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Introduction. The application of digital monitoring biomarkers in health, wellness and disease management is reviewed. Harnessing the near limitless capacity of these
approaches in the managed healthcare continuum will benefit from a systems-based architecture which presents data quality, quantity, and ease of capture within a
decision-making dashboard.

Methods. A framework was developed which stratifies key components and advances the concept of contextualized biomarkers. The framework codifies how direct,
indirect, composite, and contextualized composite data can drive innovation for the application of digital biomarkers in healthcare.

Results. The de novo framework implies consideration of physiological, behavioral, and environmental factors in the context of biomarker capture and analysis.
Application in disease and wellness is highlighted, and incorporation in clinical feedback loops and closed-loop systems is illustrated.

Conclusions. The study of contextualized biomarkers has the potential to offer rich and insightful data for clinical decision making. Moreover, advancement of the field
will benefit from innovation at the intersection of medicine, engineering, and science. Technological developments in this dynamic field will thus fuel its logical evolution
guided by inputs from patients, physicians, healthcare providers, end-payors, actuarists, medical device manufacturers, and drug companies.
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Introduction and Current State

Incorporation of the term biomarker into medical parlance spans
4 decades and several of such have now become well known [1].
Prominent examples include HbA1c as a diagnostic marker for type II
diabetes [2], prostate-specific antigen level for prostate cancer prog-
nosis [3] and staging, and BRCA 1 and 2 for breast cancer genotyping
[4]. Despite concerted efforts however (which have led to the
discovery of extremely large and rapidly growing numbers of potential
biomarkers) the translation and adoption of biomarkers as clinically
validated surrogate endpoints of disease has moved at a relatively
conservative pace [5]. Recent progress has been accelerated through

availability of sensitive and rapid genomic, proteomic, and metabo-
lomic interrogation tools [6], and as these analyses are embedded in
clinical studies it is likely that new validated endpoints will be estab-
lished. Leading the efforts to co-ordinate development of new bio-
markers in the United States is the National Biomarker Development
Alliance [7]. Established in 2014, its expressed mission is to create
standards that can be used for evidence-based biomarker develop-
ment, and their subsequent adoption to advance precision medicine
[7]. Given the regulatory significance of biomarkers in clinical medicine,
a joint working group composed of Food and Drug Administration
(FDA) and National Institutes of Health representatives was formed to
establish a framework including relevant nomenclature and recently
issued guidelines [8]. Published late 2016, the guidelines (referred to as
Biomarkers, Endpoints, and other Tools or BEST) are envisioned as a
live/working document that can evolve as new developments are
recommended. The BEST framework advocates for 7 independent
categories viz. (1) susceptibility/risk biomarkers, (2) diagnostic
biomarkers, (3) monitoring biomarkers, (4) prognostic biomarkers,
(5) predictive biomarkers, (6) pharmacodynamic/response biomarkers,
and (7) safety biomarkers. It is noted that depending on context of use,
biomarkers from different categories may interchange and overlap. For
example, diagnostic and prognostic biomarkers may be classified as
monitoring biomarkers when they are measured serially.
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The pursuit and development of clinically relevant biomarkers has also
fueled growth of the companion diagnostics industry—a notable
example being the CD340 biomarker used to identify patients for
trastuzumab (Herceptin®), the first in class Dx/Rx combination for
treatment of HER2-positive breast cancers [9]. Harnessing the power of
such omic profiling techniques has resulted in considerable progress in
the oncology field [10] and has impacted clinical trial stratification in other
therapeutic areas including hypothyroid condition, cardiometabolic dis-
ease, as well as rare and orphan diseases [6, 11]. Although blood analysis
can yield detailed and insightful diagnostic information, in the case of
neurodegenerative disorders, routine analysis of cerebrospinal fluid for
circulating biomarkers presents an obvious logistical barrier [12]. Com-
pounding this problem is the fact that by the time many neurodegenera-
tive diseases are diagnosed using conventional assessment methods, the
disease may have advanced to a point where therapeutic options become
limited. Accordingly, there is considerable interest in the application of
noninvasive imaging techniques such as positron emission topography
(PET) and functional magnetic resonance imaging to identify biomarkers
of neurodegenerative disease based on metabolic and anatomic sig-
natures, respectively. Given the potential impact of Alzheimer disease on
the healthcare system and the relative low spend on this area relative to
other chronic diseases such as cancer and rare diseases [13], such bio-
markers are sorely needed, as the definitive marker remains assessment
of amyloid plaque composition postmortem via autopsy [14]. Such bio-
markers could also provide surrogate endpoints for the development of
chemopreventative agents, allowing appropriate longitudinal studies to be
designed. One such study, known as the Alzheimer’s disease neuroima-
ging initiative (ADNI) is currently underway, correlating changes in
patients memory and functional capacity with anatomic and metabolic
signatures derived from magnetic resonance imaging/PET imaging [15].
Though powerful, the high cost and limited availability of these imaging
tools has fueled interest in methods able to identify and triage patients
who are likely to benefit most. Numerous clinical studies are underway,
including the Baltimore Longitudinal Study of Aging [16], which aims to
correlate decline in cognitive and physical function with onset of neu-
rodegenerative disease. Complimenting these efforts are myriad large
scale trials which track patient health indicators using commoditized
electronic devices and wearable technologies [17–21]. Initial results
have been promising, suggesting the very real potential for use of non-
invasive digital tools which might track healthy individuals as they pro-
gress to early onset diseased states [22, 23]. As such, the era of digital
monitoring biomarkers (DMBs) is dawning, with the capacity to revo-
lutionize aspects of the healthcare ecosystem if implemented appro-
priately [24–26]. Continual advances in technology development and
wireless network capacity globally suggest that technical barriers to
adoption will be minimal, representing an unparalleled opportunity for
the managed healthcare industry to transform itself [27, 28]. Herein we
dissect the various DMB component systems, and, by incorporating
contextual elements, offer a standardization framework which will
inspire its rapid evolution.

Evolution of Digital Sensors for Clinical Use

The development of sensors for clinical use has been propelled by
advances in the engineering of diagnostic and assessment tools. A
digital sensor herein is defined as a device that employs an algorithm to
measure physiological, biological, or cognitive information and pro-
vides feedback within a therapeutic area. The relative value of digital
sensors reflects both the types of metrics that sensors can measure,
and their adaptability to continuous monitoring of such metrics. In
therapeutic settings, such continuous monitoring offers derived ben-
efit with little to no intervention on the part of a clinician, caregiver, or
patient, a prominent example being continuous glucose monitors for
management of diabetes mellitus [29, 30]. The concept of a device
containing a sensor that obtains a metric which provides insight and
remedy for clinical decisions can be designed as of “closed-loop”
embodiment. A prominent example in the diabetes area is the

integrated system for glucose measurement and automated insulin
delivery [31] which evolved in part due to pressure from patient-
advocates [32] and has now been developed into a FDA-approved
device, heralded as the “artificial pancreas” [33]. A priori, the closed-
loop concept is considered domain-agnostic, focusing on a single
metric or therapy. However, importing domains into the clinical
feedback loop of health management allows a patient, technology
company or healthcare provider holistic insight to an individual’s
overall health. For example, environmental events included in this
domain are external factors that contribute to stress, and by extension
heart rate and cardiovascular health. A digital sensor with closed-loop
capacity and also involving domain is a photoplethysmograph (PPG)
whose sensor provides heart rate information [34]. The PPG sensors
built into smartphones are not used to diagnose disease, so are
therefore disease agnostic. However, a PPG sensor in a wristband can
provide continuous heart rate monitoring and can then cross into the
domain and diseased state, for example measuring difference in heart
rate and blood volume changes which have been shown be used to
diagnose peripheral arterial and vascular disease [35]. The power of
these devices in cardiovascular health is evident. Though conventional
gas chromatographic analysis measures analytes in serum to determine
cholesterol levels that inform a physician to prescribe statins [36], it is
appreciated that this is merely one metric obtained at one timepoint. A
device with PPG sensors that provides information related to arterial
disease means that the same information might ultimately be obtained
without a blood draw and with the benefit of continual assessment. An
additional benefit of a patient worn monitoring device could be to
provide a time sensitive alert—for example, detection of the early
onset of ischemic stroke. Similar applications of DMBs can be expected
in Parkinson’s disease. No effective intervention is available for Par-
kinson’s disease and treatment for tremor control is only available
after diagnosis. However, there is hope that the use of wearable
devices that track heart rate and movement (with accelerometers)
may provide relevant information before disease onset, allowing early
intervention [37]. The embodiment of the clinical feedback loop model
is depicted in Fig. 1, where the relationship between patient and clin-
ician is augmented by devices, sensors, and metrics. A patient will be
engaged with their physician (clinical) on the specific intervention or
therapy prescribed to treat a condition. The patient may be deeply in
tune with both the intervention and the device they must deploy or
use to monitor a condition progression, but may be ambivalent to the
specific sensors within the device or the metric that is being measured.
The intersection of the sensor and the metric which it analyzes draws
on a rich and evolving mix of science and engineering.

Physiological, environmental, and behavioral domains as well as disease
categories stem from this closed-loop model. Implicit in the model is
that a single disease state can have multiple domains which create or
affect it, and likewise a single domain can be applicable to multiple
disease areas. Application of such a technology driven model as a
dashboard to inform healthcare provision is examined in the following
section, with emphasis on amplified insight being provided by
importing domains within the loop.

Framework and Nomenclatures

At the heart of the framework proposed here is the ideal that driving
and increasing value for the patient must be the central focus of an
expanded biomarker paradigm. The digital evolution of the past dec-
ades has enabled the shift, but ultimately the value must reside with the
patient. Fig. 2 (and the associated Box) outlines an ordered approach
to the evolution of a biomarker agnostic to therapeutic area.

The premise to the framework is a first- through fourth-order pro-
gression of metrics where the level of digital enablement increases
directly with order. As a result of this progression, the framework
highlights the state of simple diagnosis (first order) to a state where the

374 cambridge.org/jcts



patient is able to more effectively manage their condition or disease
(fourth order). Note that while the outcomes of a first order bio-
marker are typically dependent on clinician intervention, the fourth
order can be applied to a patient, clinician, or caregiver. In addition, as
the orders progress from first to fourth, the behavioral and environ-
mental domains augment the physiological domain.

As the landscape described here moves across orders, there are
3 broader shifts that can be identified: digitally enabled data acquisition, a
movement from diagnosing disease states to the management of these
disease states by a patient directly, and an increase in the overall value to
the patient. In a general categorization across therapeutic areas, Fig. 3
shows some of the characteristics of first order (direct measurements)
versus fourth order (contextualized composite metrics).

Generally, first order measurements are discrete in time and obtained
only at specific instances. These discrete measurements often produce
thin data, or data which is managed via a single variable at a time. The
first order enables open-loop systems where the patient must play an
active role, making decisions in their disease area such as dosing
amounts or whether to seek more advanced therapy such as surgery.
The first order can be viewed as high friction to the patient, ultimately
providing limited insight in how to manage their disease. As the fourth
order is approached, there exists a shift in many of these tenets. Data
are acquired for multiple variables continuously over time, creating
dense, longitudinal data sets. The patient interaction and burden
is removed via closed-loop systems. Taking away these obstacles
produce enhanced patient value because active interaction is no longer
required, lowering the friction of living with and managing a disease.

Examples in Therapeutic Areas

A driving outcome of digital enablement of the contextualized com-
posite biomarker is the ability to close the diagnosis and disease
management loop while bringing in the domains inside the clinical
feedback loop path. Ultimately, the value in a contextualized com-
posite biomarker is the consideration of physiological and environ-
mental factors, as demonstrated for diabetes in Fig. 4a. Instead of only
monitoring glucose levels and controlling insulin delivery, behavioral
aspects of diet, sleep [39], and exercise [40] are considered. As a
patient understands the impact of sleep quality on prevention of
hypoglycemic events, they are enabled to make decisions in their
behavior to impact their glycemic control. In addition, accounting for
environmental factors such as whether a patient is at home or travel-
ing, and incidents in one’s personal life such as a death in the family or
stress due to a sick child provide enhanced value to all aspects of a
person’s life and care circle.

Although the most omnipresent embodiment for closed-loop
care is in the diabetes space with the advent of the artificial pancreas
for interactive glycemic control and insulin delivery, the framework
described above could in principle be applied to any number
of therapeutic areas. Fig. 4b demonstrates the application of the
framework presented here to multiple disease states. Examples are
provided of therapeutic areas where a closed-loop embodiment
already exists (diabetes), a closed-loop architecture is dependent on a
caregiver due to lack of an effective drug therapy (Alzheimer disease),
and where a closed-loop embodiment is in place to prevent a
therapy or intervention altogether (general wellness). Perhaps more

Fig. 2. A composite biomarker value ladder progression from direct and indirect measurements (first and second order) where the physiological domain
exclusively is considered, to a contextualize composite measurement (fourth order) comprised of physiological, environmental, and behavioral domains.

Fig. 1. The closed-loop paradigm requires a concerted interdisciplinary approach to activate all domains. A traditional closed-loop system (left) can be used as
part of a larger clinical feedback loop (right) that activates the 3 domains and different disciplines, allowing for a holistic and patient-specific approach to health and
wellness management. HCP, healthcare provider.
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compelling than application to diseases is to wellness and disease
prevention, as the majority of US healthcare investment recently is
focused on disease care rather than prevention based in part on
reimbursement models [41].

As mentioned, the diabetes space is the most predominantly
well known in the closed-loop space with the advent of the
artificial pancreas both in academic research and commercial product
development [31, 33]. A person with diabetes wears a continuous
glucose monitor housing an electrochemical or optical sensor to
acquire glucose measurements in the interstitial fluid (a second-order
metric, of which a correlation to the first-order metric of blood
glucose is established) [29, 30, 32]. Based on the glucose measurement,
an insulin dosing recommendation is made and automatically delivered
by an insulin pump [31, 33]. In the neurodegenerative domain,
specifically for Alzheimer disease, a PET scan of the brain is conducted
and using image processing techniques (the sensor), the amount
of amyloid is quantified. A closed-loop paradigm (more aptly described
as a clinical feedback loop) currently necessitates the intervention
of a caregiver to make decisions for the patient, due to the lack of
treatment or intervention available to eliminate this amyloid plaque

build-up in the brain, which is one of the leading hypotheses for the
onset of Alzheimer disease.

Moving to the more general area or human wellness, the
contextualized composite biomarker provides the opportunity for a
person to be continually informed and make decisions passively to
enhance their overall well-being. A key difference with this application
is that there is no therapy or intervention by a clinician, but rather daily
decisions made by individuals such as how to eat, how much to exer-
cise, as well as sleep decision and behavior, amongst others. These
behaviors ultimately have the potential to keep people healthier while
reserving the intervention of a clinician or practitioner to more
advanced disease progressions or emergency situations.

A potential extension from the contextualized composite biomarker
would be to import this model to varying population segments
and global health outcomes ubiquitously (Fig. 5). This extension
to a “fifth order” would amplify the insight obtained for patients,
clinicians, scientists, and engineers already achieved from embedding
multiple domains inside the disease management model of the
fourth order. In addition, it would enable activation in providing

Fig. 3. Moving from traditional first-order measures to diagnose disease, a trend of the recent past, to the future where both diagnosis and management is
enabled through activation of contextualized composite metrics and simultaneously reducing the threshold of patient adoption, and reducing costs through
economies of scale [38].

Definition of first to fourth order: a first-order measurement is a direct measure of the disease or condition. It is the single metric used to either diagnose a state
or quantify how a patient is managing their condition. Note that the simplicity or existence of a first-order metric can vary greatly between therapeutic areas.
For example, a first-order measurement for diabetes is blood sugar level, an easily-obtained metric. This is compared to a number of neurodegenerative
disorders where a detailed and complex brain synopsis is required postmortem.

A second-order measurement is an indirect measure of a state which has a known relation to the first-order metric. The second-order metric may often be used
in place of the first order due to a variety of factors such as ease or simplicity of obtainment, cost, or intrusiveness. An example in the oncology space is in the
detection of lung cancer, where a histological sample is obtained (first order) vs. a chest x-ray (second order). At large, the current framework of disease
detection and monitoring is comprised of first and second order metrics. For both of these orders, the physiological domain associated with the different
medical systems of the body is what drives measurements and diagnosis.

The digital progression has enabled a vision of where detection is heading via a third order, or composite biomarker, which is the combination of multiple
metrics that provide insight to disease diagnosis and management. The increased value of a third order is demonstrated in therapeutic areas where a first
and/or second order is either not known or not well defined. An example in the mental health space is the measurement of heart rate, sleep latency and heart
rate variability, and their interaction to determine the onset or likelihood of an episode of depression. The composite biomarker is a paramount step towards
self-identification and management, as multiple metrics that are simple and convenient for a subject to self-monitor and understand are combined into the
composite biomarker without the burden or complexity of advanced diagnostic equipment only available solely in a clinical environment like a hospital or
the physician’s office.

Ultimately, taking the third order composite biomarker and placing it in a subject’s surroundings creates a contextualized atmosphere. This is defined as the
fourth order, where intrinsic and extrinsic factors are accounted for through behavioral and environmental parameters to provide ultimate insight into disease
management. Consideration of an individual’s surroundings and their interaction with quantifiable data aids the understanding of how external factors affect that
individual. As external factors play a pivotal role in one’s management of the disease, such as a patient’s emotional state or general feeling of well-being, bringing
in this context is paramount to a complete management solution for subjects across all therapeutic areas.
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Fig. 4. (a) Integrating the 3 domains (physiological, behavioral, and environmental) into the clinical feedback loop yields an opportunity to activate a
contextualized composite metric that is relative to a specific person and provides optimized interventions at the right time. (b) A clinical feedback loop realizing
the integration and interplay between comorbidities. An integrated system permits tailored interventions that are derived from the systematic and continuous
interrogation of a person’s health and behavior. GPS, global positioning system; PET, positron emission tomography; PPG, photoplethysmogram.
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access to digital monitoring technologies irrespective of socio-
economic barriers [42].

The Physicians Role in Applying the Principles

Though compelling in concept, the litmus test of a framework for use
of contextualized DMBs in healthcare lies in its implementation. One
possibility is the development of a digital dashboard for healthcare
providers which is informed by these principles. For example, a
diagnostic tool in the form of a “digital pinwheel” could be envisioned
where various first- to fourth order parameters feed algorithmic
decisions. Such a tool already has precedent, for example, from
DBM-based studies of the impact of physical environment on risk for
Lyme disease [43], and it is logical to consider how such devices could
have been applied to monitor the spread of communicable diseases
including SARS and avian influenza. Conversely, a prognostic digital
pinwheel might also influence patient lifestyle and decision making, by
rapidly assessing DBM’s based on composite metrics derived from
physiologic, environmental, and behavioral inputs.

Opportunities and Challenges

The emergence of ubiquitous, economical, and highly sensitive digital
monitoring devices has the potential to play a major role in healthcare
diagnosis of the future [24, 25, 34, 38, 43].

In tandem with these advances we have witnessed a paradigm shift in
the adoption of many such tools into patients’ everyday lives, a
consequence of the convenience of use of the devices and the wide-
spread availability of broadband networks which they rely on. It is now
imperative that the power of these systems is harnessed in broader
elements of the managed healthcare ecosystem. It would seem timely
for consumers who buy in to such a technology-centric approach.
Recent data suggests that 14% of the US adult population are
functionally illiterate (and, e.g., are unable to interpret prescribing
information on drug packaging) [44] yet 68% own or have access to a
smartphone [24, 45]. The emergence of voice assisted peripherals
(Google Alexa, Apple Siri, etc) offers an opportunity to close this gap
in the drug prescribing space. As advocated herein however, digital
tools offer the opportunity to fully engage additional parties in the

healthcare sector. Various studies underway are linking patient
captured data to healthcare outcomes and it can be expected that a
move from healthcare diagnosis and disease management will be
augmented by strategies for wellness and disease prevention [46]. The
adoption of these principles will require concerted and aligned effort
between patients, providers, end-payors, and regulators. At the
patient level, the term P4 medicine (predictive, preventative,
personalized, and participatory) has been advanced, exemplified by
longitudinal studies of large numbers of enrollees [47]. Numerous
challenges will need to be addressed for mass implementation,
including concerns on data privacy and security, and the adoption of
uniform standards agreed by regulators [13]. It has been noted that
considerable variation exists even with basic step counting techno-
logies, and this will require standardization if classification as medical
devices is desired [48]. Such data points incorporated as a component
of a composite assessment, however, may allow a degree of self
correction. Variability is also a concern with traditional clinical tests.
An often cited example is the diagnosis of hyperthyroidism, which
measures thyroid-stimulating hormone using an established range of
0.5–4.5m IU/L [49]. Given variations in testing laboratory standardi-
zation, and the myriad other factors which are known to contribute to
the reading, a composite approach to diagnosis is clearly preferable to
a binary clinical decision based on a single (first order) metric [50]. As
the field of DMBs evolves in managed healthcare it will impact all of its
translational (T1–T4) components viz. translation to humans (T1),
translation to patients (T2), translation to practice (T3), and trans-
lation to population health (T4). In the latter case, there is natural
interest from end-payors and healthcare providers to lower costs and
the very real potential to impact the insurance premium pools could
exist. Many large organizations are now offering incentives for parti-
cipants who enroll in wellness programs tied to monitoring biomarker
trackers, and the actuary industry is likely to closely study these efforts
for calculation of life insurance premiums [38]. The potential may exist
for monitoring devices to provide instantly accessible diagnostic
information at systems level, as is now customary in the automotive
industry via the OBD-II port in a vehicle. Equally possible could be
tracking devices which provide incentive to refrain from potentially
detrimental behaviors (e.g., alcohol, tobacco consumption), which
although logical prompts potential ethical and legal issues [13]. Medi-
cine is conventionally taught, diagnosed, and treated on the basis of the
major systems of the human anatomy (central nervous system,
pulmonary, cardiovascular, muscular, skeletal, and gastrointestinal,

Fig. 5. The cumulative and additive impact of domain order of composite monitoring biomarkers in clinical diagnostics and population health.
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etc). The availability of reliable, DMBs for each system would allow
healthcare professionals deep insight to diseases, and help fully realize
the vision for precision medicine [51].

Conclusion

The widespread availability of digital devices capable of tracking mon-
itoring biomarkers is poised to transform the managed healthcare
sector. Advances in device design, sensor development, and cloud
computing technology are expected to drive their ability to capture
clinically relevant data sets. Already, devices with ability to interrogate
and differentiate between normal and diseased states are facilitating
design of insightful longitudinal patient centric studies which will
highlight their clinical utility. Exploiting such enormous potential
requires considered decision making at all levels of the healthcare
system, and composite approaches offer considerable merit. We
speculate that use of these technologies will readily augment con-
ventional medical approaches, and in select therapeutic areas (CNS,
neurodegenerative disorders) could provide ground breaking insight
[52]. Equally importantly, use of such strategies to promote patient
wellness and early warning of progression into diseased states has the
potential to offer marked economic benefit to managed healthcare
systems, and is already beginning to bear fruit [6]. To fully exploit the
potential of digital medicine will also require the regulatory agencies to
play a central role. Recent announcements from the FDA are
encouraging, suggesting that digital health technologies will form a
significant component of future guidance. For example the Digital
Health Innovation Action Plan outlines numerous objectives, including
a pilot precertification program for device developers [53]. Coupled
with associated guidance documents this provides a framework for
development of the digital biomarker industry [54], and the design of
closed-loop devices [55]. Though the era of digital medicine is upon us,
it is mindful to consider an oft-voiced quotation “A good decision is
based on knowledge and not on numbers” (Plato). We would advocate
that the key to modern medicine lies at the intersection of the two.
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