowering time measured as days
to silk (Romay et al., 2013). The cattle dataset has 5,254 samples
with 42,551 genotyped SNPs. The phenotype is milk yield (mkg),
which is an important economic trait (Zhang et al., 2015). The pig
dataset consists of 4,260 samples each with 47,157 genotyped SNPs,
and all SNPmarkers were mapped to Sus scrofa genome build 11.1.
The growth performance related phenotype AGE (days to 100 kg)
is re-analyzed (Ramos et al., 2009; Tang et al., 2019). The SNPs with
a minor allele frequency (MAF) of 5% or less are filtered out. And
the SNPs with missing rate of 20% or more are deleted.

RESULTS

To validate the performance of ScoreEB, three simulation
experiments and five real datasets analysis were carried out.
Each experiment was analyzed by six methods: a fast score test
integrated with Empirical Bayes (ScoreEB), multi-locus random-
SNP-effect mixed linear model (mrMLM), fast multi-locus
random-SNP-effect EMMA (FASTmrEMMA), iterative
modified-sure independence screening EM-Bayesian lasso (ISIS
EM-BLASSO), hybrid of restricted and penalized maximum
likelihood (HRePML) and genome-wide efficient mixed model
association (GEMMA). We performed simulated and real data
analysis using six GWAS methods on the same computer (Intel®
Core™ i9-10855H CPU 2.40 GHz, Memory 64 GB), which has 8
cores and 16 threads. The versions of R and gcc are r-base-4.0.5 and
7.5.0, respectively, based on the Ubuntu 18.04 operating system.

Simulation Study
Statistical Power Under Different Levels of FDR and
Type I Error
Genetic markers were classified into the ones on QTN-area and
non-QTN area to evaluate statistical power under different levels

of FDR and Type I error. And 103 bp was selected as the window
size in our simulation analysis. In the first simulation experiment
where six QTN effects and an additive polygenic effect were
involved, the area under the Power-FDR curve (AUC.FDR) for
ScoreEB, mrMLM, FASTmrEMMA, ISIS EM-BLASSO, HRePML
and GEMMA methods were 0.4405, 0.4651, 0.4583, 0.4020,
0.4385 and 0.3358, respectively, showing that ScoreEB along
with mrMLM and FASTmrEMMA has the similar power,
which are significantly higher than GEMMA (Figure 1A). The
power of HRePML and ISIS EM-BLASSO were lower than
ScoreEB, while higher than GEMMA. In the second
simulation experiment when only six QTN effects were added
to the phenotype, the AUC.FDR for the above six methods were
0.4241, 0.4498, 0.4354, 0.3743, 0.3883 and 0.3129, respectively,
indicating that the three multi-locus methods ScoreEB, mrMLM
and FASTmrMLM still have the higher power than other
methods, especially the single-locus method GEMMA
(Figure 1B). And the area under the Power-Type I error curve
demonstrated the similar trends (Figures 1C,D). Clearly, the
power of ScoreEB is comparable to that of the other two multi-
locus methods mrMLM and FASTmrEMMA.

Accuracy for Estimated QTN Effects
We used the mean squared error (MSE) to measure the accuracy
of QTN effect estimation. The smaller the MSE, the better the
accuracy of the method. We evaluated the accuracies for all of
the six simulated QTNs across six methods. In the first
simulation experiment, results demonstrated that the average
MSEs with ScoreEB, mrMLM, FASTmrEMMA, ISIS EM-
BLASSO, HRePML and GEMMA were 0.1001, 0.1075,
0.4084, 0.1132, 0.2055 and 5.6487, respectively (Table 1 and
Figure 2A). The average MSE of ScoreEB is the minimum.
Compared with the average MSE of GEMMA, that of ScoreEB is
significantly lower. In the second simulation experiment, results
showed the same trend, and the average MSEs of the six
methods were 0.0955, 0.1137, 0.3871, 0.1064, 0.1674 and
4.9340, respectively (Supplementary Table S1 and
Figure 2B). These results indicate that ScoreEB along with

TABLE 2 | The SNPs in high LD (linkage disequilibrium) with the assumed QTNs in the first simulation studya.

QTN Chr. Position SNP Chr. Position r-square D’

3 2 5,066,968 S2_5063677 2 5,063,677 0.6975 0.9477
4 2 5,464,675 S2_5457514 2 5,457,514 0.5145 0.7520

S2_5459900 2 5,459,900 0.5801 0.7800
S2_5460143 2 5,460,143 0.6309 0.8039
S2_5465839 2 5,465,839 0.5443 0.7556
S2_5467272 2 5,467,272 0.5964 0.7816
S2_5468325 2 5,468,325 0.5762 0.7591
S2_5468547 2 5,468,547 0.5198 0.7735
S2_5470625 2 5,470,625 0.5563 0.7549
S2_5470963 2 5,470,963 0.5600 0.7573

6 1 11,655,607 S1_11655586 1 11,655,586 0.8158 0.9732
S1_11655834 1 11,655,834 0.6452 0.9726
S1_11657017 1 11,657,017 0.5327 0.8651
S1_11657744 1 11,657,744 0.5799 0.8929

aThe LD statistics r-square and D’ are obtained by PLINK v1.90, and the SNP is regarded as in high LD with the assumed QTNs when r-square is greater than 0.5. The r-squares between
SNPs and QTN 1, 2 and 5 are no greater than 0.5.
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mrMLM and ISIS EM-BLASSO has significantly higher
accuracy of QTN effect estimation than the single-locus
method GEMMA.

Application to Real Data in Arabidopsis,
Rice, Maize, Cattle and Pig
The Arabidopsis data set consists of 199 accessions each with
216,130 genotyped SNPs (Atwell et al., 2010). We re-analyzed
flowering time related trait FRI of the Arabidopsis data by
ScoreEB, mrMLM, FASTmrEMMA, ISIS EM-BLASSO,
HRePML and GEMMA. These methods identified 8, 3, 3, 8,
10 and 33 SNPs significantly associated with FRI trait,
respectively. We then detected previously reported genes
associated with these SNPs via the Arabidopsis website. As a
result, 18, 12, 7, 13, 16 and 17 genes were identified by the above
six methods respectively, indicating that ScoreEB detected the
most previously reported genes. Notably, FLA was detected by all
the six methods at the same time (Table 3, Supplementary Table

S3 and Figure 3A). Previous studies have shown that FLA
encodes a major determinant of natural variation in
Arabidopsis flowering time. And dominant alleles of FLA
confer a vernalization requirement causing plants to
overwinter vegetatively. Although GEMMA detected the most
SNPs, these SNPs were only associated with 17 genes. Clearly,
ScoreEB was more powerful to mine candidate genes than the
other methods in analysis of Arabidopsis.

With above six methods, we conducted a genome-wide
association study based on genotyped 44,100 SNPs across
413 diverse accessions in 2007 year flowering time at
Arkansas of rice data (Zhao et al., 2011). The SNPs
significantly associated with flowering time for ScoreEB,
mrMLM, FASTmrEMMA, ISIS EM-BLASSO, HRePML and
GEMMA methods were 8, 7, 3, 3, 8 and 3, respectively. Via
analysis of gene ontology annotations, the above six methods
detected 28, 24, 10, 10, 23 and 8 associated genes, respectively.
There were 4 genes located on chromosome 2 identified by
ScoreEB, mrMLM and GEMMA three methods at the same

FIGURE 1 | Performances of six methods (ScoreEB: a fast score test integrated with Empirical Bayes, mrMLM: multi-locus random-SNP-effect mixed linear model,
FASTmrEMMA: multi-locus random-SNP-effect EMMA, ISIS EM-BLASSO: iterative modified-sure independence screening EM-Bayesian lasso, HRePML: hybrid of
restricted and penalized maximum likelihood andGEMMA: genome-wide efficient mixedmodel association) using simulation data. Statistical power under different levels
of FDR in simulation 1 (A) and simulation 2 (B), and statistical power under different levels of Type I error in simulation 1 (C) and simulation 2 (D).
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time, and 3 genes located chromosome 1 identified by ScoreEB,
mrMLM and HRePML simultaneously (Table 3,
Supplementary Table S3 and Figure 3B). The results
demonstrated that ScoreEB not only detected the most SNPs

and associated genes, but also was well consistently with other
methods.

The maize flowering time measured as days to silk was re-
analyzed with the same six methods. The genotype of maize data

FIGURE 2 | Comparison of mean squared error (MSE) of six simulated QTNs using six methods (ScoreEB, mrMLM, FASTmrEMMA, ISIS EM-BLASSO, HRePML
and GEMMA) in simulation 1 (A) and simulation 2 (B).

TABLE 3 | Top five associated SNPs identified by ScoreEB on quantitative traits in Arabidopsis, rice, maize, cattle and pig.

Species SNP_ID Chr. Position Effect Lod p value Nearby candidate genes
or QTLs (base pairs, start: end)

Arabidopsis S4_308466 4 308,466 0.332 11.60 2.70 × 10−13 AHDP (299,359: 304,508)
S4_268990 4 268,990 0.227 8.26 6.94 × 10−10 FLA (269,026: 271,503)
S1_16446253 1 16,446,253 0.149 7.16 9.35 × 10−9 ATTLP5 (16,439,435: 16,441,844)
S3_10280193 3 10,280,193 −0.086 4.99 1.64 × 10−6 MER3 (10,273,801: 10,280,362)
S1_16394129 1 16,394,129 0.093 4.53 4.94 × 10−6 ATY2 (16,398,099: 16,399,878)

Rice S3_35314180 3 35,314,180 0.043 9.60 2.95 × 10−11 RLCK122 (35,312,451: 35,317,359)
S7_18408767 7 18,408,767 0.039 5.72 2.86 × 10−7 OsSTA195 (18,393,745: 18,399,059)
S1_22493100 1 22,493,100 0.024 3.79 2.94 × 10−5 ACO7 (22,489,496: 22,491,483)
S1_23314458 1 23,314,458 −0.027 3.46 6.56 × 10−5 THI27 (23,311,171: 23,312,581)
S1_34082456 1 34,082,456 −0.025 3.22 1.18 × 10−4 CYP94D12 (34,084,757: 34,086,514)

Maize S10_6375466 10 6,375,466 −0.029 9.26 6.57 × 10−11 GRMZM2G052499 (6,357,257: 6,359,007)
S3_214713620 3 214,713,620 0.008 9.06 1.05 × 10−10 GRMZM2G037644 (214,735,031: 214,738,322)
S9_12878270 9 12,878,270 −0.014 8.48 4.13 × 10−10 GRMZM2G024530 (12,903,174: 12,908,621)
S9_123409245 9 123,409,245 0.012 7.97 1.38 × 10−9 GRMZM2G363649 (123,429,468: 123,435,166)
S4_173930289 4 173,930,289 −0.017 7.59 3.38 × 10−9 GRMZM2G344967 (173,909,713: 173,929,961)

Cattle S14_1610986 14 1,610,986 −0.542 241.03 2.30 × 10−243 VPS28 (1,693,641: 1,698,490)
S9_66164662 9 66,164,662 −0.124 16.31 4.50 × 10−18 MRAP2 (66,223,880: 66,287,509)
S19_22081512 19 22,081,512 −0.097 10.81 1.72 × 10−12 TUSC5 (22,167,563: 22,186,258)
S1_136656873 1 136,656,873 0.124 10.38 4.72 × 10−12 PPP2R3A (134,223,427: 134,394,973)
S6_85505724 6 85,505,724 0.096 10.16 7.88 × 10−12 TMPRSS11F (85,473,854: 85,512,994)

Pig WU_10.2_1_179575045 1 161,987,727 −1.701 13.41 3.90 × 10−15 MALT1 (162,076,951: 162,144,880)
ASGA0089196 1 57,487,161 1.424 8.44 4.59 × 10−10 ANKRD6 (57,438,000: 57,645,958)
WU_10.2_8_3769689 8 3,371,469 1.254 6.06 1.28 × 10−7 SORCS2 (3,207,098: 3,760,393)
WU_10.2_13_26791609 13 24,433,904 −1.647 5.84 2.15 × 10−7 MYRIP (24,347,660: 24,556,735)
WU_10.2_9_43903117 9 39,084,510 −1.172 5.60 3.80 × 10−7 POU2AF1 (39,119,012: 39,144,606)
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consists of 2,279 inbred lines, each with 681,258 SNPs (Romay
et al., 2013). The number of significantly associated SNPs
detected by these methods was 284, 606, 343, 98, 868 and 79,
respectively. And the number of identified genes or QTLs around
these SNPs was 179, 340, 202, 61, 467 and 32, respectively. Results
indicated that the HRePML detected the most genes or QTLs,
followed by mrMLM, FASTmrEMMA, ScoreEB, ISIS EM-
BLASSO and GEMMA. And the number of genes detected by
GEMMA and ISIS EM-BLASSO was far less than that of other
four multi-locus methods. We counted the top five associated
SNPs identified by ScoreEB, the Lod values of which ranged from
7.59 to 9.26. And nearby these SNPs, maize flowering time genes
were found, such as, GRMZM2G052499, GRMZM2G037644 etc
(Table 3). There were 17 genes or QTLs identified at least by four
methods simultaneously (Supplementary Table S3 and
Figure 3C). Results showed that ScoreEB was also comparable
to HRePML, mrMLM and FASTmrEMMA methods in analysis
of maize.

In addition to its application to flowering time related traits in
plants, we analyzed the quantitative traits of cattle and pig. The
cattle data set consists of 5,254 samples each with 42,551
genotyped SNPs (Zhang et al., 2015). In the analysis of milk
yield (mkg), ISIS EM-BLASSO and ScoreEB detected the most
number of significantly associated SNPs, which were 103 and 90,
respectively. And there were 72, 34, 17 and 22 significantly
associated SNPs identified by mrMLM, FASTmrEMMA,
HRePML and GEMMA. Via analysis of gene ontology
annotations, the above six methods detected 71, 63, 57, 30, 14
and 21 associated genes, respectively. It was worth noting that
ScoreEB identified the VPS28 gene, which was extremely
significant with 241.03 lod value and 2.30 × 10−243 p value

(Table 3). The VPS28 gene could regulate milk fat synthesis
through modulating the ubiquitination-lysosome and
ubiquitination-proteasome systems (Liu et al., 2018). Besides
VPS28 gene, there was other 8 genes identified by at least four
methods simultaneously (Supplementary Table S3 and
Figure 3D). These results supported that ScoreEB was
effective in cattle application.

Using ScoreEB, mrMLM, FASTmrEMMA, ISIS EM-BLASSO,
HRePML and GEMMA six methods, we re-analyzed AGE trait in
pig based on 47,157 genotyped SNPs 4,260 samples (Ramos et al.,
2009; Tang et al., 2019). The number of significantly associated
SNPs detected by these methods was 50, 57, 28, 33, 16 and 1,
respectively, and the number of identified genes or QTLs around
these SNPs was 33, 43, 24, 25, 15 and 1, respectively. There were 6
genes identified at least by four methods simultaneously and
ScoreEB detected all these 6 genes, such as, ANKRD6, MALT1
etc., (Table 3, Supplementary Table S3 and Figure 3E).
Meanwhile, ScoreEB and mrMLM identified the most number
of associated genes. The single-locusmethod GEMMAhad a poor
performance with only 1 gene identified. Results demonstrated
ScoreEB was also powerful to mine candidate genes in pig.

Computational Efficiency
Time Complexity
We compared time complexity over M markers and N
individuals among the above six methods. In ScoreEB, the
time complexity of first stage is O(MN), and that of the
second stage is O(tqN2), here, t is the number of iterations
required for expectation-maximization (EM) method to
converge, q is the number of markers selected in the first
stage, and t, q is much smaller than M. The time complexity

FIGURE 3 | Venn diagram of nearby candidate genes or QTLs identified by six methods (ScoreEB, mrMLM, FASTmrEMMA, ISIS EM-BLASSO, HRePML and
GEMMA) on quantitative traits in Arabidopsis (A), rice (B), maize (C), cattle (D) and pig (E).
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of mrMLM and FASTmrEMMA in the first stage is difficult to
make sure because they call other complicated algorithms, and
that of ISIS EM-BLASSO is mainly limit to iterative modified-
sure independence screening (ISIS) step, however, the time
complexity of these three methods in the second stage are
the same with that of ScoreEB. The time complexity of
HRePML is greatly affected by limited memory Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method. And the time
complexity of GEMMA is O(MN2). The multi-locus method
ScoreEB along with mrMLM, FASTmrEMMA and ISIS EM-
BLASSO is constrained by Empirical Bayes in the second step,
ScoreEB has a high computational efficiency when the number
of individuals is not very large (n < 3,000).

Observed Running Time
In the first simulation experiment, the dataset consists of 199
individuals and 216,130 single nucleotide polymorphism (SNP)
markers with 1,000 replicates. The total running time for
ScoreEB, mrMLM, FASTmrEMMA, ISIS EM-BLASSO,
HRePML and GEMMA methods were 5.6419, 25.0795,
25.9247, 22.7102, 19.6781 and 17.0846 h, respectively
(Figure 4A). The ScoreEB is the most fast, followed by
GEMMA, HRePML, ISIS EM-BLASSO, mrMLM and
FASTmrEMMA. Clearly, ScoreEB was about 4 times faster
than mrMLM and FASTmrEMMA. However, GEMMA was
the second faster at the expense of statistical power and
estimating QTN effects. In the second simulation experiment,
running time shows a similar trend. ScoreEB only take 5.7727 h,
which are significantly faster thanmrMLM, FASTmrEMMA, ISIS
EM-BLASSO, HRePML and GEMMA with 24.9507, 25.9596,
23.1574, 20.2281 and 18.2995 h, respectively (Figure 4B). Results
demonstrate that ScoreEB improves computing efficiency
considerably compared with the other five methods.

In the third simulation experiment, the dataset consists of
50,000 markers with 200, 500, 1,000 and 2,000 samples,
respectively. And repetition times was set to 100. ScoreEB is
always the most fast with 0.3708, 0.7041, 2.6965 and 6.7638 h at
different sample size, and GEMMA and HRePML are always the
second and the third fast, respectively (Table 4 and Figure 5).With
sample size 200 and 500, ScoreEB is much faster than GEMMA
and HRePML, and the order of computational efficiency in other
three methods is ISIS EM-BLASSO,mrMLM and FASTmrEMMA.
At these two sample sizes, FASTmrEMMA is the slowest. When
the sample size increases to 1,000 and 2,000, the advantage of
ScoreEB over GEMMA in computing speed is becoming less and
less. The main reason is that Empirical Bayes is relatively slow to
calculate large samples. However, ScoreEB is still much faster than
mrMLM, FASTmrEMMA and ISIS EM-BLASSO, although the
second step of these four methods are using the same Empirical
Bayes. The speed improved of ScoreEB is mainly due to the use of
score test and preconditioned conjugate gradient in the first step.
At sample size of 1,000 and 2,000, ISIS EM-BLASSO is the slowest
with 11.5060 and 39.5193 h, rather than FASTmrEMMA again
(Table 4 and Figure 5). The possible reason is that the number of
markers retained in the initial screening of ISIS EM-BLASSO is
more than that of FASTmrEMMA. In summary, ScoreEB and
GEMMA have considerable advantage in computational efficiency.

DISCUSSION

We have shown that the new method ScoreEB can significantly
improve computational efficiency by combining the score test
and Empirical Bayes within the linear mixed model, compared
with popular methods mrMLM (Wang et al., 2016),
FASTmrEMMA (Wen et al., 2018), ISIS EM-BLASSO (Tamba

FIGURE 4 | Comparison of 1,000 replicates running time using six methods (ScoreEB, mrMLM, FASTmrEMMA, ISIS EM-BLASSO, HRePML and GEMMA) in
simulation 1 (A) and simulation 2 (B).
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et al., 2017), HRePML (Ren et al., 2020) and GEMMA(Zhou and
Stephens, 2012). In the application of ScoreEB to simulation
studies, the proposed approach consistently recorded the higher
power. More importantly, it also remained estimation accuracy of
QTN effects and effectively controlled the false positive rate
(Table 1, Supplementary Table S1 and Figures 1, 2). Analysis
of real Arabidopsis, rice, maize, cattle and pig data, confirmed the
effectiveness of ScoreEB, which identified the most candidate
genes (Table 3, Supplementary Table S3 and Figure 3).

With the rapid growth of genomic data, computational
efficiency has become a popular research issue. Existing multi-
locus GWAS methods, such as, mrMLM (Wang et al., 2016),
pKWmEB (Ren et al., 2018), FASTmrEMMA (Wen et al., 2018)
and MLMM (Segura et al., 2012) are all considerably slower than
the single-locus method GEMMA. As described in pKWmEB
paper, pKWmEB is about 21 times slower than GEMMA, and
mrMLM is about 8 times slower than GEMMA. This is an
important motivation for developing the multi-locus method
ScoreEB. In contrast to the mrMLM method, we adopt a fast
score test in initial single-locus scanning, rather than wald test. In
the initial screening, we focus on the significant QTN, rather than
the estimation of QTN effects, hence, the score test is a more

appropriate choice. The score test only requires maximum
likelihood estimation (MLE)under the null model (Song et al.,
2018). Simulation studies show that ScoreEB is significantly faster
than mrMLM, FASTmrEMMA, ISIS EM-BLASSO, HRePML and
GEMMA (Table 4 and Figures 4, 5). And HRePML is faster than
mrMLM, FASTmrEMMA and ISIS EM-BLASSO, one possible
reason is that HRePML is programmed by C++ language, while
other methods are developed using R language. Although the
runs of the single-locus method GEMMAwere slightly faster than
the other multi-locus methods, its statistical power was
considerably lower than that of other multi-locus methods, as
a result of requiring a Bonferroni correction for multiple tests.
The significance level for single-locus test is always adjusted by
0.05/m, where m is the number of markers. If multiple tests are
not used in single-locus scanning to improve power, the
significance level is often difficult to determine, and an
inappropriate significant level will increase the false positive
rate. ScoreEB provides a good solution to this problem by
applying Empirical Bayes in a multi-locus model. LOD � 3.0
is set as the significance level, which is widely used in other
multi-locus methods (Wang et al., 2016; Ren et al., 2018; Wen
et al., 2018). In addition, the new method, ScoreEB,

TABLE 4 | Comparison of running time at different sample size with ScoreEB, mrMLM, FASTmrEMMA, ISIS EM-BLASSO, HRePML and GEMMA methodsa.

Sample size Running time (hours)

ScoreEB mrMLM FASTmrEMMA ISIS EM-BLASSO HRePML GEMMA

200 0.3708 1.2785 1.3456 1.1938 1.0061 0.8861
500 0.7041 2.6229 3.0340 2.1576 1.8669 1.4361
1,000 2.6965 7.8627 11.1218 11.5060 5.5006 3.0722
2,000 6.7638 25.1743 36.3763 39.5193 17.0708 6.8278

aThe number of markers is set to 50,000, and running time is the total hours of 100 replicates at each sample size.

FIGURE 5 | Effect of the sample size on running time with six methods (ScoreEB, mrMLM, FASTmrEMMA, ISIS EM-BLASSO, HRePML and GEMMA) in
simulation 3.
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demonstrates accurate estimation of QTN effects, which
compensates for a shortcoming of the simple single-locus
score test.

The Empirical Bayes model (Xu, 2010) is one core step on
inferring the QTN effects in ScoreEB. We have noticed that the
hyperparameters could affect the estimates of QTN effects. To
determine the best choice of two hyperparameters (τ,ω), five-fold
cross-validation test was performed at sample size 200, 500, 1,000
and 2,000, respectively (Supplementary Table S2). And the setting
of hyperparameters is almost the same way as the Xu’s paper (Xu,
2010). The MSE is used to evaluate the performance of ScoreEB
under various hyperparameter values. And results show that the
MSE is minimumwhen (τ,ω) is set to (0,0) at sample size 200, 500
and 2,000. It means that (τ,ω) � (0, 0) (the Jeffrey’s prior) is the
best choice at these three sample sizes. Only when sample size is
1,000, (τ,ω) � (0.5, 0) is the best choice with minimum MSE
0.00167. At this time, the MSE of (τ,ω) � (0, 0) is 0.00173, which
is slightly larger than that of (τ,ω) � (0.5, 0) (Supplementary
Table S2). It should be noted that Empirical Bayes is a component
of ScoreEB, and the choice of hyperparameters is different from the
direct use of Empirical Bayes. Our results demonstrate that
(τ,ω) � (0, 0) (the Jeffrey’s prior) is robust and almost the best
at different sample size.

Complex genetic architecture plays a key role in influencing
the statistical power, which often leads single-locus methods to
perform poorly. However, multi-locus methods can identify and
account for complex genetic architectures, such as, allelic
heterogeneity, and rare variant architecture (Korte and Farlow,
2013). Interestingly, genetic heterogeneity can lead to a non-
causative marker being a better descriptor of the phenotype than
a causative one (Platt et al., 2010). One available approach is
fitting multiple SNPs in a genomic region into multi-locus mixed
model, in this case, it may consider allelic heterogeneity. Another
common issue is rare variant architecture, which may not always
be resolved by increasing sample size. One solution is to collapse
several SNPs in a region into a single indicator variable and use
this as a composite genotype (Feng and Zhu, 2012). Therefore,
solving complex genetic structure problems is another important
motivation to develop ScoreEB.

Although we found that ScoreEB is an efficient and powerful
multi-locus method, our approach is not free of limitations.
ScoreEB is currently only suitable for analyzing quantitative
traits, and is not available for analysis of binary traits. Binary
traits are common, for example, stress tolerance in plants and
case-control in human beings, and are mostly based on logistic or
generalized linear models. ScoreEB detected a small number of
genes also identified by the other methods (Supplementary Table
S3 and Figure 3). Although the multi-locus methods ScoreEB,
mrMLM, FASTmrEMMA, ISIS EM-BLASSO and HRePML
perform relatively well in simulation studies, their consistency
in real data analysis is not satisfactory. It is accepted that
complementarity exists between different multi-locus GWAS
methods (Ren et al., 2018). At present, ScoreEB has a very
high computational efficiency, when the number of individuals
N is not very large (n < 3,000), such as, most plant researches. For
researches with millions of individuals, we recommend BOLT-
LMM (Loh et al., 2015) or fastGWA (Jiang et al., 2019). In

response to these limitations, we will continue to improve
ScoreEB in future work. These improvements will include: 1)
Extend the approach to analyze binary trait via a link function. 2)
Further explore the issue of fewer identical genes being identified
compared to different methods.

CONCLUSION

In this paper, we demonstrated that ScoreEB is a fast and powerful
GWASmethod for quantitative trait analysis. In addition, ScoreEB
has the ability to accurately estimate the QTN effect and effectively
control the false positive rate. Using ScoreEB analysis can
contribute to increasing our knowledge of the underlying
mechanisms of complex traits and to predicting more candidate
genes for molecular assisted breeding.
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