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Neuropathic pain (NP), caused by an injury or a disease affecting the somatosensory

nervous system of the central and peripheral nervous systems, has become a global

health concern. Recent studies have demonstrated that epigenetic mechanisms are

among those that underlie NP; thus, elucidating the molecular mechanism of DNA

methylation is crucial to discovering new therapeutic methods for NP. In this review,

we first briefly discuss DNA methylation, demethylation, and the associated key

enzymes, such as methylases and demethylases. We then discuss the relationship

between NP and DNA methylation, focusing on DNA methyltransferases including

methyl-CpG-binding domain (MBD) family proteins and ten-eleven translocation (TET)

enzymes. Based on experimental results of neuralgia in animal models, the mechanism

of DNA methylation-related neuralgia is summarized, and useful targets for early drug

intervention in NP are discussed.
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INTRODUCTION

The latest and now widely accepted definition of neuropathic pain (NP) is pain caused by an
injury or a disease of the somatosensory system (1). NP is a chronic disease with complex clinical
symptoms, poor prognosis, and an increasing disease burden. Most importantly, treatment options
are extremely limited, and some patients develop resistance to drugs of opioid analgesics (2).
Peripheral nerve injury or disease can cause a series of NP symptoms including spontaneous pain,
hyperalgesia, and allodynia. Allodynia refers to pain caused by stimuli that do not usually cause
pain, whereas hyperalgesia refers to increased pain caused by stimuli that cause pain (3). Although
distinct neuropathic syndromes induce pain, their clinical symptoms are similar. NP is divided
into peripheral and central NP based on the pathogeny. Cellular and molecular changes in NP
are associated with different pain pathways, among which epigenetic studies primarily focused on
peripheral nerves, dorsal root ganglion (DRG), and dorsal horn (4).

The DRG is located at the junction of the peripheral and central nervous systems (5). In
peripheral nerve injury, nociception is conveyed via primary sensory neurons in the DRG and
back to secondary sensory neurons (6). It is well-known that neuropathic pain is related to
hyperexcitation and internal firing of DRG neurons. There are two types of DRG neurons, type
A and type B. Type A DRG neurons are large and are responsible for touch, vibration, and
proprioception, and type B neurons are small and are responsible for nociception (7). DRG
generates the fibers that convey information, including the activation of nociceptors from the skin,
muscles, and joints to the spinal cord. With continuous nociceptive input, central sensitization
of the spinal cord (i.e., increased reactivity of nociceptive neurons in the central nervous
system to normal or subliminal afferent signals) plays an important role in pain perception (8).
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In response to peripheral afferent tissue injury, signals from
the DRG and spinal cord activate glial cells, increase the
expression of proinflammatory factors (IL-6, IL-1β, and TNF-
α), increase the expression of receptors including nerve
growth factor and TRPV1, alter gene expression, and decrease
the expression of ion channels (i.e., sodium, voltage-gated
potassium, and calcium channels; Figure 1) (9). Notably, voltage-
gated potassium channels play an important role in inducing
spontaneous ectopic discharge, the hyperexcitability of neurons,
and neuropathic pain-like symptoms, which are described in the
following sections.

Epigenetic processes include DNA methylation, covalent
histone acetylation, and non-coding RNA expression (10). DNA
is wrapped around a histone octamer consisting of dimers of
histones H3, H4, H2A, and H2B. Cells regulate gene expression
and the structure and function of chromatin through post-
transcriptional modification of the N-terminal histone tails of
nucleosomes (11, 12). Histone acetylation occurs on lysine
residues and is catalyzed by the histone acetyl transferase
(HAT) family, leading to transcriptional activation. Deacetylation
is performed by the histone deacetylase family of enzymes
(HDACs) and is involved in transcriptional inhibition (13).
Methylated amino acid residues determine the inhibition or
activation of gene transcription. For example, methylation of
Lys9 or Lys27 of histone H3 is usually associated with gene
suppression, while methylation of Lys4, Lys36, or Lys79 of
H3 is usually associated with gene activation (14). MicroRNAs
(miRNAs) are endogenous, non-coding functional RNAs that
range from 19 to 24 nucleotides in size. They bind target
mRNAs, inhibiting translation and leading to the downregulation
of target proteins (15). Emerging evidence has indicated that
histone acetylation and deacetylation, DNAmethylation, and the
regulation of miRNA are closely related to NP (16–20).

NP is involved in the activation of glial cells, the triggering
of inflammatory cascades, abnormal neuronal firing, and
ion channel imbalance in the central and peripheral
nervous systems. Epigenetics can modulate pain responses
by regulating inflammation via ion channels, receptors,
and neurotransmitters. A growing number of studies have
demonstrated that DNA methylation, histone acetylation,
deacetylation, histone methylation, and miRNAs regulate pain
through inflammatory responses (19–25). These studies suggest
that harmful stimuli drive the activation of glial cells and
are involved in epigenetic modification of NP. Ion-channel
imbalances including sodium channels and voltage-gated
calcium channels, often accompanied by spontaneous ectopic
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opioid receptor; MBD, methyl-CpG-binding domain; MDS, myelodysplastic

syndromes; MeCP2, methyl-CpG-binding protein 2; MOR, Mu opioid receptor;
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discharge and hyperexcitation, contribute to the occurrence of
NP in DRG and spinal cord neurons. Furthermore, increasing
evidence suggests that epigenetic modifications contribute to
peripheral nerve injury by modifying ion channel status, and
histone acetylation and methylation have been shown to reduce
pain responses via ion-channel regulation (17, 26, 27).

As a more stable epigenetic modification, DNA methylation
can silence or downregulate promoters or enhancers (28).
Such distinct gene expression profiles could influence pain and
analgesia. In recent years, some studies have demonstrated
that DNA methylation is associated with the pathology of
NP (29, 30). Although studies on the mechanism of DNA
methylation account for an increasing proportion in NP research,
the findings remain limited. In this review, we systematically
describe DNA methylation and demethylation, briefly introduce
the possible mechanism underlying DNA methylation-induced
NP from the perspective of studies with experimental animal
NP models, and aim to reveal a reliable future therapeutic target
for NP.

DNA METHYLATION AND NP

DNA Methylation, DNMTs, and
Methyl-CpG-Binding Domain (MBD)
Proteins
DNAmethylation is important for regulating tissue-specific gene
expression and may affect gene activity variably in different
genomic regions. DNA methylation enables chromatin to
maintain its inactive state in the following two cases: (i) silencing
elements potentially harmful to DNA, such as transposons,
viral DNA, and genes that should not be expressed; and (ii)
avoiding the binding of transcription factors to specific sites in
promoter regions or even by allowing transcription repressor
binding (31). In mammals, DNA methylation is catalyzed by
DNA methyltransferases (DNMTs), which predominantly add
methyl groups from the S-adenosyl-l-methionine to the carbon-
5 position of cytosine bases [5-methylcytosine (5mC)] mainly
located at cytosine-phosphate-guanosine (CpG) islands (32, 33).
Of note, the promoters of most genes, especially housekeeping
genes, are located in CpG islands (34). CpG islands, especially
those associated with promoters, are highly conserved between
mice and humans, suggesting that these regions have important
functions. Peripheral nerve injury reduces DNA methylation
in the prefrontal cortex (PFC) and amygdala. The overall
methylation of PFC correlates with symptom severity (35).
Promoter methylation of the extracellular matrix protein gene
SPARC is increased in cases of chronic lower back pain in
humans and mice (36). Therefore, DNA methylation-mediated
regulation of the pain-related genes in peripheral tissues and the
central nervous system could be involved in the development and
maintenance of NP.

TheDNMT family includes DNMT1, DNMT2, DNMT3a, and
DNMT3b (37–40). The main function of DNMT1 is to maintain
established DNA methylation signatures in the genome and
repair DNA methylation, and it is also known as maintenance
methyltransferase (41). DNMT3a and DNMT3b can reversibly
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FIGURE 1 | DNA methylation in the mechanism of neuropathic pain (NP). The dorsal root ganglion (DRG) and spinal cord produce glial cell responses, stimulating

inflammatory cytokines, nerve growth factors, gene expression, and ion channels under the environment of peripheral afferent fiber injury. CCI, chronic constriction

injury; SNL, spinal nerve ligation; SNI, spared nerve injury; DRG, dorsal root ganglion; NGF, nerve growth factors; Na+, Na+ channels; K+, K+ channels; Ca+, Ca+

channels.

methylate unmethylated DNA and are, thus, classified as de
novo methyltransferases (38, 39). The expression of DNMT1,
DNMT3a, and DNMT3b in adult DRGs is upregulated in the NP
rat model (42). DNMTs inhibit the increase in the methylation of
the Mu opioid receptor (MOR) gene and prevent the decrease
in MOR expression in the DRG, thereby improving morphine
analgesia (43). Nerve injury significantly upregulates DNMT3a,
increasing methylation of the spinal MOR gene promoter, and
decreasing the expression of the MOR protein (44).

DNA methylation is mediated by three separate families
of proteins—MBD, UHRF, and zinc finger proteins (45). Of
these three protein families, MBD proteins are the most well-
studied, especially in the context of revealing their roles in
pain. In the absence of peripheral nerve injury, transcription
factors (TFs) and RNA polymerase II bind to gene promoters,
activating transcription. Themethylation of CpG islands disrupts
the binding of TFs, recruiting DNMT-mediated MBD proteins
to silence gene expression (Figures 2A,B) (45, 46). The MBD
family includes methyl-CpG-binding protein 2 (MeCP2) and
MBD1-6 (47, 48), wherein MeCP2 primarily functions as a
transcriptional repressor. MeCP2 was downregulated in a rat
neuropathic pain model, with concomitant changes in the
expression of HDAC1 and HDAC2 (49). Furthermore, nerve
injury upregulates MeCP2 in the DRG, and the downregulation
of MOR in the DRG is closely related to the increase in the
expression of MeCP2. For example, MeCP2 knockout restores
the expression of MOR in damaged DRGs and enhances the
analgesic effect of morphine (50). Thus, DNA methylation is a
complex epigenetic process, and further studies on the role of
MeCP2 in NP are warranted.

DNMTs and NP
DNMTs, which play a key role in “reading DNA methylation,”
have been studied in recent years with respect to their roles in
NP. As a non-nucleoside (small molecule) DNMT inhibitor,
RG108 blocks the active sites of DNMTs (51), and some

studies have shown that it can relieve pain. K2p1.1 was the
first K2P channel identified in mammals, and its expression
is significantly downregulated after peripheral nerve injury
and may lead to increased neuronal excitability (52, 53). Mao
et al. (29) demonstrated that paclitaxel injection downregulated
K2P1.1 in the DRG. Using a whole-cell current clamp, these
authors demonstrated that neuronal excitability increased
when K2P1.1 was knocked out. They also explored the
underlying mechanism and found that K2p1.1 downregulation
depends on the upregulation of DNMT expression. This
suggested that DNA methylation may be involved in paclitaxel-
induced downregulation of K2p1.1 mRNA in the DRG. The
level of DNMT3a was increased in the DRG after injection
of paclitaxel and, moreover, RG108 might significantly
block paclitaxel-induced mechanical allodynia. Two other
studies have investigated the role of RG108 as a DNMT
inhibitor. Sun et al. (54) found that RG107 increased the
expression of DNMT1 in the DRG and that it did so via
the activation of the transcription factor cAMP response
element-binding protein (CREB), causing DNA methylation
of the Kcna2 (encoding Kv1.2) promoter, thereby reducing
Kv1.2 expression and promoting pain. Decreased Kv1.2
expression reduced the total voltage-gated potassium current,
depolarized the resting membrane potential, and induced
the spontaneous ectopic discharge and hyperexcitability of
neurons and neuropathic pain-like symptoms. Furthermore,
RG108 administration or DNMT1 knockout reduced pain
and allodynia caused by nerve damage. Specifically, DNMT1
knockout prevented neuronal hyperexcitability in the injured
DRG. Another study revealed an increase in DNMT3a
expression in a chronic constriction injury (CCI) model,
and that MOR methylation plays an important epigenetic
role in NP. DNMT3a binds to the MOR promoter, inhibits its
transcription, reduces its mRNA and protein expression levels,
and causes pain (44). The DNMT inhibitor RG108 was found
to significantly block the increase in the methylation of the
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FIGURE 2 | DNA methylation and demethylation: (A) TF and RNAPII bind to the promoter region of the gene, activating transcription at unmethylated promoters. (B)

CpG island methylation is mediated by DNA methyltransferases and induces DNA methylation through MBD proteins. (C) Transcription factors recruit TET enzymes to

specific sites for regulating local DNA demethylation.TF, transcription factor; RNAPII, RNA polymerase II; TSS, transcriptional start site; DNMT,

DNA-methyltransferases; MBD, methyl-CpG-binding domain; TET, ten-eleven translocation.

MOR promoter, consequently upregulating MOR expression to
attenuate NP.

The nucleoside DNMT inhibitor 5-azacytidine prevents the
resolution of a covalent reaction intermediate, which leads to
DNMT being trapped and inactivated in the form of a covalent
protein–DNA adduct (55, 56). The link between 5-azacytidine
and NP was subsequently further clarified, showing that nerve
damage leads to an increase in DNMT3a expression, a decrease in
miR-214-3p expression, and triggers colony-stimulating factor-1
(CSF1) overexpression (57). The DNMT inhibitor zebularine was
also found to significantly reduce methylation of the miR-214-
3p promoter, leading to an increase in miR-214-3p expression
in the ipsilateral dorsal horn and a decrease in CSF-1 content,
which further alleviated the pain behavior of rats after spinal
nerve ligation (SNL).

Small interfering RNAs (siRNAs) and short hairpin RNAs
(shRNAs) are potential epigenetic targets. Unlike DNMT
inhibitors, their sequences can be designed for a specific target
gene. Opioids, the gold standard for NP treatment, have
unsatisfactory analgesic effects, partly due to the downregulation
of opioid receptors in DRG neurons. DNMT3a reportedly
inhibited expression of Oprm1 and Oprk1 and their respective
proteins, namely, MOR and kappa-opioid receptor (KOR), in the
DRG. Microinjection of shRNA-DNMT3a was found to increase
the levels of opioid receptors and relieve pain (30). However,
in another study, the expression of DNMT3b was markedly
downregulated after SNL injury, leading to demethylation of
the GPR151 promoter, thereby promoting the binding of the
transcription factor KLF5 to the GPR151 promoter to further
increase GPR151 expression. The administration of siRNA-
DNMT3b further increased the GPR151 level and exacerbated
pain. In contrast, DNMT3b overexpression reduced pain (58).
The authors of this study showed that SNL-induced NP could
decrease DNMT3b expression, and the administration of a

lentivirus-carrying DNMT3b could relieve pain. They further
confirmed that DNMT3b might lead to the demethylation of the
CXCR3 promoter, further increase the binding of C/EBPa and
CXCR3, promote transcription and expression of CXCR3, and,
thereby, induce NP (59).

DNMTs and their inhibitors appear to have varying effects
on NP; DNMTs do not uniformly increase or decrease NP but
rather act as a methylation tool that affects NP by increasing
or decreasing the expression of specific genes. DNMTs may
combine with gene promoters, leading to the methylation or
demethylation of genes, consequently exacerbating or relieving
NP. The combination of DNA methylation or demethylation
enzymes with specific gene promoters is now recognized
as a mode of NP treatment in the form of methylation.
Thus, understanding the methylation or demethylation of the
corresponding gene promoters caused by DNMT can provide
new guidance for the treatment of NP. Administering gene-
specific siRNA or lentiviral therapy is a prospective treatment
option in the future.

MBD and NP
Thus far, research on NP has mostly focused on MeCP2 from the
MBD protein family. In the SNI and Complete Freund’s Adjuvant
(CFA) model, MeCP2 was found to be overexpressed in neurons
and was downregulated in glial cells (49). MeCP2 was also
reported to be expressed in all dorsal horn neurons of the adult
spinal cord (60). Notably, intrathecal 5-azacytidine administered
via spinal injection significantly inhibited the increase in global
DNA methylation and MeCP2 expression in the spinal cord
(61). In another study, the expression of MeCP2 in the DRG
was upregulated after spared nerve injury (SNI) surgery, which
mediated the upregulation of brain-derived neurotrophic factor
(BDNF) expression and led to pain. Moreover, microRNAs
can decrease the expression level of MeCP2, thereby inhibiting
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BDNF expression and reducing pain (62). Mecp2-null mice also
exhibited decreased BDNF levels in the DRG and decreased pain
sensitivity. Central sensitization refers to nociceptor inputs that
trigger an increase in the excitability of neurons in the central
pain pathway and the prolongation of synaptic potency (63).
Accumulating evidence indicates that in addition to activity-
dependent synaptic plasticity, changes in gene transcription
contribute to the maintenance of central sensitization (37).
As a sensory regulator in the nociceptive pathway, BDNF
affects central sensitization (64). In CCI model rats, DNMT3a,
DNMT3b, and MeCP2 expression levels increased while the
MBD2 expression level decreased in the lumbar spinal cord.
The authors of this study also determined that GAD-1 promoter
methylation reduced the level of GAD-67 protein, which is
the main inhibitor of γ-aminobutyric acid (GABA) synthetase
(65). However, they did not further explain the connection
between gene methylation, DNMT, and the MBD family.
Therefore, the subtype changes between DNMT and MBD
warrant further study.

In contrast to these conclusions, Zhang et al. (66) reported
thatMeCP2 can reduce pain sensitivity. These authors attenuated
mechanical and thermal pain sensitivity through MeCP2
overexpression, rather than administering MeCP2 inhibitors.
The mechanism was found to involve the CREB/miR-132
signaling pathway in the spinal cord. In a study of the
relationship between MBD and NP, Mo et al. (67) demonstrated
that MBD1 deficiency in the DRG triggered a reduction
in pain hypersensitivity following peripheral nerve injury;
MBD1 recruits DNMT3a to the promoters of the Oprm1 and
Kcna2 genes in DRG neurons, inhibiting MOR and Kv1.2
expression and inducing NP. Furthermore, both Mbd1 knockout
and intrathecal administration of siRNA-Mbd1 reduced the
sensitivity of mice to pain.

DNA methylation is a highly complex process. Both
methylation and demethylation regulate gene expression by
inhibiting or activating genes, respectively. The differences in
MeCP2 function previously discussed may be caused by its effect
on different genes. Another reason for the contradictory effects of
MeCP2 in NP models may be related to the temporal properties
of the protein.

DNA DEMETHYLATION

DNA Demethylation and TET
A balance in DNA methylation and demethylation should
be achieved in neurons. In different biological studies, DNA
demethylation has been verified to be both an active and
passive process. Active demethylation refers to the removal
or modification of methyl groups from 5mC during certain
enzymatic processes (68). Notably, along with being an
intermediate form of DNA demethylation, 5-hydroxymethyl
cytosine (5hmC) is an epigenetic marker enriched within
promoters and gene bodies (69). The continuous reaction of ten-
eleven translocation (TET) enzyme initiates DNA demethylation,
and the conversion of 5mC to 5hmC is divided into two
pathways—oxidation and deamination. TET proteins are large
(∼180–230 kDa) multidomain enzymes and include TET1,

TET2, and TET3 (70), with high neuronal and low glial
expression (71). Purified TET enzymes were found to modify
oligonucleotide substrates containing 5mC through oxidation,
and the product was authenticated as 5hmC in CpG regions
(72–74). The three TET enzymes share a conserved C-
terminal domain and a less-conserved N-terminal domain (75).
Additionally, TET1 and TET3may have similar functions, mainly
regulating 5hmC levels at gene promoters and transcription
start sites, while TET2 mainly regulates 5hmC levels in the
gene body (71, 76). Therefore, although the TET family can
generate 5hmC, they may regulate the expression of 5hmC at
different cell sites or at different developmental stages and at
different genomic sites. Several non-enzymatic proteins, such
as TF, could regulate local DNA demethylation in a sequence-
specific manner by recruiting TET enzymes to specific sites
(Figure 2C) (77–79). Significantly high levels of 5hmC are
found in adult neuronal cells (80), and 5hmC is not only an
intermediate for DNA demethylation but also acts as a stable
epigenetic marker, which is enriched in genomes, promoters,
and transcription factor-binding sites, potentially affecting gene
expression. Pan et al. (81) showed that TET1 and TET3 levels
increase significantly in the spinal cord with increased 5hmC
content of the whole genome. Therefore, 5hmC is a key
intermediate that activates the demethylation pathway. This
discovery provides a crucial clue to enrich our understanding of
the mechanism of DNA demethylation.

TET and NP
TET3 was suggested to be the main driving factor for the
upregulation of 5hmC in the DRG after nerve injury (82).
Wu et al. (83) further showed that SNL surgery could trigger
methylation of Oprml1 and Kcna2, thereby increasing the
amounts of 5mC with a corresponding decrease in the level of
5hmC, thus reducing the corresponding MOR and Kv1.2 protein
levels and ultimately causing pain. In contrast, overexpression
of DRG TET1 can block the methylation of these two genes
and increase the 5hmC level, thereby reducing pain. The same
authors also confirmed that overexpression of TET by DRG
microinjection of the herpes simplex virus-TET1 could improve
morphine analgesia and prevent morphine tolerance under
NP conditions (83). However, Hsieh et al. (73) demonstrated
that TET1 expression was enhanced after SNL surgery. Similar
to the results of previous studies, the level of 5hmC in
the dorsal horn of the ipsilateral spinal cord increased in
proportion to the enhanced TET1 expression by SNL. The
level of 5hmC, the excitability of dorsal horn neurons, and
pain could be improved and alleviated after intrathecal siRNA-
TET1 administration. Furthermore, SNL increased the binding
of TET1 to the Bdnf promoter and increased the 5mC/5hmC
transformation mediated by TET1 at the CpG site of the Bdnf
promoter. These effects could be reversed by spinal cord-targeted
injection of siRNA-TET1 (73). The same group subsequently
showed that NP is related to TET1-mediated demethylation
(84); melatonin was found to reverse TET expression, mGluR5
promoter demethylation, and pain hypersensitivity induced by
Tet1 gene transfer. We summarize the key studies focusing on
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TABLE 1 | Roles of DNMT, MBD, and TET proteins in neuropathic pain (NP) in rodent models.

Pain model DNMT involved Tissue Target genes

(Positive control ↑

and negative control

↓)

Inhibition or

overexpression

Nociceptive behavior

response to

inhibitors

Reference

Paclitaxel-induced DNMT3a DRG K2P.1.1 ↓ RG108 Thermal ↓

Mechanical ↓

(52)

SNL DNMT3a DRG MOR and KOR ↓ ShRNA-DNMT3a Thermal ↓ (30)

SNL/CCI DNMT1 DRG Kv1.2↓ RG108 Thermal ↓

Mechanical ↓

Cold ↓

(54)

CCI DNMT3a Spinal cord MOR ↓ RG108 Thermal ↓ (44)

SNI DNMT3a DRG CFS1 IL-6 ↓ Zebularine Thermal ↓

Mechanical ↓

(57)

SNL DNMT3b Spinal cord GPR151↓ siRNA-DNMT3b Thermal ↑

Mechanical ↑

(58)

SNL DNMT3b Spinal cord CXCR3 ↑ LV-Dnmt3b Thermal ↓

Mechanical ↓

(59)

SNL MBD1 DRG MOR and KV.1.2 ↓ MBD1–/–

MBD1-siRNA

Thermal ↓

Mechanical ↓

Cold ↓

(67)

CCI MECP2 Spinal cord / 5-Azacytidine Thermal ↓

Mechanical ↓

(61)

SNI MECP2 DRG BDNF↑ MeCP2-null Mechanical ↓ (62)

CCI MECP2 and

MBD2

Spinal cord GAD679(MeCP2 ↓,

MBP2 ↑)

/ / (65)

SNI MECP2 Spinal cord p-CREB ↓ Overexpressing MeCP2 Thermal ↓

Mechanical ↓

(66)

SNI TET3 DRG / / / (82)

SNL TET1 DRG Oprml1 and Kcna2 ↑ HSV-TET1 Thermal ↓

Mechanical ↓

(83)

SNL TET1 Spinal cord mGluR5↓ Melatonin Thermal ↓

Mechanical ↓

(84)

SNL TET1 Spinal cord BDNF ↓ siRNA-TET Thermal ↓

Mechanical ↓

(73)

CCI, chronic constriction injury; SNL, spinal nerve ligation; SNI, spared nerve injury; siRNA, small-interfering RNA; shRNA, short hairpin RNA; DRG, dorsal root ganglion; DNMT, DNA

methyltransferases; MBD, methyl-CpG-binding domain; TET, ten-eleven translocation; LV, lentivirus; HSV, herpes simplex virus.

the links between DNMT, MBP, and TET proteins with NP
in Table 1.

Overall, these results suggest that TET-based treatment of
NP remains complex because although TET1 overexpression can
alleviate pain, TET reduction can also relieve pain. Moreover,
similar to DNMT, the genes that TETs combine with also vary.
Furthermore, the demethylation of other genes promoted by
TET1 overexpression or TET inhibition under NP conditions
cannot be excluded. Thus, treating NP with TET requires more
in-depth research and extensive trials.

CHALLENGES AND PERSPECTIVES

NP is a complex disease with multiple pathologies. DNA
methylation could act as a trigger, a downstream response
mechanism, or could play a role in both processes. Epigenetic
adaptations lead to chronic increases in hyperalgesia and
allodynia; therefore, new treatment strategies that address NP

are necessary (85). The DNMT inhibitors 5-azacitidine and
decitabine are approved for treating myelodysplastic syndrome
(86, 87). As a DNMT inhibitor, decitabine was approved in May
2006 for the treatment of myelodysplastic syndromes (MDS)
and chronic myelogenous leukemia. Adverse reactions, such as
hyperbilirubinemia, pneumonia, and constipation, appeared in
phase 3 of the trial during treatment of MDS (88); however, other
DNMT inhibitors have not been clinically applied. Therefore,
many clinical trials are required to evaluate if they have the same
side effects when applied to NP patients. Furthermore, not all
drugs are tissue-specific. Thus, epigenetic treatment of NP may
lead to unpredictable long-term side effects.

In the spinal cord, the barrier between blood and neuronal
tissue is formed by the blood-spinal cord barrier, and in the
peripheral nervous system, the endothelial blood vessels and
perineurium form the blood-nerve barrier. Drugs must pass
through these barriers to the peripheral or central nervous
system to modulate pain. In animals, altering the route of
administration, such as direct delivery to the spinal cord or brain
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or, more subtly, by microinjecting drugs into the DRG, could
help overcome these limitations; however, this is challenging
in humans. Therefore, future studies on NP should focus on
the underlying epigenetic mechanisms and tissue-selective drug
delivery. In addition, whole-genome methylation assays are
warranted. Epigenomic editing could enable the targeting of
selected modifications for the design of individualized treatments
for NP patients, ideally specifically targeting the affected cells
(89, 90).

The role of gender is another important consideration.
Indeed, clinical studies have shown that women are at higher
risk of chronic pain and exhibit greater pain sensitivity. Sex
hormones, endogenous opiate functions, and genetic factors are
the main reasons for these differences (91–93). For example, in
preclinical trials, male and female animals respond differently
to pain under the same conditions (94); female CD-1 mice
required two to three times more morphine than male mice
to produce the same analgesic effect (95). Furthermore, the
Delta opiate receptor (DOR) helps control pain, and pain
tolerance was abolished in females with DOR knockout but not
in male mice (96). In the context of epigenetics and gender,
gender bias in DNA methylation levels has been found in
many animal and human studies (97–99). Thus, as epigenetics
can regulate opiate receptors, receptors display sex differences.
Currently, the available evidence does not support gender-
specific DNA methylation-based treatment of NP, but this is a
conceivable future outcome. Further research is now needed to
elucidate the underlying epigenetic and gender-based differences
in pain response.

CONCLUSIONS

Although an increasing number of studies have been conducted
on NP animal models and DNA methylation, numerous

promising therapeutics have failed in clinical trials (100, 101).
The pain-causing gene or protein targets identified in animals
may not be major contributors to pain in humans due to
species differences in pain-modulation pathways. Basic cellular
and molecular differences between animals and humans usually
underlie these failures. Furthermore, there are also some
uncertainties, such as the pathophysiological mechanism of pain
in specific patients, dose selection in clinical trials, and the
inability of animal models to accurately reflect the complex
emotional responses humans have to pain (102, 103). In the
context of difficulties in preclinical to clinical translation,
improved animal models and a focus on pain circuitry are also
needed to address epigenetic therapy. Given that NP remains a
challenging condition to manage and the contribution of DNA
methylation to this disorder is becoming increasingly recognized,
the significance of DNA methylation in NP could become
more apparent in coming years, and novel ways to study DNA
methylation will likely be the primary focus of further studies.
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