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Therapeutic monoclonal antibodies (mAbs), including immune checkpoint inhibitors (ICIs),
are an important breakthrough for the treatment of cancer and have dramatically changed
clinical outcomes in a wide variety of tumours. However, clinical response varies among
patients receiving mAb-based treatment, so it is necessary to search for predictive
biomarkers of response to identify the patients who will derive the greatest therapeutic
benefit. The interaction of mAbs with Fc gamma receptors (FcgR) expressed by innate
immune cells is essential for antibody-dependent cellular cytotoxicity (ADCC) and this
binding is often critical for their in vivo efficacy. FcgRIIa (H131R) and FcgRIIIa (V158F)
polymorphisms have been reported to correlate with response to therapeutic mAbs.
These polymorphisms play a major role in the affinity of mAb receptors and, therefore, can
exert a profound impact on antitumor response in these therapies. Furthermore, recent
reports have revealed potential mechanisms of ICIs to modulate myeloid subset
composition within the tumour microenvironment through FcgR-binding, optimizing their
anti-tumour activity. The purpose of this review is to highlight the clinical contribution of
FcgR polymorphisms to predict response to mAbs in cancer patients.

Keywords: cancer immunotherapy, Fc gamma receptor (FcgR), immune checkpoint inhibitors, monoclonal
Abs, polymorphisms
INTRODUCTION

Over the last three decades, the number of therapeutic monoclonal antibodies (mAbs) in clinical use
has increased exponentially. During this period, over 80 mAbs have received marketing approval for
treating cancer, autoimmune diseases, and infectious diseases by regulatory agencies (1). MAb-
based treatment of cancer has been established as a therapeutic strategy for several hematologic and
solid tumours, including those that target tumour antigens, anti-human epidermal growth factor
receptor 2 (HER2) (e.g. trastuzumab), anti-CD20 (e.g. rituximab) and anti-epidermal growth factor
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receptor (EGFR) (e .g . ce tuximab) . More recent ly ,
immunomodulatory mAbs that target immune system
regulatory molecules have emerged. Immune checkpoint
inhibitors (ICIs), including anti-cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4) (e.g. ipilimumab), anti-
programmed cel l death 1 (PD-1) (e .g . nivolumab,
pembrolizumab, cemiplimab) and anti-PD ligand 1 (PD-L1)
(e.g. durvalumab, avelumab, atezolizumab) have been approved
by regulatory agencies in different indications (2). Despite the
promising anti-cancer activity shown by therapeutic mAbs, a
considerable fraction of patients do not respond to treatment and
could even develop mAb-mediated toxicity (3, 4).The search for
robust biomarkers to predict response, resistance, or toxicity to
these novel therapies is, therefore, mandatory and understanding
the mechanisms of action of mAbs is of critical importance.

Therapeutic mAbs belong to the immunoglobulin (Ig) G class
of molecules. The anti-tumour activity of these mAbs can be
exerted through crystalline fragment (Fc) gamma receptor
(FcgR)-independent and FcgR-dependent mechanisms.
Tumoricidal effects in vivo by FcgR-independent mechanisms
include activation of signalling cascades that induce cellular
apoptosis through antigen-binding fragment (Fab´)2-mediated
cross-linking of target molecules and/or signalling inhibition
through ligand blockade. FcgR-dependent mechanisms of
action include activation of components of the classical
pathway of complement and/or recruitment of cytotoxic or
phagocytic innate effector cells with FcgR, such as natural killer
(NK) or macrophages (5). Antibody-dependent cell-mediated
cytotoxicity (ADCC) is defined as the immune mechanism
through which Fc-receptor-bearing effector cells can kill target
cells that have antigen-antibody complexes on their surface after
Fc-FcgR binding. Preclinical studies have demonstrated that
recruitment of immune effector cells is essential for ADCC
in tumour microenvironment (TME) (5). Antibody-dependent
cellular phagocytosis (ADCP) is another important Fc-mediated
mechanism of action by which phagocytic cells such as
macrophages, monocytes, or neutrophils, contribute to
antitumor potency of mAbs. For example, trastuzumab and
rituximab have been shown to rely on the activation of FcgRs
for efficient tumor killing in breast cancer and lymphoma
preclinical models (6, 7). Thus, anti-cancer mAbs can cause
different effects inside and outside the TME such as oncogenic
pathway blockade, anti-angiogenesis, modulation of immune
response against tumour cells or elimination of tumour cells by
ADCC or ADCP [reviewed by ref. (8)]. The relevance of the
affinity of the Fc-FcgR interaction during ADCC or ADCP has
been suggested by preliminary data that show that FcgR genetic
variants can significantly influence it (9). Single nucleotide
polymorphisms (SNPs) of FcgR can alter ligand binding (e.g.
by changing the affinity of FcgR for a particular IgG subclass),
affect receptor function or modify its level of expression, and
directly impact the effectiveness of immune response for mAb-
based regimens in cancer patients (10).

This review focuses on the possible impact of FcgR genetic
polymorphisms in a clinical setting and their future contribution
as biomarkers of response to therapeutic mAbs. Table 1
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summarizes the most relevant clinical studies published to
date. This work was based on a comprehensive search for
relevant studies in the PubMed database including the
keywords “Fc gamma receptor polymorphisms” AND “Clinical
trials” OR “Experimental data” (the last search update was on 18
May 2022).
FC GAMMA RECEPTOR FUNCTION
AND POLYMORPHISM

FcgRs are members of the Ig family and are expressed mainly by
hematopoietic cells. They bind to the Fc portion of IgG and are
essential in the control of both humoral and innate immune
responses (37). These receptors may be classified by their affinity
for IgG and signalling activities [reviewed by (38)]. There are two
functionally defined subtypes of human FcgRs: activating and
inhibitory. Activating FcgRs include FcgRI (CD64), FcgRIIa
(CD32a), FcgRIIc (CD32c), FcgRIIIa (CD16a), and FcgRIIIb
(CD16b). Some activating human FcRs, such as FcgRIIa and
FcgRIIc, carry their own immunoreceptor tyrosine-based
activating motif (ITAM) in their intracytoplasmic domains to
initiate cellular activation. FcgRIa and FcgRIIIa are associated
with signaling adaptor FcR-g chain or CD3zeta chain that
contain ITAM for signaling transduction while FcgRIIIb is a
glycophosphadylinositol-linked surface receptor that requires
the associated MAC-1 (CD11b/CD18) for activation signal
transduction [reviewed by (9)]. Inhibitory FcgRIIb (CD32b)
possess an immunoreceptor tyrosine-based inhibitory motif in
their intracytoplasmic domain, which serves to limit responses
through the activation of FcgRs as well as other stimulatory
receptors [reviewed by (39)]. Preclinical studies have established
that the ratio of activating to inhibitory receptor engagement
determines FcgR-dependent antibody-mediated target cell
depletion (40).The magnitude of the activation or inhibition of
the immunological response triggered by FcgRs not only depends
on the corresponding signalling pathways, but also on the level of
expression and the affinity for the ligand. High-affinity FcgRI is
constitutively expressed by monocytes and macrophages, and its
expression can be induced on other myeloid cells under
inflammatory conditions. Its binding produces ADCC and it is
able to bind to immune complexes or free/monomeric Ig,
regulating plasma IgG levels (41). FcgRII and FcgRIII are low
affinity receptors that can only bind to aggregated or opsonized
IgG and immune complexes, and can trigger a range of effector
and immunoregulatory functions, including degranulation,
phagocytosis and regulation of antibody production. FcgRIIa is
widely expressed on all subsets of the myeloid lineage
but is absent from lymphocytes. It has an important role
in phagocytosis of IgG2-opsonized targets. FcgRIIb is
predominantly expressed in B-lymphocytes, and is involved in
inhibiting signalling from the B-cell receptor (BCR). There is also
evidence that FcgRIIb is not the only FcgR capable of mediating
inhibitory signalling, with inhibitory ITAM signalling being
observed downstream of activatory FcgR ligation in some
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circumstances [reviewed by (42)]. FcgRIIc mRNA and protein
have been detected in B cells from healthy FcgRIIc-57Q donors,
which counterbalances the negative feedback of FcgRIIb and thus
regulated cell’s activation threshold (43). NK cells, monocytes
and neutrophils may also expressed FcgRIIc although its
functionality is not yet fully determined [reviewed by (38)].
FcgRIIIa induces NK cell-mediated ADCC and is also
responsible for the clearance of immune complexes by
macrophages. Activating FcgRIIIa on macrophages are
important for mediating ADCP. In vitro studies of
tratuzumab-mediated ADCP of HER2-overexpressing tumor
cells demonstrate that FcgRIIIa has greater influence than
FcgRIIa (7). FcgRIIIb is selectively present on neutrophils and
on a subset of basophils and plays a major role in the secretion of
toxic products in response to immune complexes (44). Available
preclinical evidence suggests that FcgRIIIb cooperates with
activating FcgR, like FcgRIIa/c, to promote phagocytosis of
opsonized microbes (44). However, in the context of cancer
FcgRIIIb likely serves as a decoy receptor for IgG, likewise
Frontiers in Oncology | www.frontiersin.org 3
competing with FcgRIIa for the binding of therapeutic
antibodies, thereby resulting in decreased ADCC (45). The
different characterization of human FcgRs and their known
functional effects are shown in Table 2.

The different isotypes of IgG have different affinities for FcRs,
conditioning their biological effect. IgG2 and IgG4 interact
poorly with FcgRs, whereas IgG1 and IgG3 show a higher
affinity (Table 2). In addition, allelic variants of FcgRs located
in extracellular Ig-like domains that bind to IgG, can affect the
binding affinity between the FcgR and IgG subclass. FcgRIIa
contains a single nucleotide polymorphism (c.519G>A) at codon
131 that results in an arginine (R) to histidine (H) substitution in
the second Ig-like domain (46). Previous studies have reported
that FcgRIIa-131H allele has a higher binding affinity for IgG3
and IgG2 than FcgRIIa-131R (47). Sanders et al. reported a
higher capacity for IgG2-mediated phagocytosis in neutrophils
carrying the 131H/H variant compared with those carrying the
131R/R genotype (48). Moreover, the FcgRIIa-131H allele is
involved in susceptibility to autoimmune disease [reviewed by
TABLE 1 | Associations between the FcgRIIa and FcgRIIIa polymorphisms and clinical benefit.

mAb FcgRIIa-131
Genotype

FcgRIIIa-158
Genotype

Cancer Disease Total
Patients

Clinical Association Study Reference

Rituximab – V/V FL 49 Higher RR Cartron et al. (11)
Rituximab H/H V/V FL 87 Higher RR Weng et al. (12)
Rituximab – V/V FL and MCL 171 Higher EFS Ghielmini et al. (13)
Rituximab – V/V FL 66 Longer OS Persky et al. (14)
Rituximab – V carriers DLBCL 113 Higher RR and CR Kim et al. (15)
Rituximab – V carriers DLBCL 34 Higher RR

Longer OS
Zhang et al. (16)

Rituximab – V carriers NHL 1050 Higher CR rate (in Asian patients) Liu et al. (17)
Daratumumab – F/F r/r MM 148 Higher RR

Longer PFS (in multivariate Cox regression analysis)
van de Donk et al.
(18)

Trastuzumab H/H V/V mBC 54 Higher RR
Longer PFS

Musolino et al. (19)

Trastuzumab – V carriers early-stage BC 1156 Longer DFS Gavin et al. (20)
Trastuzumab H/H – early-stage/mBC 15/35 Higher RR

Longer PFS (only in mBC group)
Tamura et al. (21)

Trastuzumab H/H or H/R – BC 132 Higher EFS Roca et al. (22)
Trastuzumab H/H V/V GC 42 Longer PFS (for H/H genotype)

Higher DCR (for the combination of H/H and V/V
genotype)

Wang et al. (23)

Margetuximab – F carrriers mBC 506 Longer PFS Rugo et al. (24)
Cetuximab H/H V/V mCRC 69 Longer PFS Bibeau et al. (25)
Cetuximab – V carriers mCRC 52 Higher RR

Longer OS
Etienne-Grimaldi
et al. (26)

Cetuximab H/H or H/R V carriers mCRC 96 Higher RRLonger PFS (for V/- allele) Trotta et al. (27)
Cetuximab H/H F/F mCRC 595 Longer OS(for H/H genotype only or in combination

with F/F genotype)
Shepshelovich et al.
(28)

Cetuximab H/H – mCRC 293 Longer PFS and OS Liu et al. (29)
Cetuximab H/H or H/R F carriers mCRC 39 Longer PFS Zhang et al. (30)
Cetuximab – F carriers advanced CRC 58 Longer OS Dahan et al. (31)
Cetuximab H/H – mCRC 106 Higher DCR Rodriguez et al. (32)
Cetuximab H/H V/V recurrent and

mHSNCC
103 Longer PFS and OS Magnes et al. (33)

Farletuzumab H/H V/V EOC 461 Longer PFS in patients with low baseline CA125 levels Wang et al. (34)
Ipilimumab – V carriers Melanoma 121 Higher RR Van Allen et al. (35)

Snyder et al. (36)
Ipilimumab – V carriers Melanoma 51 Longer OS Snyder et al. (36)
June 2022 | Volume
mAb, monoclonal antibody; mBC, metastatic breast cancer; EOC, epithelial ovarian cancer; mCRC, metastatic colorectal cancer; DLBCL, diffuse large B cell lymphoma; FL, follicular
lymphoma; mHSNCC, metastatic head and neck squamous cell carcinoma; MCL, mantle cell lymphoma; r/r MM: relapsed/refractory multiple myeloma; NHL, non-Hodgkin lymphoma;
EFS, event-free survival; DCR, disease control rate; OS, overall survival; D/PFS, disease/progression free survival; RR, response rate.
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(49)]. The substitution of phenylalanine (F) to valine (V) at
position 158 (c.559T>G) in extracellular domain 2 of FcgRIIIa
originates a variant (158V) with a higher affinity for IgG1 and
IgG3 than the 158F variant, and permits IgG4 binding (50). Wu
et al. showed that IgG-stimulated NK cells from individuals with
FcgRIIIa homozygous for the V allele elicited a larger flux in
intracellular calcium, a greater degree of cell activation, and a
more pronounced program of activation-induced cell death than
those with the F/F genotype (51). Recently, Nyborg et al.
demonstrated that the FcgRIIIa polymorphic 158V variant has
an approximately 10-fold higher affinity for IgG1 than FcgRIIIa-
158F (52). For both SNPs referred above, it was also reported that
the higher binding affinity correlated with enhanced lytic activity
of effector cells and increased cytokine release in several
preclinical studies (51, 53, 54). In leukocyte–based in vitro
assays, Hussain et al. reported a stronger IFN-g response to
mAbs in donors homozygous for both FcgRIIa-131H and
FcgRIIIa-158V alleles compared to donors homozygous for the
low affinity alleles (54). Other less prevalent SNPs in Caucasian
populations (<2%), such as the homozygous FcgRIIb-232-T
genotype (c.695T>C), appear to affect inhibitory BCR
signalling (55). Several reports have shown that FcgRIIb-232-
T/T is associated with susceptibility to autoimmunity (56).
Recently, three novel variants within the FcgRIa gene have
been reported (c.-131C>G, c.970G>A or FcgRIa-p.D324N,
c.845-23_845-17delTCTTTG). Genetic analyses revealed that
FcgRIa genotypes were significantly associated with sarcoidosis
susceptibility and severity (57). Table 2 shows the most relevant
FcgR polymorphisms and their functional effects [reviewed by
(38)]. These polymorphic variants can significantly influence the
effectiveness of both ADCC and immunotherapeutic regimens
containing mAbs [reviewed by (58)].
Frontiers in Oncology | www.frontiersin.org 4
On the other hand, several studies have demonstrated that
genes coding for FcgRIIc, FcgRIIIa and FcgRIIIb exhibit copy
number variations (CNV) (38). These CNV can alter the level of
FcgR expressed at the cell surface and thus affect cellular function
through gene dose mechanisms [reviewed by (10)]. For FcgRIIc,
van der Heijden et al. have demonstrated an association between
CNV and surface expression of FcgRIIc-ORF (FcgRIIc-open
reading frame) allele in NK cells, leading to the activation of
NK cell-mediated ADCC (59). CNVs of FcgRIIIb are very
common in human populations. Numerous studies show that
FcgRIIIb CNV are significantly associated with a number of
inflammatory diseases and it role in immune responses is well
established (60, 61). These studies reported a link between FcgR
CNV and disease pathogenesis, and so it of interest to determine
whether these genetic rearrangement have an impact on disease
such as autoimmunity, cancer or infection.
RITUXIMAB

Rituximab is a chimeric IgG1 mAb directed against CD20, an
antigen expressed by B cells (62). It induces B-lymphocyte
depletion through at least four pathways: ADCC, ADCP,
complement-dependent cytotoxicity (CDC), and direct
antitumor effects via either apoptosis or other cell death
pathways (63). Rituximab maintenance, either after induction
with rituximab alone, or with chemotherapy, has demonstrated a
clinical benefit in patients with hematological diseases [reviewed
by (64)]. Although its efficacy for the treatment of B-cell
hematologic malignancies is well established, some patients do
not respond to first-line treatment, and others experience relapse
after initial response to therapy (64). Several factors have been
TABLE 2 | Overview of FcgRs and their functional effects (Modified from Bournazos et al. and Bruhns et al.).

IgG receptor FcgRI FcgRIIa FcgRIIb FcgRIIc FcgRIIIa FcgRIIIb

Affinity for
IgG (Ka)

High
(109-1010/M)

Low
(<107/M)

Low
(<107/M)

Low
(<107/M)

Low
(<107/M)

Low
(<107/M)

Specificity for
IgG subclass

IgG1 = IgG3 >>> IgG4 IgG1 >>> IgG3 > IgG2 >
IgG4

IgG3 = IgG4 > IgG1 >
IgG2
(only I232 for
polymorphism)

IgG3 = IgG4 >
IgG1 > IgG2
(only Q13 for
polymorphism)

IgG3 >>> IgG1 = IgG4
> IgG2

IgG3 > IgG1

Cellular
expression

Monocytes, macrophages,
subset of dendritic cells and
PMN (IFN-g or G-CSF-induced)

PMN, monocytes,
macrophages, platelets
and subset of endothelial
cells

Monocytes,
macrophages,
dendritic cells, basophil
and B cells

Monocytes,
macrophages,
NK cells

Monocytes,
macrophages, NK
cells and gamma-delta
T-cells

Neutrophils and
basophils

Relevant SNP c. -131C>G;
c.845-23_845-17delTCTTTG;
D324N

R131H I232T Q57X V158F HNA-1a

Signalling
activities

Activation Activation Inhibition Activation Activation Activation

Functional
effect

Regulation of IgG levels,
phagocytosis and ADCC

Induces phagocytosis and
mediator release

Regulation of B cells
and phagocytosis

Mechanism
unknown

Phagocytosis and
ADCC

Phagocytosis

Functional
effect of
polymorphism

-131G: higher promoter activity;
c.845-23_845-17delTCTTTG:
lower CD64 expression;
N324: higher degranulation and
more pro-inflammatory cytokine
production

H131: higher affinity for
IgG2

T232: decreased
inhibitory activity

Truncated
non-functional
protein

V158: higher affinity for
IgG1 and IgG3, bind
IgG4

NA1: higher
degranulation and
more
phagocytosis
June 2022 | Volume
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suggested to explain failures (65-67), including FcgR genetic
polymorphisms and FcgR protein expression level (11–14). For
example, it has been well-documented FcgRIIb promoting
resistance role to antibody therapy when expressed on tumor B
cells (68, 69). FcgRIIb-mediated internalization of anti-CD20
reduces phagocytosis of tumor B cells (68) and, thus, high
FcgRIIb expression can be associated with shorter survival in
patients with B-cells malignances after rituximab-containing
regimens (70).

In vitro studies suggest that FcgR polymorphisms are
associated with response to rituximab. A study conducted by
Dall´Ozzo et al. demonstrated that FcgRIIIa-158V genotype
displays a higher affinity for rituximab than FcgRIIIa-158F
genotype by comparing rituximab concentrations inhibiting
the binding of anti-CD16 with V/V NK cells and NK
cells homozygous for FcgRIIIa-158F/F (71). When the efficacy
of B-cell lysis by NK cells obtained from healthy donors is
analysed, the rituximab concentration resulting in 50% lysis
(EC50) observed with NK cells from V/V donors was 4.2 times
lower than that observed with NK cells from F/F donors (71).
Based on the observed influence of FcgRIIIa polymorphisms in
vitro, several retrospective studies in patients with non-hodgkin
lymphomas (NHL) treated with rituximab have looked for a
possible correlation between FcgRIIIa polymorphisms and
clinical outcomes (11–14).

Carton et al. reported the results of a study including 49
patients with untreated follicular lymphoma (FL) (11, 12). They
found that FcgRIIIa-158V/V patients (20% of population) had
an improved response rate (RR) at 2 months and 12 months
compared with FcgRIIIa-158F carriers (100% vs 67% and 90% vs
51%, respectively; p=0.03). However, there was a non-statistically
significant difference in progression free survival (PFS) (11).
Weng et al., in a study including 87 patients with FL, reported
that patients with the FcgRIIIa-158V/V genotype showed higher
RR to rituximab compared with 158V/F and 158F/F genotypes at
6, 9 and 12 months (85% vs 45%, 75% vs 36% and 75% vs 26%,
respectively; p<0.05) (12). They also found that patients with
FcgRIIa-131H/H showed a significantly higher RR than carriers
of the 131R allele at 6, 9, and 12 months (80% vs 43%, 70% vs
32% and 55% vs 26%, respectively; p<0.05). In addition, a
statistically significant improvement in PFS at 2 years was
observed for patients with FcgRIIIa-158V/V and FcgRIIa-
131H/H genotype (45% for V/V vs 14% for F carriers and 37%
for H/H and 14% for R carriers; p<0.05) (12). Ghielmini et al.
reported that the FcgRIIIa-158V/V genotype constituted an
independent factor for higher event-free survival (EFS), but not
RR, in patients with FL and mantle cell lymphoma (MCL) treated
with single-agent rituximab (13).

The SWOG trial evaluated 66 FL patients treated with anti-
CD20 mAb-containing regimens [rituximab (n=26) or
tositumomab (n=40)] and evidenced an improved overall
survival (OS) in carriers of the FcgRIIIa-158V allele
compared with those with the F/F variant (Hazard ratio (HR)
=0.33, 95% CI, 0.11-0.96, p=0.042), with 5-year OS of 100%,
97% and 75% for V/V, V/F and F/F, respectively. There were no
differences with regards to the FcgRIIa polymorphisms (14).
Frontiers in Oncology | www.frontiersin.org 5
Kim et al. observed, in 113 patients with diffuse large B-cell
lymphoma (DLCBL) receiving standard therapy, that
significantly higher complete (CR) and overall response rates
(ORR) were associated with the FcgRIIIa-158V/V genotype,
compared with FcgRIIIa-158V/F or F/F (CR: 88% in V/V vs
79% in V/F vs 50% in F/F; ORR: 98% in V/V vs 90% in V/F vs
50% in F/F; p=0.002) (15). Zhang et al. confirmed these data in
34 patients with DLCBL, with a 1-year OS in the group with
FcgRIIIa-158V/V or V/F genotype higher than group with F/F
genotype (80% in V/V and V/F vs 60% in F/F p<0.05) (16).
However, in both studies, patients clinical outcome was not
affected by FcgRIIa genotypes.

A meta-analysis of 10 studies involving 1050 patients of
European and Asian origin (472 patients with DLBCL and 578
patients with another NHL), investigated a possible association
between the FcgRIIIa polymorphism and non-responsiveness to
rituximab-based therapy in NHL (17). The data showed that
Asian patients with the FcgRIIIa-158V allele have a significantly
higher CR rate compared with those with the F/F genotype
(p<0.05), confirming an association between the FcgRIIIa-158F/
F genotype and a poor response to rituximab-based
chemotherapy in NHL Asian patients (17).

PRIMA and RESORT trials evaluated the influence of
FcgRIIIa and FcgRIIa polymorphisms in FL patients treated
with rituximab. The PRIMA study included 460 previously
untreated patients with high tumour burden that received the
usual induction immunochemotherapy and maintenance with
rituximab, whereas in the RESORT trial, 408 previously
untreated patients with low tumour burden were treated with
single-agent rituximab. Both trials reported that FcgRIIIa and
FcgRIIa polymorphisms did not influence therapeutic outcomes
of rituximab in patients with FL, either combined with
chemotherapy or used as maintenance treatment (72, 73).
Some previous small retrospective studies of rituximab in FL
were also consistent with these results (74–76). Concerning
DLBCL, Ghesquiéres et al. evaluated the prognostic value of
FcgRIIIa and FcgRIIa in two prospective cohorts from LYSA
(n=554) and SPORE (n=580) trials of patients treated with
anthracycline–based chemotherapy and rituximab (77). They
found no association between FcgRIIIa and FcgRIIa SNPs and
EFS or OS. Recently, in patients with previously untreated
advanced FL or DLBCL, these results have been confirmed in
the GALLIUM (n=1202) and GOYA (n=1418) trials that
assessed the potential impact of these FcgR genotypes on the
efficacy of obinutuzumab or rituximab in combination with
chemotherapy, respectively (78). Several previous smaller
studies agree with these results (79–84). According to the
authors, one explanation for the lack of prognostic value for
FcgRIIIa genotypes in the context of immunochemotherapy is
that the association between chemotherapy and rituximab is
deleterious for ADCC effectors (77). On the other hand, in a
meta-analysis using an ordinal model, these authors reported
that the FcgR–IIa-131R allele was associated with a better EFS
(HR=0.87; 95%CI, 0.76–0.99; p=0.04) and OS (HR=0.86; 95%CI,
0.73–1.00; p=0.05). One hypothesis for this unexpected outcome
with the low affinity FcgRIIa-131R/R could be that this SNP
June 2022 | Volume 12 | Article 926289
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causes a reduced clearance of rituximab that increases anti-CD20
availability (77).

In patients treated with rituximab-containing regimens for
chronic lymphocytic leukaemia (CLL) there is no evidence of an
association between FcgR polymorphisms and clinical outcomes
(85, 86).

In conclusion, the prognostic effect of FcgRIIIa has mainly
been observed in FL patients treated with single agent rituximab
(11–13) or by immunochemotherapy (14) in small retrospective
studies. Nonetheless, prospective clinical trials have not
identified a clear prognostic impact for FcgR polymorphisms in
patients treated with anti-CD20 mAb (72, 73, 77, 78).
Discrepancies between the different studies can be attributed to
many factors, including biologic heterogeneity, clonal evolution,
tumour bulk, prior treatments, numbers of patients and host
factors. It is also important to note that CNVs of FcgRIIIa were
not determined in these studies, which could significantly affect
the homozygous counts of FcgRIIIa genotypes. In addition, the
existence of other factors or mechanisms of resistance may
influence the efficiency of ADCC in tumour eradication (87).

Thus, the use of FcgR polymorphisms as predictive
biomarkers of response to rituximab is still inconclusive in
hematological disorders.
DARATUMUMAB

CD38 is a type II transmembrane glycoprotein highly expressed
in multiple myeloma (MM). Daratumumab is a CD38-targeting
IgG1 antibody. The efficacy of daratumumab both as
monotherapy and in combination with standard-of-care
regimens in MM has been established in clinical trials (18).The
mechanisms of action by which daratumumab exerts its
antitumor effects include tumour cell apoptosis upon FcgR
cross-linking, CDC, ADCC and ADCP (88).

In the GEN501 and SIRIUS studies, 148 relapsed/refractory
(r/r) MM patients received daratumumab as single agent.
Analysis of FcgRIIa and FcgRIIIa polymorphisms were
performed in 96 and 94 patients, respectively. An increased RR
was observed among patients treated with daratumumab with
the FcgRIIIa-158F/F polymorphism (≥ partial response (PR):
47.6%), versus those with the FcgRIIIa-158V/F (≥PR: 20.0%) and
V/V polymorphisms (≥PR: 20.0%) (p=0.0049). In multivariate
Cox regression analysis, the FcgRIIIa-158F/F polymorphism was
significantly associated with improved PFS [HR=1.65 (95% CI,
1.04-2.61), p=0.033]. The FCGR2A-131H/R polymorphism did
not significantly predict clinical outcome to daratumumab
therapy. In both univariate and multivariate analysis, OS was
not affected by the Fc receptor genotype subsets. They concluded
that selecting patients based on FcgR genotype alone does not
seem to be warranted, given that patients with less favourable
genotypes may also derive marked clinical benefit from
daratumumab treatment (89). It is important to highlight that
daratumumab treatment leads to rapid depletion (85%) of
CD38pos NK cells, lasting up to 6 months following cessation
of treatment (90). Therefore, ADCC may play a lesser biological
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role than originally thought in terms of clinical response
to daratumumab.
TRASTUZUMAB

HER2, also known as Neu, ErbB-2, CD340 or p185, is an
oncoprotein amplified or over-expressed in ~30% of breast
cancers (BC) and other tumours, strongly associated with
increased disease recurrence and worse prognosis (91). Ligand
binding can induce homo- and heterodimerization among the
different ErbB family receptors, inducing a downstream signal
that leads to cell transformation and cancer. Trastuzumab is a
fully humanized IgG1 mAb targeting the extracellular domain of
the HER2 that has demonstrated clinical efficacy in both early
and advanced BC (92, 93), metastatic gastric cancer (GC) (94),
and urothelial cancer (UC) (95) with overexpressed HER2. The
success of trastuzumab is attributed to multiple mechanisms that
involve antibody binding to HER2 on the cancer cell membrane
[reviewed by ref (96): it prevents homo- and heterodimerization,
thus inhibiting the mitogen-activated protein kinase (MAPK)
and phosphatidylinositol 3-kinase (PI3K/Akt) pathways. This
blocks the cell cycle and suppresses cell growth and proliferation
(97); it inhibits proteolytic cleavage of the extracellular receptor
domain (98); it disrupts interaction between HER2 and SRC
tyrosine kinase, inhibiting PTEN activation-mediated cell
proliferation (99); it acts as an anti-angiogenic (100); it kills
trastuzumab-bound tumour cells by ADCC activation, followed
by internalization and degradation of HER2 (101). Moreover,
ADCC also activates tumour-antigen-specific cellular immunity
via intercellular crosstalk among NK and dendritic cells, which
may also enhance the efficacy of tratuzumab therapy (102).
However, not all HER2+ BC patients respond to trastuzumab
as primary or acquired resistance to trastuzumab can appear
before the end of the first year of treatment in a metastatic setting
(92, 93).

Menyhart et al. reported HER2 amplification, impaired access
to the binding site, augmented signalling through other ErbB
family receptors and their ligands, activation of HER2 targets by
alternate heterodimers, signalling triggered by downstream
members, altered expression of cell cycle and apoptotic
regulators, hormone receptor status, resistance to ADCC (FcgR
polymorphism), and altered miRNA expression signatures as
possible trastuzumab resistance biomarkers in BC (103). In a
clinical setting, the influence of the FcgR polymorphism on
ADCC activity as a biomarker of trastuzumab response has
been studied.

A pre-clinical study showed that peripheral blood
mononuclear cells (PBMCs) with FcgRIIIa-158V/V and/or
FcgRIIa-131H/H genotypes exert significantly higher
trastuzumab-mediated cytotoxicity than PBMCs with other
genotypes (19). Shimizu et al. evaluated the effect of the FcgR
genotype on immune-related gene expression of PBMCs in
patients with HER2+ metastatic BC treated with single-agent
trastuzumab. One week after starting trastuzumab, thirty gene
sets related with an early systemic response mediated by
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macrophages and NK cells were identified in the cohort of
FcgRIIIa-158V/V variants, whereas no gene set was identified in
the cohort of non-V/V variants. At week eight, eleven different
gene sets, associated with an immune reaction involving other
components of PBMCs such as neutrophils and eosinophils were
enriched for FcgRIIa-131H/H, but none in non-H/H variants. In
contrast, no immune-related gene sets were observed at baseline
(104). These results indicate that FcgR polymorphisms could
contribute to systemic immune reaction triggered by trastuzumab.

Musolino et al. reported the beneficial effect of FcgRIIIa-
158V/V in a study of 54 patients with HER-2/neu-amplified
metastatic BC treated with trastuzumab plus taxane (19). A
significant difference in ORR and PFS was observed between
patients with FcgRIIIa-158V/V and patients with either the
158V/F or 158F/F genotype (ORR: 82% vs 42%, vs 35%,
respectively; p=0.03, and PFS: Not reached vs 15.0, vs 11.1
months, respectively; p<0.05). Moreover, a multivariate
analysis demonstrated that the combination of the two
favourable genotypes (V/V and/or H/H) was independently
associated with better ORR (71% vs 38%; p=0.04) and PFS
(30.3 vs 12.8 months; p=0.01) (19). Gavin et al. reported a
large cohort of patients with HER2+ early-stage BC (n=1156),
enrolled in the NSABP B-31 phase III clinical trial, that received
doxorubicin and cyclophosphamide followed by paclitaxel and
trastuzumab (20). Patients who had the FcgRIIIa-158V/V or V/F
genotype received a greater benefit from trastuzumab (HR=0.31;
95%CI, 0.22-0.43; p<0.001) than patients homozygous for the
low-affinity allele (HR=0.71; 95%CI, 0.51-1.01; p=0.05) (20). The
authors concluded that patients homozygous for FcgRIIIa-158F
benefited less from the addition of trastuzumab to chemotherapy
than V/V patients, suggesting that ADCC plays a role in
determining the efficacy of trastuzumab in HER2+ BC
adjuvant treatment.

Tamura et al. evaluated the association between FcgR
polymorphisms and clinical outcomes in a cohort of 15
operable and 35 metastatic HER2+ BC patients treated with
chemotherapy and trastuzumab in a prospective study (21). In
both neoadyuvant and metastatic settings, the pathological
response and ORR were significantly higher in patients with
FcgRIIa-131H/H genotype than in those with 131H/R or 131R/R
(71% for H/H vs 0% for H/R + R/R, p=0.015; 40% for H/H vs
12% for H/R + R/R, p=0.043, respectively). Patients with H/H
presented a significantly longer PFS than those with R/- in a
metastatic setting (9.2 vs 3.5 months, p=0.034) (21).

Roca et al., in a prospective clinical trial performed in 132
patients with HER2+ BC and treated sequentially with adjuvant
chemotherapy and trastuzumab (UNICANCER-PACS04),
observed that the presence of the H allele was associated with a
better EFS than in R/R genotype patients at 5 years of follow-up
(90.3% vs 69.7%; p=0.027) (22).

In contrast to the findings of these relatively small studies,
Hurvitz et al. and Norton et al. found no correlation between
FcgRIIa-131H/R and FcgRIIIa-158V/F SNPs and clinical
outcome in a large retrospective cohort of over 1000 early
HER2+ BC patients treated with adyuvant trastuzumab (105,
106). Nevertheless, in Norton et al. study was found that
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FcgRIIb-232I/I patients showed superior DFS in the
trastuzumab arms as compared to patients treated with
chemotherapy alone (p<0.0001) (106). In the previously cited
paper, Gavin et al. attributed the observed discrepancies to: 1)
distinct regimen, timing of treatment and differences in patient
selection criteria (in the Norton et al. study); 2) sampling bias in
both the previous FcgR studies; 3) failure of the FcgRIIIa
heterozygotes to satisfy the Hardy-Weinberg equilibrium
(HWE) in the study of Hurvitz et al. (20). If a selected
genotype distribution in the population misses the HWE, the
results should be treated cautiously because the observed
genotype distribution does not represent that of a healthy
population (103).This lack of fulfilment of the HWE law in the
investigated population might be influenced by additional
factors, such as an incorrect assumption of the model, non-
random mating, or a sampling error: small sample size or
population not well defined (diverse ethnic groups) (107). All
these biases can mask a possible correlation between FcgR
polymorphisms and clinical outcomes.

At this time, evidence for an association between FcgR
genotype and clinical benefit of HER2+ BC patients that
receive trastuzumab-based therapy is still inconclusive and
further clinical trials are required in this setting.

Wang et al. examined 42 HER2+ GC patients receiving
chemotherapy and trastuzumab (23). They found a
significantly higher PFS in patients with FcgRIIa-131H/H
genotype compared to the H/R or R/R genotype (p=0.001).
When combining FcgRIIa and IIIa polymorphisms, they found
that H/H or V/V genotypes were associated with a significantly
improved disease control rate (95.2% vs 71.4%, p=0.04) and PFS
(p<0.001) compared to other genotypes. They concluded that
FcgR polymorphisms might predict clinical outcome in
metastatic GC patients receiving trastuzumab treatment.
Nonetheless, these findings must be verified by larger studies
and evaluated in Caucasian patients (23).
CETUXIMAB

EGFR is a member of the ErbB tyrosine kinase family that
modulates cell proliferation, survival, adhesion, migration and
differentiation. EGFR forms a homodimer or heterodimer with
other members of the Erb family (ErbB2, ErbB3 and ErbB4) and
activates the downstream signalling through the MAPK cascade
and the PI3K/Akt/mTOR pathway (108). EGFR is abnormally
upregulated or activated in a variety of tumours (109). In recent
years, the use of anti-EGFR mAbs has played an increasing
role in the treatment of several solid tumour types including
non-small-cell lung carcinoma (NSCLC), colorectal cancer
(CRC), and head and neck squamous cell carcinoma (HNSCC)
in which KRAS mutation is not detected. Besides inhibiting the
EGFR pathway, anti-EGFR mAbs may exert anti-tumour effects
through ADCC (110). This is the case of cetuximab, a chimeric
IgG1 mAb directed to the extracellular domain of the EGFR,
which has been approved to treat KRAS wild-type metastatic
CRC (mCRC) (111) and HNSCC (112).
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Although cetuximab has shown promising efficacy in mCRC
patients, the molecular mechanisms underlying clinical activity
or resistance to cetuximab are not well known to date. FcgRIIa
and FcgRIIIa polymorphisms have been investigated as
molecular markers that predict cetuximab response, OS, and
toxicity in mCRC patients. In a retrospective study, the
association between FcgR polymorphisms and KRAS mutation
with outcome in 69 irinotecan-refractory mCRC patients treated
with cetuximab plus irinotecan was examined (25). Longer PFS
were observed in patients with FcgRIIa-131H/H and/or
FcgRIIIa-158V/V genotypes compared to 131R and 158F
carriers (5.5 v 3.0 months; p=0.005). Moreover, KRAS
mutation and FcgR combined status were independent
variables for PFS (25). Etienne-Grimaldi et al. (26), in a
prospective study, performed a multifactorial pharmacogenetic
analysis, including FcgRIIa and FcgRIIIa polymorphisms, in 52
patients receiving cetuximab in combination with irinotecan and
tegafur-uracil (UFT) plus folinic acid. These authors reported
that patients carrying the FcgRIIIa-158V allele exhibited a higher
RR (62.1% response in F/V or V/V vs 26.3% in F/F, p=0.02) and
OS (20.9 months in F/V or V/V vs 12.4 months in F/F, p=0.032),
respectively (26).

Trotta et al. analyzed 96 consecutive patients with mCRC at
diagnosis in a study that assessed FcgR status and in vitro
cetuximab-mediated ADCC (27). Patients carrying the
FcgRIIa-131H allele (H/H and H/R) and FcgRIIIa-158V allele
(V/V and V/F) displayed higher ADCC in vitro compared to
patients carrying the 131R/R (p=0.013) and the 158F/F genotype
(p=0.001), respectively. Moreover, PFS of patients with an
FcgRIIIa-158V allele was significantly longer compared to
patients carrying 158F/F (p=0.05), whereas no significant
difference was observed for OS. These authors suggest that the
in vitro evaluation of basal NK activity may help to predict the
therapeutic response of mCRC patients (27).

More recently, a retrospective study (CCTG CO.20)
performed in 595 patients with metastatic wild-type KRAS
CRC treated with cetuximab found an improved OS in the
FcgRIIa-131H/H genotype group (n=165) compared to those
with R/‐ genotype (n=427) (HR=0.66; p<0.001; median absolute
benefit, 1.3 months) (28). These results replicate those previously
described in the CCTG CO.17 randomized controlled trial (29).
These authors concluded that FcgRIIa is a promising biomarker
for clinical management in these patients.

These data are in discrepancy with the results previously
reported by Zhang et al. and Dahan et al., which demonstrated
that advanced CRC patients with FcgRIIIa-158V/V genotype
presented a dramatically shorter OS (in the entire population and
in wild-type KRAS patients) (30, 31). More recently, in a
comprehensive meta-analysis containing 2831 patients with
mCRC treated with anit-EGFR mAbs, Ying et al. showed that
the F/F genotype was significantly associated with a longer PFS
than VF/VV genotype (median survival ratio (MSR)=0.680, 95%
CI=0.549-0.842 in overall population; MSR=0.728, 95%
CI=0.648-0.818 in wild-type KRAS population), and a longer
OS than those carrying the V/V genotype (MSR=0.733, 95%
CI=0.578-0.930 in overall population) (113). These differences
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with the previously described results (25–27) could be due to the
relatively limited sample size of these studies or cetuximab
treatment regimen, among other causes. For example,
cetuximab was given as third-line monotherapy in the Zhang
study contrary to Etienne-Grimaldi report where the patients
received cetuximab combined with irinotecan and UFT plus
leucovorin as first-line.

In summary, the data support the use of FcgRIIa
polymorphism to predict the response to cetuximab in mCRC,
whereas FcgRIIIa polymorphism studies are still controversial.
All studies agree that the H/H variant is the most beneficial for
FcgRIIa genotype (25, 27, 28, 30, 32), and two report evidence
that patients with the H/R genotype have a better clinical
outcome (27) (30). Moreover, the role of the FcgRIIIa
polymorphism in modifying the primary relationship between
FcgRIIa and clinical outcomes is unknown. Two studies have
shown that the combination of FcgRIIa-131H/H and FcgRIIIa-
158F/F genotype can improve clinical outcomes (28, 30).
Differences in patients ’ characteristics, study design,
therapeutic protocols, distribution of genotypes in the different
patient groups, and even methodological problems (deviation
from the HWE) (25, 114) might, in part, explain the
discrepancies between these studies.

Some data show beneficial cytotoxic effects of effector cells
with FcgRIIIa-158V alleles in HNSCC cell lines (115). In a
clinical setting, the influence of FcgRIIa and FcgRIIIa
polymorphisms on the survival of recurrent or metastatic
HNSCC patients has been evaluated in a cohort of 103 patients
treated with cetuximab, cisplatin or carboplatin and fluorouracil
as palliative first-line chemotherapy (33). Magnes et al. observed
that survival of patients with FcgRIIa-131H/H and/or FcgRIIIa-
158V/V genotypes improved significantly compared to patients
carrying 131R and 158F alleles (median PFS: 5.5 vs 4.1 months,
p=0.02; median OS: 10.2 vs 7.2 months, p=0.04). This advantage
is maintained in the subset of patients with p16-positive tumours
(median PFS 10.3 months for patients with 131H/H and/or
158V/V genotypes vs 4.0 months for 131R and 158F carriers,
p=0.02) (33), but has not been confirmed in other series
(116, 117).

With current findings, FcgR polymorphisms, especially
FcgRIIa-131H/H, can be a useful tool for selecting candidates
for treatment with anti-EGFR inhibitors in mCRC and HNSCC.
FARLETUZUMAB

Farletuzumab is a humanized IgG1 mAb that targets human
folate receptor-a (FRa), which is overexpressed in most
epithelial ovarian cancers (EOC) but is largely absent from
normal tissue (118). A preclinical study has demonstrated
that the anti-tumour effect of anti-FRa mAbs against an
experimental model of EOC is mediated by its ADCC activity,
since anti-tumour effect is completely abolished when FcR
binding domain is modified (119). Recently, a randomized,
double-blind, placebo-controlled phase III study (MORAb-
003-004) with 1100 patients investigated the effect of standard
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therapy (carboplatin plus either paclitaxel or docetaxel) with
either farletuzumab (1.25 mg/kg or 2.5 mg/kg) or placebo on PFS
in EOC patients in a platinum-sensitive first relapse (120).
Prespecified subgroup analyses demonstrated that patients with
CA125 levels no more than three times the upper limit of normal
(ULN) and patients with higher farletuzumab exposure (2.5 mg/
kg) showed superior PFS and OS compared to placebo
(HR=0.49; p=0.0028; HR=0.44; p=0.0108, respectively) (120).
Wang W. et al. performed a post hoc analysis of FcgRIIa-131 and
FcgRIIIa-158 codon in 461 patients (MORAb-003-004 trial) (34),
reporting that farletuzumab showed enhanced binding to
FcgRIIIa-158V high-affinity receptor. In addition, an increase
in PFS was observed in patients with low baseline CA125 levels
and at least one high-affinity allele of FcgRIIa-131 or FcgRIIIa-
158 (34).

The findings suggest that farletuzumab clinical outcome
depends on CA125 level, while the FcgRIIa and FcgRIIIa high-
versus low-affinity receptor types may also contribute to
farletuzumab-mediated clinical outcome.
IMMUNE CHECKPOINT INHIBITORS

Immune checkpoints are molecules that control the immune
system to maintain self-tolerance and modulate the duration and
amplitude of physiological immune response in peripheral
tissues, in order to minimize collateral tissue damage (121).
CTLA-4 and PD-1 are immune checkpoints expressed on the
surface of activated T cells. Moreover, CTLA-4 is also
constitutively expressed in high levels in CD4+CD25+
T regulatory (Treg) cells (122). CTLA-4 is a type I
transmembrane glycoprotein that presents homology to CD28
and down-regulates T-cell activation (122). The PD-1 receptor is
a negative regulator of T cell activity that binds with two ligands,
PD-L1 and PD-L2, and is involved in the control of T cell
immune responses (123). PD-L1 and PD-L2 are expressed in
antigen presenting cells and may be expressed by tumours or
other cells in the tumour microenvironment. Activation of the
PD-1/PD-L1 axis contributes to suppression of anti-tumour
immunity and serves as a mechanism for tumour evasion
(124). For this reason, several mAbs that block these inhibitory
pathways have been developed in recent years, with the aim
of enhancing immune system activity, as immunotherapy against
different tumors (124). Ipilimumab, a CTLA-4 blockade
mAbs, PD-1 inhibitors nivolumab and pembrolizumab, as well
as PD-L1 inhibitors atezolizumab, durvalumab and avelumab
have been approved by the FDA for treatment of a wide variety of
solid and hematologic tumours [see (2) review].

Recent findings highlight the importance of Fc-FcgR
interactions to carry out ICIs mAb activity in vivo. Dahan
et al. reported that anti-PD-1/PD-L1 mAbs differ in their FcgR
requirements for their in vivo activity. This preclinical study
showed that some Fc-FcgR interactions (IgG2a and IgG1) can be
detrimental to the therapeutic efficacy of anti-PD-1 mAbs, by
facilitating macrophages to deplete PD1+ effector T cells.
Optimal anti-tumour activity of mAbs targeting PD-1 was
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achieved by blocking the inhibitory PD-1 signal in the absence
of Fc-FcgR engagement, demonstrating that anti-PD1 mAb
activity is FcgR-independent (125). By contrast, anti-PD-L1
mAbs displayed significantly enhanced anti-tumour activity
when activating FcgR engagement was optimized, effect
correlated with the elimination of monocytes and modulation
of myeloid cells within the TME. This pathway seems
to synergize with the FcgR-independent blocking activity of
anti-PD-L1 thereby augmenting the anti-tumour activity of
effector T cells (125). Recently, Sow et al. also investigated the
effect of the use of different mAbs IgG subclasses on the efficacy
of anti-PD-L1 in two mouse models of CRC (126). In the MC38
tumour model, anti-PD-L1 of all IgG subclasses showed similar
therapeutic efficacy when compared with each other either in
wild-type mice or in mice deficient for all FcgRs. These results are
somewhat at odds with the study of Dahan et al. showing a minor
enhancement of therapeutic efficacy of anti-PD-L1 mIgG2a over
other IgG subclasses in MC38 model. By contrast, in the CT26
tumour model, anti-PD-L1 mIgG2a, showed stronger
therapeutic efficacy than other IgG subclasses (126). Recently,
Moreno-Vicente et al. have demonstrated that engineered Fc-
null anti-PD-1 mAbs are an optimal format to induce effective T-
cell anti-tumoral immunity and prevent FcgR-mediated
resistance. Preclinical models showed that both anti-PD-1
mIgG1 and mIgG1-N297A, an Fc-null anti-PD-1 mAb,
boosted T-cell infiltration, inducing significant and comparable
long-term antitumor responses in MC38-bearing mice, whereas
anti-PD-1 mIgG2a completely abrogated therapeutic activity
(127). Antagonistic anti-CTLA-4 mAbs have been extensively
studied in mouse models of cancer. In preclinical models,
different studies have shown that anti–CTLA-4 increases the
intratumoral CD8+/T reg cell and T eff/T reg cell ratios,
promoving preferential depletion of T reg cells at the tumor
site (128–130). Highlight that T reg cell depletion is dependent
on the presence of Fcg receptor–expressing macrophages within
the tumor microenvironment (130). Thus, anti-CTLA-4 mAbs
have revealed that for an optimal therapeutic efficacy binding to
Fc receptors for IgG are also required (129, 130). All these
findings provide rationale for Fc engineering of these mAbs,
using the IgG subclass with the highest affinity to activate FcgR to
optimize anti-tumour efficacy.

There is little evidence for the role of specific allotypes of
activating FcgR, particularly the FcgRIIIa-V158F, and clinical
response in the context of anti-PD-1 or anti-PD-L1 treatment.
Nivolumab and pembrolizumab have similar mechanisms of
action whereby they competitively inhibit PD-L1 binding by
direct occupancy and steric blockade of the PD-L1 binding site
(131). Because both present the IgG4 isotype, it only very weakly
induces complement and cell activation due to a low affinity for
C1q and FcRs (131). Additionally, the heavy chain constant
region of nivolumab presents an S228P mutation, which replaces
a serine residue in the hinge region with the proline residue
found at the corresponding position in IgG1 isotype antibodies.
This mutation prevents (Fab´)2 arm exchange with endogenous
IgG4 antibodies, while retaining the low affinity for activating
FcRs associated with wild-type IgG4 antibodies. Therefore, a lack
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of nivolumab-mediated ADCC or CDC activity is consistent with
an expected lack of effector function of IgG4 (132). Anti-PD-L1
IgG1 mAbs inhibit the immunosuppressive PD-L1/PD-1
interaction and may trigger ADCC against cancer cells as an
additional anti-tumour activity (133). However, as PD-L1 is also
expressed on activated T cells (134), atezolizumab and
durvalumab have been engineered with a mutation in the Fc
domain to eliminate ADCC and CDC activity, thereby
preventing the depletion of T cells expressing PD-L1 (135). In
contrast to these mAbs, avelumab is a fully human IgG1 mAb
that contains a native Fc region that can bind cognate receptors
on immune effector cells and induce ADCC-mediated tumour
cell lysis (133). The ability of avelumab to lyse human tumour
cells, including lung, breast, and bladder carcinomas in the
presence of PBMCs or NK effectors has been demonstrated
(136). Recently, Jochems et al. studied the ability of avelumab
to increase the lysis of a range of human carcinoma cells by
irradiated haNK cells (allogenic NK cell line engineered to
express the high affinity (ha) CD16 allele and interleukin-2)
via ADCC mechanisms (137). Avelumab-mediated ADCC of
tumour cells by haNK cells was similar to that of NK cells bearing
the V/V Fc receptor high affinity allele (137). Boyerinas et al.
demonstrated that healthy donors with FcgRIIIa-158V/V
genotype displayed higher avelumab-induced lysis of tumour
cells than donors with F/F genotype (136). However, an
association between FcgRIIa and FcgRIIIa polymorphisms and
PFS in patients with renal cell carcinoma was not found in the
molecular analysis performed by JAVELIN Renal 101 trial
(n=886) of avelumab plus axitinib vs axitinib (138). Future
randomized trials are needed to confirm if the FcgR
polymorphisms correlate with a clinical benefit of avelumab.

The association between FcgR polymorphisms and clinical
outcome has been also described in response to ipilimumab
in patients with advanced melanoma (128). Ipilimumab, a
human IgG1 mAb, acts directly on effector T cells by blocking
inhibitory signal or through Treg depletion (122). Pre-clinical
data in mouse models have demonstrated that the activity
of anti-CTLA4 to deplete Treg cells may depend on ADCC
(130). These Treg depletions depend on the presence of FcgR-
expressing macrophages within TME (130). Recently, Vargas
et al. investigated the contribution of Treg cell depletion to the in
vivo anti-tumour activity of anti-CTLA-4 mAbs in the context of
human FcgRs and human IgG isotypes. CTLA-4 was highly
expressed by tumour-infiltrating Treg cells in multiple models of
transplantable syngeneic tumour cell lines of variable
immunogenicity, as well as in human solid tumour subtypes
including advanced melanoma, early-stage NSCLC, and renal
cell cancer. The expression pattern of activatory FcgRs in human
FcgR mice and human tumours was also evaluated. The
expression levels of FcgRIIa and FcgRIIIa on innate effector
cells appeared higher in the tumour relative to secondary
lymphoid organs. Based on these outcomes, the authors
determined whether anti-CTLA-4 mAbs of a human isotype
promoted depletion of intra-tumoural Treg cells in vivo. They
observed that anti-CTLA-4 mAbs with the same Fc variants
employed in ipilimumab (IgG1) and tremelimumab (IgG2) both
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induced in vivo depletion of tumour infiltrating Treg cells in the
context of human FcgRs, mainly in inflamed tumours with high
FcgR-expressing innate effector cells (128). This was consistent
with the meta-analyses of both Van Allen et al. and Snyder et al.,
which observed that the high-affinity FcgRIIIa-V158F
polymorphism was associated with improved RR in patients
with advanced melanoma treated with ipilimumab, but only in
the context of high putative neoantigen or indel burden [tumour-
specific indel (insertion or deletion) mutations], respectively
(pmeta=0.043 and pmeta=0.016, respectively) (35, 36). Further, in
the Snyder et al. dataset, patients with both high neoantigen
burden and the FcgRIIIa-V158F polymorphism had significantly
increased OS (p=0.014) (36). These observations were not
common to the FcgRIIa-H131R polymorphism, which is
associated with greater affinity for IgG2 rather than IgG1.
Taken together, these findings suggest that further
enhancement of FcgR effector function of anti-CTLA-4 may
result in increased anti-tumour activity, and FcgRIIIa-158V/F
polymorphism is linked to ipilimumab response in
melanoma patients.
FCR-DEPENDENT MECHANISM AND
HYPERPROGRESSIVE DISEASE

On the other hand, several studies indicate that a subset of
patients might present accelerated disease progression and
clinical deterioration on treatment with anti-PD-1/anti-PD-L1
mAbs (139). This setting is referred to as hyperprogressive
disease (HPD), which is a new outcome pattern with as yet
unknown biological mechanisms. Recent studies in this issue
point to a possible role of FcRs in this process (140, 141). In
immune-deficient mice, PD-1 blockade accelerated growth of
M109 PD-1 knockout-xenograft tumours with increased
proliferation and decreased apoptosis (140). In similar
xenograft models, Lo Russo et al. tested the F(ab)2 moiety of
nivolumab in comparison with whole Ab and showed that this
anti-PD-1 without the Fc domain no longer induces HP-like
disease in tumour-bearing athymic mice (119). This research
suggested a possible role for FcgRIIb in the detrimental effect
associated with anti-PD-1 therapy, and concluded that this
phenomenon is maintained by myeloid cells, such as M2-like
tumour-associated macrophages (TAM), within the TME by
FcR-dependent mechanisms probably through inhibitory
receptors (141). Further studies elucidating the involvement of
FcRs in the development of HPD are required.
FC-OPTIMIZATION OF THERAPEUTIC
MONOCLONAL ANTIBODIES

Optimized FcR-mediated effector functions in order to improve
clinical efficacy and safety of the immunotherapy have
been addressed with modification strategies such as altered
glycosylation patterns, point mutations, combination of different
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Fc subclasses (cross isotypes), and Fc-truncation of the
mAbs (142).

Diverse mAbs targeting various antigens have been
modulated by N-linked glycosylation in the Fc region of the
antibody (143). Absence of core fucose from the Fc N-glycan has
demonstrated an enhanced IgG1 binding affinity specifically for
FcgRIIIa, resulting in increased ADCC/ADCP effector function
both in vitro and in vivo (144). Thus, modification of Fc-FcgR
interactions through glycoengineering of the Fc N-glycan
at Asn297 of the CH2 domains is a relevant strategy to
produce afucosylated therapeutic mAbs (reviewed in (5, 145).
Fc glyco-engineering antibodies are being assessed and some
have currently received approval for clinical use in
haematological disorders (see below) (146). However, the
afucosylated mAbs developed in solid tumours have not
achieved the expected results in clinical trials. As an example,
tomuzotuximab, an afucosylated EGFR-directed mAb, failed to
demonstrate improved efficacy compared to cetuximab in the
first-line treatment of recurrent or metastatic HNSCC (RESGEX
study) (147).

Another approach to increase affinity in the antibody-FcgR
interaction and, therefore, the in vivo activity of these therapeutic
mAbs, includes engineering the Fc region through amino acid
mutations. Several IgG subclass mutations have been described
that affect Fc-FcgRs interactions (9). For example, some
mutations in IgG1, such as N297A and L234A/L235A, or
S239D/H268F/S324T/I332E, reduce/abrogate or increase
binding to all FcgRs, respectively. Therefore, these genetic
variants can provoke alterations in the ADCC mechanism
carried out by mAbs (9). Different groups have examined the
introduction of a point mutation in the IgG Fc domain aiming to
increase the effector function of FcgR-expressing cells (148–154).
Ashoor et al. developed a tool-box of IgG1 Fc isoforms to depict
the affinity between mutated IgG1 Fc regions and FcgRIIIa-
V158F variants (149). The investigators designed, cloned and
expressed human extracellular domains of FcgRIIIa-V158F and
six different upper hinge mutated isoforms (M1-M5 and M10) of
human IgG1 Fc moiety (Hinge, CH2 and CH3 chains) in Pichia
pastoris. The Surface Plasmon Resonance method along with an
in silico analysis showed that mutation M1 and M2 had higher
affinities to the low binding allele of FcgRIIIa (158F/F) than wild
type Fc (3.3-fold and 2.7 fold, respectively) and, in addition,
demonstrated that the affinity of the Fc region to the FcgRIIIa is
strongly correlated with polar interactions. They concluded that
this molecular engineering approach allows for the generation of
therapeutic mAbs endowed with high ADCC function (149).

In this context, Margetuximab is an Fc-engineered ERBB2-
targeted antibody that shares epitope specificity and Fc-
independent antiproliferative effect with trastuzumab (153).
However, with a five amino acid substitutions engineered into
the margetuximab IgG1 Fc domain (L235V/F243L/R292P/
Y300L/P396L) it has been obtained an increased binding
affinity for both allelic variants of the low-affinity activating
FcgRIIIa and decreased affinity for the inhibitory FcgRIIb,
resulting in improved effector functions, such as ADCC (153,
155). Recently, based on the results of the phase III SOPHIA
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(n=536) trial, margetuximab has been approved for use in
combination with chemotherapy as treatment in previously-
treated metastatic HER2-positive BC (156). In this trial,
margetuximab plus chemotherapy had a statistically significant
improvement in PFS over control in the whole-study population.
In addition, treatment effects were more pronounced in patients
with the FcgRIIIa-158F allele, corresponding to 437 of the 506
patients’ genotype (86%). Among these patients, the median PFS
was 6.9 months with margetuximab versus 5.1 months with
trastuzumab (HR=0.68, 95% CI, 0.52-0.90; p=0.005). Conversely,
there was no margetuximab benefit over trastuzumab in the
smaller FcgRIIIa-158V/V group (24).

Enoblituzumab (MGA271) is a humanized B7-H3 mAb that
incorporates Fc-domain modifications (L235, F243L, R292P,
Y300L, and P396L) designed to enhance antitumor effector-
mediated function. B7-H3 is a protein in the B7 family of
immune regulator proteins. B7-H3 is widely expressed by a
number of different tumour types and may play a key role in
regulating the immune response to various types of cancer. In
several mouse cancer models, ectopic expression of B7-H3 has
been shown to lead to activation of tumour-specific cytotoxic T
cells that can slow tumour growth or even completely eradicate
tumours. However, B7-H3 also acts as a T cell coinhibitor,
inhibiting CD4 T cell activation and NK cell function through
unidentified receptor(s), and the production of effector cytokines
such as IFN-g and IL-4 (157). In human CD16a-bearing
transgenic mice, enoblituzumab exhibited potent antitumor
activity in B7-H3–expressing xenograft models of renal cell
and bladder carcinoma (152). In a Phase 1 clinical study,
Enoblituzumab was evaluated in combination with an anti-PD-
1 mAb in patients (n=133) with B7-H3-expressing melanoma,
HNSCC, NSCLC and UC. In the HNSCC dose expansion cohort,
ORR occurred in 6/18 (33%) response-evaluable, checkpoint-
inhibitor-naïve HNSCC patients, including 4 confirmed and 2
unconfirmed PR, with SD in 6/18 (33%). In NSCLC patients
(PD-1 naïve, tumour PD-L1 <1%), there were 4/14 PR (29%) and
9 SD (64%). Two of 16 post-checkpoint-inhibitor UC patients
achieved a PR and unconfirmed CR, respectively (158). Several
clinical trials with enoblituzumab in patients with different solid
tumour are ongoing (NCT02923180, NCT02475213,
NCT02381314, NCT02982941).

Other variants containing amino-acid exchanges, such as
S239D/I332E (SDIE modification), to enhance affinity to FcgRIIIa
on NK cells have been evaluated in experimental models (151, 154).
For example, Raab et al. reported an Fc-optimized NKG2D-Fc
construct, carrying the SDIE modification, which enhanced
degranulation, ADCC, and IFN-g production of NK cells in
response to BC cells, independently of FcgRIIIa-V158F
polymorphism (154).

In hematologic neoplasms, a new generation of Fc-
engineered CD20-targeted mAbs has emerged for the
treatment of B-cell malignancies and autoimmune disease
(159). These novel anti-CD20 mAbs can be effective at
activating innate immune cytotoxic mechanisms, including
CDC, ADCC and ADCP (160). The anti CD20 Fc regions have
been manipulated by defucosylation (e.g. obinituzumab) (161)
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or amino acid engineering (e.g. ocaratuzumab) to enhance
FcR affinity. Pre-clinical studies with ocaratuzumab have
shown an advantage in NK cell-mediated ADCC over other
CD20 mAbs (rituximab or ofatumumab) (150). Cheney et al.
reported that low concentrations (0.1-10 µg/mL) of
ocaratuzumab improve allogenic and autologous ADCC ~3-
fold and ~1.5-fold compared with rituximab or ofatumumab
against CLL cells, respectively (162). More recently, in similar
experiments, VanDerMeid et al. demonstrated the important
contribution of ocaratuzumab and ofatumumab in ADCP
(160). These authors showed that CD20 mAbs induce
an ADCP >10-fold more cytotoxic than ADCC in a
primary human cell model. However, Fc engineering also
abrogated complement activation, an important mechanism
for activating ADCP. Moreover, ocaratuzumab and
ofatumumab induced ADCP at 10-fold lower concentrations
than rituximab. CD20 mAb-induced ADCP was not inhibited
by venetoclax and was less inhibited by Bruton´s tyrosine
kinase inhibitors and PI3Kd inhibitors (160). These data
suggest the need to test a wide-range of doses and intervals
of administration to establish optimal next-generation anti-
CD20 therapeutic regimens.

In the clinical setting, safety and efficacy of ocaratuzumab
in fifty previously treated FL patients with a low-affinity
genotype of FcgRIIIa have been evaluated with an
investigator-assessed RR of 30% (15/50), including four CR,
three unconfirmed CR and eight PR, and a median PFS of 38.3
weeks (163). This study suggests that ocaratuzumab might be
more effective in FcgRIIIa-158F-carriers. Further studies are
needed to establish the role of ocaratuzumab in the treatment
of patients with CD20+ FL.

Two Fc-optimized anti-CD19 mAbs have been developed for
the treatment of paediatric B-linage acute lymphoblastic
leukaemia (ALL), inebilizumab (modifying the Fc-linked N-
glycan) and XmAb®5574 (a version of 4G7-anitbody with SDIE
modification in the human Fc-domain of IgG1) (164). These
antibodies have shown enhanced potency ADCC and ADCP
compared to the unmodified IgG1 CD19 antibody, as
demonstrated by in vitro and in vivo analyses in leukaemia and
lymphoma animal models [reviewed in (165)]. XmAb®5574 has
been demonstrated to be safe and to have some efficacy in patients
with relapsed CLL (166). The antitumor activity and safety of
XmAb®5574 were also evaluated in patients with r/r B-NHL,
including DLBCL (n=35), FL (n=34), other indolent NHL (iNHL;
n=11) and MCL (n=12) (167). ORR, including CR, were seen in
26% of patients with DLBCL, 29% with FL and 27% with iNHL.
They lasted ≥12 months in 5/9 responding patients with DLBCL,
4/9 with FL and 2/3 with other iNHL, showing a median duration
of 20.1 months for DLBCL, not yet reached for FL and other
iNHL. In conclusion, XmAb®5574 is an alternative CD19-targeted
agent that improves outcomes in r/r B-NHL patients. XmAb®5574
is currently being evaluated in a clinical trial with adult B-ALL
patients (NCT01685021).

Compared with other FcgR, the inhibitory role of FcgRIIb may
be disadvantageous to antibody-based therapies and other
immune stimulating therapies. Pre-clinical models have shown
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that upregulation of the FcgRIIb at the tumour site prevented
intra-tumoral Treg cell depletion carried out by anti-CD25 mAb,
which limits its activity against established tumours (148). This
lack of therapeutic activity can be reversed through the use of an
Fc-optimized anti-CD25 mAb. Vargas et al. demonstrated that
use of an anti-CD25 antibody with enhanced binding to activating
FcgRs led to effective depletion of tumour-infiltrating
Treg cells, increased effector to Treg cell ratios, and improved
control of established tumours (148). This variant of Fc-optimized
anti-CD25 could be a promising therapeutic strategy in
combination with novel immunotherapies (e.g. ICIs).

FcR-blocking antibodies are other novel strategies to enhance
therapeutic antibody efficacy. As pointed out above, FcgRIIb
promotes anti-CD20 mAb internalization and confers
therapeutic resistance to rituximab in B cell lymphoma (68).
Anti-FcgRIIb antibodies to prevent FcgRIIb-mediated CD20-
rituximab internalization have been elaborated (69). In patient-
derived xenograft models, BI-1206, an FcgRIIb antagonistic
antibody, the efficacy of rituximab-based therapies
in aggressive mantle cell lymphoma was improved (168).
FcgRIIb blocking mAb are being developed in the clinic
to overcome rituximab resistance (NCT03571568), enhance
anti-PD-1 activity (NCT04219254), and enhance anti-Her2
activity (EudraCT Number: 2021-005646-15).

Finally, although the biological consequences of SNPs in
high-affinity FcgRs (e.g. V39I or I338T) and other low-affinity
FcgRs, such as the FcgRIIb-I232T polymorphism, have been
described, the role of these genetic variants in mAb
immunotherapy has not been well established (78, 106). This is
probably due to the low frequency of these polymorphisms in the
population (96).
CONCLUDING REMARKS

Targeted therapy with mAbs have generated a high expectation
of success against cancer. However, since not all patients respond
to mAbs, optimal selection of patients for treatment is essential
to avoid therapeutic failure. Different functional FcgR
polymorphisms have been postulated as biomarkers of
therapeutic response in a widespread variety of tumours. The
above-mentioned studies highlight the potential relevance of
FcgR polymorphisms for NK effector function mediated
through ADCC activity and their potential clinical impact.

Despite some variability among studies, a general trend to
clinical benefit has been observed in patients whose cells express
high affinity FcgRIIa/IIIa genotypes treated with IgG1 mAbs. The
conflicting results may be due to multiple factors, including the
difficulty to detect the FcgRIIIa-158V/V allele due to high
homology with FcgRIIIb, the amount of antibody ligand
occupied necessary for mediating an effective ADCC on
tumour cells, differences in therapeutic scheme, as well as
inter-patient and intra-tumoral heterogeneity (137).
Theoretically, an unfavourable FcgR genotype cannot
reasonably be used to exclude candidates for mAb therapy,
since their activity can also be exerted by Fc-independent
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mechanisms. Other predictive biomarkers could be jointly
evaluated in mAb-based treatment. Moreover, a limitation of
previous studies is the fact that FcgR CNVs are not included as a
possible association variable. Future studies should include or
consider genotyping FcgR CNVs as effects of FcR CNVs on
immune responses are more profound and have been
demonstrated in numerous association studies between FcgR
CNVs and autoimmune inflammatory diseases.

Novel advances in the role of FcgR-binding on ICI therapy
have been elucidated. ICIs can modulate the tumour immune
microenvironment through FcgR-dependent mechanisms, as
mentioned for anti-CTLA-4 mAbs and depletion of Treg, or
anti PD-L1 avelumab and myeloid subset composition.
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Therefore, additional studies are required to precisely define
the role of FcgR polymorphisms in the clinical outcome of
therapy with ICIs.

In summary, these insights into FcgR polymorphisms might
allow the development of more effective mAbs in the field of
cancer therapy.
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