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ABSTRACT

Rapid and accurate identification of new essential
genes in under-studied microorganisms will signifi-
cantly improve our understanding of how a cell
works and the ability to re-engineer microorgan-
isms. However, predicting essential genes across
distantly related organisms remains a challenge.
Here, we present a machine learning-based integra-
tive approach that reliably transfers essential gene
annotations between distantly related bacteria. We
focused on four bacterial species that have
well-characterized essential genes, and tested the
transferability between three pairs among them.
For each pair, we trained our classifier to learn
traits associated with essential genes in one
organism, and applied it to make predictions in the
other. The predictions were then evaluated by
examining the agreements with the known essential
genes in the target organism. Ten-fold
cross-validation in the same organism yielded AUC
scores between 0.86 and 0.93. Cross-organism pre-
dictions yielded AUC scores between 0.69 and 0.89.
The transferability is likely affected by growth con-
ditions, quality of the training data set and the evo-
lutionary distance. We are thus the first to report
that gene essentiality can be reliably predicted
using features trained and tested in a distantly
related organism. Our approach proves more

robust and portable than existing approaches, sig-
nificantly extending our ability to predict essential
genes beyond orthologs.

INTRODUCTION

The recent success of ‘synthetic bacteria’ has rekindled
people’s enthusiasm for using systems and synthetic
biology to serve the needs of humanity by re-engineering
microorganisms (1,2). Essential genes are important in
these bioengineering efforts because any functional micro-
organism must contain a minimal set of essential genes
that are required for survival and carrying out desired
functions. Studying gene essentiality is also important in
basic science because it is a crucial step toward under-
standing the complex relationship between genotype and
phenotype (3). To date, genomic-scale knockout experi-
ments in over a dozen microorganisms have shown that
different organisms share a very limited number of essen-
tial genes. Therefore, rapid and accurate identification of
essential genes in an under-studied organism, especially
those unique to this organism, poses a significant chal-
lenge in this post-genomic era. The lack of this ability
has prevented us from fully comprehending how a cell
works as well as efficiently re-engineering microorganisms
that will have energy, bioremediation, pharmaceutical and
biodefence applications (4–6).
Experimental identification of essential genes can be ac-

complished either by targeted mutagenesis, where specific
genes are identified prior to genetic manipulations and
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confirmatory studies based upon the experimental data,
or by random mutagenesis, where the target genes are
identified only after the experimental disruptions (7).
While targeted mutagenesis produces more reliable
results with higher accuracy, random mutagenesis
appears to be more cost-effective. Nonetheless, genomic-
scale systematic screening for lethal gene disruptions by
either approach is a formidable undertaking. Taken
together, a universal consensus of arguably multiple
laboratories is required to ensure that the results are
accurate, often requiring a consortium of labs many
years of research.
To circumvent the expense and difficulty of these

screens, researchers attempting to identify essential
genes in under-studied organisms often have to rely on
homology mapping to help elucidate essential genes.
However, this method has several limitations. First,
homology mapping is limited to the conserved orthologs
between species, which often correspond to a small
portion of a target bacterial genome (8). For example,
Escherichia coli and Pseudomonas aeruginosa share
<35% of their genes as orthologs. In addition, although
essential genes tend to be conserved, conserved genes are
often not essential. For example, less than a quarter of
the highly conserved bacterial genes were essential when
tested experimentally in model bacteria (9–12). Finally,
beyond the testability of homology mapping, differences
in genetic regulation or protein modification, genetic re-
dundancy or divergence in cellular pathways or processes
between organisms may also have great bearing on
relative essentiality. For example, alaS gene that encodes
alanyl-tRNA synthetase is essential in E. coli but
non-essential in P. aeruginosa. It is non-essential
in P. aeruginosa probably because it has a paralog
(PA2106) that carries out the same function.
Considering all these limitations, a group of researchers
reached a disappointing conclusion that ‘gene conser-
vation among bacteria does not necessarily indicate that
essentiality in one organism can be extrapolated to others’
(12).
Thus, in this study, we developed a machine learning-

based integrative approach as an alternative to transfer
gene essentiality annotations between organisms. In
contrast to homology mapping that relies strictly on the
similarity of nucleotide sequences, this approach identifies

relevant features of essential genes and makes predictions
using a weighted combination of hallmark features.

By taking advantage of the near-complete mapping
of the essential genes in Saccharomyces cerevisiae
(13–14) and E. coli (15–17), a collection of genomic
features have been identified to correlate with gene essen-
tiality (Table 1). These features can be broadly classified
into two categories: intrinsic and context-dependent
features. Intrinsic features are determined by the
genomic sequences, e.g. GC content, and do not depend
on external conditions. Context-dependent features
cannot be derived from an organism’s genome alone and
may vary under different conditions, e.g. fluctuations in
mRNA expression. The dependency of essentiality on
both categories of features suggests that multiple aspects
of biology unite to make a gene essential. Therefore,
taking into account only the similarity in genomic se-
quences provides a limited perspective on this highly
complex property.

A number of machine learning systems have been de-
veloped to integrate a subset of these features for cross-
validation of essential genes in S. cerevisiae and E. coli,
showing various degrees of prediction accuracy (AUC:
0.7–0.82; PPV: 0.34–0.68) (18–21). However, these
studies do not address the applicability of such methods
to novel genomes. Such applicability is important, because
a useful predictor must perform well outside the organism
on which it was trained. Seringhaus et al. (22) recently
developed a method to train classifiers on S. cerevisiae
essential genes and applied them to predict those in
S. mikatae. However, due to the limited knowledge of
essential genes in S. mikatae, it is impossible to system-
atically assess the performance of the classifiers in
transferring gene essentiality. More importantly, when
predicting essential genes in an unstudied organism, a
closely related yet well-studied organism on which classi-
fiers could be trained is often unavailable. Therefore, it
would be most useful if a machine learning-based
approach can be proven applicable to more distantly
related species.

In this study, we re-examined the question of
whether gene essentiality can be accurately transferred
between organisms by a machine learning approach. We
first focused on two bacterial species: E. coli and
Acinetobacter baylyi ADP1. Both bacteria have

Table 1. Features correlated with gene essentiality in S. cerevisiae and E. coli

References Genomic features

Jeong et al. (41) (i) Fluctuation in mRNA expression; (ii) Protein functions; (iii) Connectivity in protein–protein interaction
(PPI) network

Chen and Xu (18) (i) Evolutionary rate; (ii) Duplication rate; (iii) Gene expression correlation network; (iv) Connectivity in PPI
network

Saha and Heber (20) (i) Phylogenetic conservation; (ii) Degree of paralogy; (iii) Number of PPIs
Seringhaus et al. (22) 14 intrinsic features, such as: GC content; length of protein; hydrophobicity; codon adaptation index; predicted

subcellular localization in six compartments, etc
Gustafson et al. (21) (i) Codon usage; (ii) Paralogs; (iii) Size and localization; (iv) Protin interaction network degree; (v) Phyletic re-

tention measure; (vi) Recombination rate; (vii) Strand bias; (viii) Regulatory complexity, etc

796 Nucleic Acids Research, 2011, Vol. 39, No. 3



well-characterized essential genes by targeted mutagenesis.
For this pair, we developed a classifier to learn traits
of essential genes in one organism and then predict
those in the other. We then systematically evaluated the
predictions by examining the overlaps with the known
essential genes in the target organism, and compared its
performance with homology mapping. To examine the
applicability of our approach, we also tested the transfer-
ability on two other pairs of bacteria: E. coli and
P. aeruginosa PAO1, and E. coli and Bacillus subtilis.

MATERIALS AND METHODS

Data sources

E. coli K-12 (EC) sequence data were downloaded from
Comprehensive Microbial Resource (CMR) database at
http://cmr.jcvi.org/. It contains 4289 protein sequences
in total (23). The essential genes of E. coli K-12 were
downloaded from the PEC database (17). The Kato data
set contains 302 essential genes from gene deletion
experiments.

P. aeruginosa PAO1 (PA) sequence data were down-
loaded from http://www.pseudomonas.com/
(Pseudomonas_aeruginosa_PAO1.faa, revision 17 July
2009). PA essential genes were downloaded from (24).
The Jacobs dataset contains 678 essential genes from
transponson mutagenesis in PAO1.

A. baylyi ADP1 (AB) sequences were collected from the
MagnifyingGenomes database (http://www.genoscope.
cns.fr/). Out of a total of 3308 genes, 499 are essential
genes from (25).

B. subtilis (BS) sequence data were downloaded from
Microbial Genome Database (http://mbgd.genome.ad
.jp/). This data set contains 4117 ORFs. The essential
gene list was downloaded from (26) and consists of
three data sets: (i) 150 essential genes determined by
Kobayashi’s mutantgenesis experiments; (ii) 42 known
essential genes from previous studies; (iii) 79 essential
genes by homology mapping to other bacteria, most of
which encode proteins involved in ribosome or synthesis.

Gene expression data in these bacteria were down-
loaded from NCBI GEO (27), ArrayExpress (28), as well
as from Gasch et al. (29).

Homology mapping by reciprocal best hit

We developed a reciprocal best hit (RBH) method to
identify the orthologs between EC and PA: We
first queried an ORFi in PA against all known ORFs
in EC by Blastp, with an E-value threshold of 10�5, to
yield the set of hits {W}. Then, we queried the
hit with the lowest E-value in {W} (ORFj) against
all ORFs in PA to yield the set of hits {Y}. A pair
of proteins (ORFi, ORFj) are considered putative
orthologs if ORFiis the hit in {Y} with the lowest
E-value, and if they also meet two strict
criteria: (i) LengthShorterProtein=LengthLongerProtein�80%;
(ii) LengthAlignedRegion=LengthShorterProtein� 80% to ensure
sufficient coverage of aligned regions.

Homology mapping by COG groups

We implemented an alternative approach for homology
mapping by using COG groups (30). The COG groups
contain a list of genes of organisms from the same
distinct phylogenetic lineage. We used these COG
groups to map the essential genes from one organism
to the other. Thus, if one gene in EC is essential, then
all PA genes in the same COG group are assumed to be
essential.
COG groups are unavailable for genes from AB.

Therefore, we performed homology mapping between
EC and AB based on sequence identity groups. We
clustered AB proteins into groups based on their
sequence identities with each other. Each protein
sequence in AB was searched against all protein sequences
in AB by Blastp with an E-value cutoff of 1e–5. Proteins
are considered in the same sequence identity group if every
pair of proteins has (i) sequence similarity that satisfies the
E-value cutoff mutually and (ii) sequence identities >35%.
Similarly, protein sequence identity groups were extracted
for EC. If a protein in one organism is essential, then all
proteins of the other organism in the same sequence
identity group as the essential protein predicted by RBH
are considered essential.

Intrinsic and context-dependent genomic features

To create a training dataset for our classifier, features are
extracted where available for each ORF in each organism
and annotated with known essentiality values from the
essential gene data sets. Our study considered three main
types of features: (i) those intrinsic to a gene’s sequence
(e.g. GC content, protein length); (ii) those derived from
genomic sequence (e.g. localization signals and codon
adaptation measures) and (iii) experimental functional
genomics data (e.g. gene-expression microarray data)
(Supplementary Table S1).
(i-a) Genomic sequence properties. Evolutionary selec-

tion of genes can often be detected from the base compos-
ition of a genome, e.g. GC content, and the overall amino
acid composition, e.g. hydrophobicity (31). Essential
genes have been found to be more evolutionarily
conserved than non-essential genes in bacteria and the
negative selection on essential genes are more stringent
than for non-essentials (32). Therefore, correlating the
base or amino acid composition with essentiality may
reveal the evolutionary constraints that are predictive of
essential genes. We used CodonW (http://bioweb.pasteur
.fr/) to calculate the following properties associated with
genomic sequences: Kyte and Doolittle’s grand average of
hydropathicity (GRAVY) (33), protein length (amino
acids), GC content and two measures of codon usage: ef-
fective Nc (34–35) and CAI (36).
(ii-a) Predicted subcellular localization. Subcellular lo-

calization is potentially predictive of gene essentiality
because gene products that carry out specific functions
are often confined to certain subcellular compartments.
For example, proteins involved in the essential functions
of information storage and processing such as DNA repli-
cation, recombination and mRNA synthesis locate in
nucleus in Eukaryotes and cytoplasm in Prokaryotes (37).
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In contrast, most membrane proteins function as trans-
porters or participate in metabolic related processes. This
also explains why a protein has more transmembrane helix
(PredHel) are more likely to be non-essential
(Supplementary Figure S1). We used the PA-SUB Server
v2.5 to obtain these features (38). Gram-negative bacteria
(EC, PA and AB) have five predicted localizations: inner
membrane, extracellular, cytoplasm, periplasm and outer
membrane. Gram-positive bacteria (BS) have three pre-
dicted localizations: extracellular, cytoplasm and plasma
membrane.
(ii-b) Transmembrane helices for each ORF. The

putative transmembrane helices were calculated by
TMHMM Web server v2.0 (39,40).
(ii-c) Phylogenetic profile of a gene. Essential genes are

more evolutionarily conserved than non-essential genes
(14,20–21). This is because essential genes are more
likely involved in basic cellular processes, thus the
negative selection acting on essential genes are more strin-
gent than for non-essentials (32). We used the RBH
method to search orthologs in multiple complete
genomes for each gene of the target organism (PA, EC,
AB and BS). The number of genomes that have
orthologous hits was used as a measure of evolutionary
conservation of a gene. Such conservation has been shown
to correlate well with the dispensability of a gene (18).
(ii-d) Paralogy. Duplicated genes in an organism are

often referred to as paralogs. Paralogs typically have a
similar function because they arose from gene duplication
events within the same species. It is expected that essential
genes should have a fewer number of paralogs than
non-essential genes because an essential gene’s function
is indispensable and less likely to be compensated by its
paralogs (14,20). An all-against-all FASTA search was
conducted for the whole set of ORFs in the target
organism (PA, EC, AB and BS) to identify the paralogs
with an E-value threshold of 10�20.
(ii-e) Domain enrichment. In contrast to the evolution-

ary conservation of a gene in (ii-c), domain enrichment
reflects the conservation of local sequences rather than
the entire gene. For each individual domain, we collected
its occurrence in each organism (PA, EC, AB and BS)
using the Pfam database (http://pfam.sanger.ac.uk).
Then we estimated the domain enrichment score accord-
ing to the ratio of occurrence frequencies between essential
gene sets and the total genes in the target organism:
DES ¼ ðness=NessÞ=ðness=Ness+nnon�ess=Nnon�essÞ, here ness
and nnon�ess represent a domain’s occurrence frequency
in the essential and non-essential data set, respectively.
Ness and Nnon�ess represent the size of the essential and
non-essential dataset, respectively. For each round of
training-testing, we re-computed the DES scores based
on available data except the testing data. For example,
in EC!PA, for a given domain in PA, DES is
computed by calculating the ratio of essential to
non-essential genes among all EC genes that encode this
domain. Therefore, we did not use the information regard-
ing PA essential genes, ensuring a correct training and
testing.
(iii-a) Fluctuation in gene-expression. The mRNA ex-

pression levels of essential genes often vary, on average,

within a narrower range, whereas the expression of
non-essential genes fluctuates more widely (41). This is
due to the potential existence of feedback mechanisms
that can stabilize the expression level of essential genes.
It has been observed that wide fluctuation in the expres-
sion level of essential genes could cause the death of an
organism (41). The variance of each gene was calculated
from these gene expression profiles as a measure of the
fluctuation of gene expression.

(iii-b) Topology in gene co-expression network.
Previous research has shown that in protein–protein inter-
action (PPI) network, hubs or highly connected proteins,
are more likely to be essential and evolve slowly (42–44). It
has also been shown that interacting proteins tend to be
co-expressed because they are often involved in the same
pathway (45,46). From gene expression microarray data, a
gene-expression cooperativity graph is constructed as
Gg (D)= (Vg,Eg), with the vertex set Vg ¼ fdijdi 2 Dg
and the edge set Eg ¼ fðdi,djÞjdi,dj 2 Dg for i 6¼ j and
jrijj � 0.7. Each vertex represents a gene and each edge
represents a gene pair whose gene expression profiles cor-
relation coefficient jrijj is >0.7. This cutoff value of jrijj is
determined based on our previous work (46). The hubs
(nodes with high degrees) and bottlenecks (nodes with
high betweenness or shortest paths occurrence) have
been found to have correlations with gene essentiality
(42). The network statistics are calculated using tYNA
(http://tyna.gersteinlab.org/).

Feature evaluation and selections

We used three criteria as described in the ‘Results’ section
to select suitable features.

To measure the predictive power of different features,
we performed a Naı̈ve Bayes analysis and ranked all
features according to the coverage length of log-odds
ratio (Supplementary Figure S1). The longer the overall
coverage length is, the greater the contribution of the cor-
responding feature has to the target class, i.e. gene essen-
tiality. Since we are interested in predicting essential genes
but not non-essential genes, the features with a positive
coverage length are considered as useful features.

The log-odds ratio was calculated for each feature
and compared with all other features in nomograms.
Comparing the span of an attribute axis in nomograms
easily identifies the important attributes. The effects of
each attribute value are also clearly represented in a
nomogram, making it easy to spot a direction and magni-
tude of the influence. Attribute axis are aligned to
zero-point influence (prior probability), which allows
for a straightforward comparison of contributions
across different values and attributes (Supplementary
Figure S1).

For each feature, we ranked the features according to
their positive influence on gene essentiality. Those with
high positive influence and monotonic relationship with
essentiality are our candidate features. Specifically, in
feature Category (A), we kept CBI, CAI, Fop, Nc,
L_aa, Aromo and removed GC, C3s, A3s, T3s, Gravy
and G3s. In Category (B), we kept DES, PHYS,
Cytoplasm, Extracellular, PA and Inner Membrane and
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removed Periplasm, Outer Membrane, ExpAA, First60
and PredHel. In Category (C), we kept CEB, CEH and
FLU.

Next, we considered prior biological information to
remove feature redundancy. For example, CBI has
Pearson correlation coefficients of 0.92 and 0.99 with
CAI and Fop, respectively (Supplementary Figure S2),
because these features are all derived from the
codon usage of a gene and share similar biological
meanings. Therefore, we removed CBI and Fop from
Category (A) which resulted in the 13 candidate features
(Table 2).

Training and testing sets preparation

The training data included the attribute values for each
feature and the class assignments. Each gene was assigned
a Boolean value regarding its essentiality (1—essential;
0—non-essential). The feature values may be Boolean or
real depending on the type of individual features
(Supplementary Table S1). The training data were
divided into 10 equal parts. Nine-folds were used to
train the classifiers and the remaining one fold was used
for testing. The control training set was generated by
randomly assigning essential labels to all E. coli genes.
The same number of random ‘essential genes’ as the
number of true essential genes was used in the training
and testing frame.

Classifier design

We used four classifiers to train and test the model:
(i) Naı̈ve Bayes classifier; (ii) a logistical regression
model; (iii) a C4.5 decision tree; and (iv) CN2 rule. Each
classifier scheme independently generates a separate
probability score of gene essentiality. The performances
of these classifiers are different but complementary. The
best performance was obtained by combining the outputs
of these diverse classifiers using an unweighted average
approach. All classifiers were implemented using the
Orange software package (http://www.ailab.si/orange/).

RESULTS

Comparing the genomes and essential genes of E. coli
and A. baylyi

In order to test the hypothesis that essential gene annota-
tions can be transferred between distantly related

organisms, we chose to perform an analysis on a pair of
relatively distantly related organisms: E. coli (EC) and A.
baylyi (AB). The reasons to select this organism pair are:

(i) Essential genes are well-characterized in both organ-
isms. Large-scale gene-knockout experiments have
identified 302 (or 7%) essential genes in E. coli
K-12 out of a total of 4289 genes (17). In
A. baylyi ADP1, from a total of 3308 genes,
499 (or 15%) essential genes have been identified
from large-scale gene-knockout experiments (25).
Both mutagenesis experiments were performed
under aerobic conditions, with the former on
standard laboratory rich (LB) media and the latter
on minimal medium supplemented with succinate.

(ii) Both AB and EC are g-proteobacteria in taxonomy;
however, they are not closely related—the time
frame of divergence is estimated to be 50–200
myrs (47–48) (Supplementary Figure S3). Because
our approach would be most useful if proven ap-
plicable to distantly related species, this pair of
species provides an excellent testing ground for
examining the accuracy and coverage of our
approach.

If our hypothesis is true, we rationalize that the
genomic features trained and tested using EC essential
genes should be able to produce reliable predictions of
essential genes in AB, and vice versa. To provide an
objective assessment of the accuracy and coverage of the
predictions, the known annotations of gene essentiality in
the target organism will only be used in the evaluation
stage.
We first used a reciprocal best hit (RBH) method to

compare the genomes between the two organisms (see
‘Materials and Methods’ section) (18). Between EC and
AB, there are 1198 orthologs. This represents 28 or 36%
of the EC or AB genomes, respectively (Figure 1).
We also examined the overlaps between the two

essential gene datasets based on identifying orthologs
(Figure 1). There are 195 essential genes in common
between the EC and AB essential datasets, making up
65 and 39% of the two essential gene sets, respectively.
It is clear that both pathogens have a substantial portion
of unique essential genes, consistent with a previous report
that bacterial species share a limited number of common
essential genes (12).

Table 2. Thirteen features that are selected for 10-fold cross-validation in EC

Intrinsic features Context-dependent features
(From functional genomics experiment)

Sequence based Sequence derived

Codon bias index (CBI) Domain enrichment score (DES) Fluctuation in gene expression (FLU)
Hydrophobicity score (Nc) Phylogenetic score (PHYS) Co-expression network bottlenecks (CEB)
Length of Amino Acid (L_aa) Subcellular localization: cytoplasm (Cyto) Co-expression network hubs (CEH)
Aromaticity (Aromo) Subcellular localization: extracellular (Extra)

Paralogy (PA)
Subcellular localization: inner membrane (Inner)
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Selecting suitable features for predicting gene essentiality

It is becoming increasingly apparent that genomic se-
quences represent only one aspect of the complex genetic
relationships that have evolved under diverse selection
pressures (49); therefore, it is necessary to consider a
variety of features, including both intrinsic and
context-dependent features. We used three criteria to
select the most suitable features.
First, the features should be easily obtained and avail-

able to most microorganisms. Intrinsic features can be
easily extracted as long as a microorganism has a com-
pletely sequenced genome. For context-dependent
features, we only considered the gene expression profiles
measured by microarray experiments. We did not include
functional annotations, pathway or protein–protein inter-
actions (PPIs) in our method because they are often
unavailable to under-studied organisms.
Second, the features should have high predictive power

of gene essentiality. To quantify the predictive power of
each feature, we performed a Naı̈ve Bayes analysis and
ranked all features according to the coverage length of
log-odds ratio (Supplementary Figure S1).
Third, the features should minimize biological redun-

dancy. Biologically redundant features are often derived
from a similar source and have high correlations with
each other. For example, CBI has Pearson correlation
coefficients of 0.92 and 0.99 with CAI and Fop, respectively
(Supplementary Figure S2), because these features are all
derived from the codon usage of a gene and have similar
biological meanings. Including such redundant features
will not only create problems for some types of classifiers,
e.g. Naı̈ve Bayes classifier, but also increase the complexity
without necessarily increasing the inferential and predictive
power of the classifier (Supplementary Table S2).
Using the above criteria, among a total of 28 charac-

teristic features that we considered (Supplementary
Table S1), we identified 13 of them potentially associated

with gene essentiality in EC with relatively weak
correlations among themselves (Table 2 and Figure 2).
Interestingly, these features represent different aspects
from sequence to function. These diverse aspects of the
correlated features suggest that gene essentiality is likely
determined not solely by the genomic sequence of a gene,
but by multiple aspects of biology. Among the 13 features,
the strongest turns out to be DES (domain enrichment in
essential genes), which has not been considered by
previous studies. The next four strongest features are
CBI, Nc, PHYS and L_aa, consistent with previous
studies (18,21–22) (Table 1).

Cross-validations of the classifier using E. coli
essential gene set

The 13 selected features (Table 2) were then used as input
variables for four classifiers: Naı̈ve Bayes, logistical regres-
sion, decision tree and CN2 rule. The input of the classi-
fiers contained the features of each gene and the class
labels if they were used as the training data. Each classifier
scheme independently generated a probability score of
gene essentiality. The best performance was obtained by
combining the output probability scores of these diverse
classifiers using an unweighted approach and hence was
used as the final prediction.

The 10-fold cross-validation result shown in the ROC
curve indicated that, at the level of 1% FPR, the classifier
achieved 45% TPR (Figure 3A). The area under curve
(AUC) score of the classifier is 0.93 and the positive pre-
dictive value (PPV or precision) is 0.70 with the probabil-
ity threshold set at 0.5. Our classifier represented a
significant improvement over the classifier that integrates
only sequence features in S. cerevisiae (22) (AUC=0.70).
Our results also outperformed a recent study in E. coli by
a considerable margin (21) (AUC=0.70).

Because of the imbalanced training dataset (essen-
tial:non-essential=1:13), to avoid making excessive false
positive predictions, a slightly higher cost can be assigned
against false positives. This is equivalent to raising the
probability threshold for the predictions which yields
fewer false positives. At the probability threshold set at
0.75, the precision of our predictions increased 14% to
0.80 (108/135) (Figure 3A).

The control training set was generated by randomly as-
signing essential labels to all E. coli genes (50). The same
number of random ‘essential genes’ was assigned as in the
original training and testing sets. The performance of the
classifiers on the random set was significantly lower than
that using the real training set (Supplementary Figure S4).
This suggested that our method was indeed learning the
features characteristic to gene essentiality.

Predicting AB essential genes by integrating intrinsic and
context-dependent features

After the 10-fold cross-validation on known essential
genes in EC, we applied the classifier to predict AB essen-
tial genes, denoted as EC ! AB.

A. baylyi is a Gram-negative bacterium commonly
found in aquatic and soil environments. It belongs to
the same class of g-proteobacteria as EC (Supplementary

Figure 1. Comparison of genomes and essential genes in EC and AB.
The square represents 4289 EC total genes; the rectangle represents
3308 AB total genes. The overlap of the two represents 1198 orthologs
determined by the RBH method. The rectangle with dashed border
represents the total 302 EC essential genes. The rectangle with
diagonal brick shades represents the total 499 AB essential genes.
The rectangle within the dashed border and with diagonal brick
shades represents the common essential genes in both species. The
area of each rectangle is approximately proportional to the number
of genes it represents.
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Figure S3). A set of 499 AB essential genes has been
identified by targeted mutagenesis (25). Because the
targeted mutagenesis was performed on minimal media,
many genes involved in the biosynthesis of essential com-
pounds became essential that are otherwise not required
under rich media. This difference in media results in a
substantially higher percentage of essential genes in AB
(16%) compared to EC (7%).

When applying the classifier across organisms, the dis-
tributions of each raw feature were compared first to
ensure they are comparable in both organisms. Between
a pair of organisms, the same feature can be sufficiently
different that they follow completely different distribu-
tions even after normalized into the same range
(Supplementary Figure S5). We quantified the similarity
of two distributions by their overlapping area. Two distri-
butions with an overlapping area >0.5 are considered as
similar. As a result, a subset of 10 features (Supplementary
Table S2A) that have a similar distribution in EC and AB
was compiled for each of the 3308 AB ORFs, and the
classifier trained on EC was then applied to this dataset.
The accuracy was evaluated by examining the agreement
with the assignments from the gene knockout experiments
in AB.

At the level of 1% FPR, the result indicated that the
classifier achieved a 28% TPR (Figure 3B). The AUC
score is 0.80 and PPV is 0.81 at the threshold of 0.5.
That is, among the 212 predictions that received the

highest scores in AB, about 172 are true essential genes.
The prediction accuracy is excellent considering that a
random selection of 212 AB genes would contain only
32 essential genes.
We then performed a reciprocal prediction of EC essen-

tial genes using the AB essential gene data set, denoted as
AB ! EC. The prediction yielded a ROC curve with an
AUC score of 0.89 and a PPV of 0.43 (Figure 3C and D).
We speculated that the lower precision was because the
AB data set contained �100 genes associated with biosyn-
thesis function (e.g. amino acids, cofactors) that are
needed for survival only on minimal media (25).
Inclusion in the training set of the genes that are essential
only on minimal media may have led our classifier to learn
characteristics unique to these genes, thereby resulting in a
poorer classification of the ‘true’ essential genes. To test
whether a more refined AB training set would lead to
increased precision of prediction, we removed 82 genes
associated with biosynthesis function from the AB essen-
tial gene set. The refined data set achieved a substantially
better precision (PPV=0.53) in predicting EC essential
genes, most obvious at their top 10% predictions
(Supplementary Figure S6).

Prediction of essential genes between E. coli and
P. aeruginosa

To show that the transferability of essential genes is not
limited between EC and AB, it is important to extend the

Figure 2. The Nomogram for visualization of the 13 selected features. Each feature has a corresponding line indicating the relationship between a
feature value and its predictive contribution assessed by Naı̈ve Bayes analysis. The number on the line is the value of the feature and each value
corresponds to a point score above. The longer the line is, the more predictive power the feature has in prediction.
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analysis to other pairs of organisms. We next conducted
predictions between EC and P. aeruginosa PAO1 (PA).
PA is a ubiquitous and opportunistic pathogen capable

of causing chronic infection of the lungs of cystic fibrosis
patients. It is Gram-negative and belongs to the same class
of g-proteobacteria as EC and AB (Supplementary
Figure S3). A set of 678 PA essential genes, or 12% of
its total genes, has been identified by transposon mutagen-
esis (24). Due to the random nature of transposon inser-
tion events, the results of transposon mutagenesis often
contain systematic bias. For example, the essential genes
determined by transposon mutagenesis contain a dispro-
portionately higher percentage of short proteins because
shorter proteins are more likely to be missed by trans-
posons (24,51). Comparison of orthologs and essential
genes between EC and PA is shown in (Supplementary
Figure S7A).
Using the same feature selection strategy as we

employed to predict essential genes between EC and AB,
we identified a set of nine features in EC (Supplementary
Table S2B). Note that they are different from those used
in EC!AB (Supplementary Table S2A). We then used
the same method to predict essential genes in PA by

learning the features from EC, denoted as EC!PA,
and generated a ROC curve with an AUC score of 0.69
and PPV=0.57 (Supplementary Figure S8A and B). The
reciprocal PA 678!EC prediction showed a similar
pattern of decreased accuracy (AUC=0.79 and
PPV=0.41).

The relatively lower accuracy of transferring essentiality
between EC and PA is likely due to the lower quality (i.e.
more errors) associated with the essential gene set
produced by transposon mutagenesis (52). A subset of
335 genes, consensus of the PAO1 and another
Pseudomonas species PA14 essential gene sets (51), is
believed to be more accurate. We then trained our classi-
fier on these 335 PA essential genes and predicted those in
EC, denoted PA 335! EC. Training on this refined data
set achieved an improved performance over PA 678! EC
(AUC=0.82 and PPV=0.47).

Prediction of essential genes between E. coli and
B. subtilis

To explore the limit of the transferability, we also at-
tempted to predict essential genes in B. subtilis (BS).
Unlike EC, PA and AB, BS is Gram-positive bacteria.

Figure 3. ROC curves plot the TPR versus FPR for different thresholds of classifier probability output. (A) and (B): EC! AB; (C) and (D): AB!
EC. (A) Ten-fold cross-validations on the EC essential gene data set. (B) Predictions of AB essential genes. The classifier was trained on EC dataset
and evaluated on AB essential genes. (C) Ten-fold cross-validations on the AB essential gene data set. (D) Predictions of EC essential genes. The
classifier was trained on AB data set and evaluated on EC essential genes.
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The evolutionary distance between EC and BS is substan-
tially farther than the other two species: estimated to be
around 3000myrs (Supplementary Figure S3). Among the
271 essential genes listed in (26), we included 192 that were
determined by experimental techniques and disregarded
79 genes that were predicted by homology mapping
from other bacteria, mostly E. coli. A comparison of
orthologs and essential genes between EC and BS is
shown in (Supplementary Figure S7B).

Using the strategy described in previous sections, we
applied our methods to transfer essential gene annotations
from EC to BS, denoted EC!BS, and compared the
predictions with the available known essential gene
dataset in BS. The prediction in BS generated a ROC
curve with an AUC score of 0.80 and PPV 0.54
(Supplementary Figures S8C and D). Similarly, the recip-
rocal BS!EC prediction yielded a ROC curve with an
AUC score of 0.86 and PPV 0.48.

The results suggest that despite the long evolutionary
distance between BS and EC, there are common charac-
teristics underlying EC and BS essential genes represented
by features that can still be recognized by our machine
learning approach.

Although an AUC score in an ROC curve provides a
useful estimation of the predictive accuracy of our models,
it weights the false positive and false-negative errors
equally (53). Because the ratio of essential genes in the
genome is different among organisms, e.g. 4% in BS
and 16% in AB, when evaluating the transferability
from EC to the three target organisms, we should not
directly compare the AUC scores. In addition, when pre-
dicting essential genes in an unstudied organism, precision
of the prediction (PPV), or how many genes predicted as
essential are indeed essential, is often more useful.
Therefore, we plotted the precision of our predictions
from EC to the three target organisms (Figure 4). The
result clearly indicated that EC!AB achieved the
highest precision, while the lower precisions in EC!PA

and EC!BS were likely due to the lower quality of the
dataset and the greater evolutionary distance as we
mentioned in previous sections.

Integrative genomics significantly improves the accuracy
and coverage compared with homology mapping

In order to illustrate the substantial improvement in
coverage by our method, we first used homology
mapping to transfer essential gene annotations from EC
to AB. Among the 302 known essential genes in EC, 234
genes could be directly mapped to the AB genes using an
RBH approach. Therefore, the corresponding 234
orthologous genes in AB were predicted by RBH to be
essential. Among these 234 predictions, 195 were true es-
sential as determined by the AB essential gene dataset
(Figure 5). Please note, these 234 orthologs are the
maximal number of predictions homology mapping can
make, given the definition of orthologs.
We then selected appropriate cutoffs so that our

method made the same number of predictions as the
number of essential genes in the target organism, i.e. 499
in AB. Compared with homology mapping, among the
195 genes correctly predicted by homology mapping, our
approach also predicted 189 (97%) as true essential. On
the other hand, our approach predicted 77 unique predic-
tions that could not be made by homology mapping.
We used the following three examples to illustrate

the discrepancies between our method and homology
mapping (Table 3). For example, ACIAD0822 was
determined as essential by both targeted mutagenesis
(25) and our prediction. This gene has been annotated
with the function of aspartyl/glutamyl-tRNA
amidotransferase with no ortholog in EC (54). Its closest
homolog in EC is b1394 involved in fatty acid metabolic
process (GO:0006631), different from that of
ACIAD0822. In addition, b1394 is a non-essential gene.
In this case, homology mapping is unable to predict
ACIAD0822 as essential. In contrast, the integrated
effect of four strong features (PHYS, PA, CAI and

Figure 4. Precision of predictions from EC to three target organisms.
The Precision versus Rank plot for the three pairs of bacteria: EC!AB
(Gray solid), EC!PA (Gray dashed) and EC!BS (Black solid). The
little cross on the curve represents the precision or PPV with the
corresponding probability threshold set at 0.5.

Figure 5. The integrative approach significantly extends the coverage
of homology mapping. IG stands for the integrative approach. RBH
stands for the reciprocal best hit approach. For the IG method, the
cutoffs are set to be the same as the number of essential genes in each
organism, i.e. (PA: 678, AB: 499, BS: 192).
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Cyto) enabled our method to correctly assign this gene as
essential. In another example, ACIAD2634 was
determined as essential by both targeted mutagenesis
(25) and our prediction. Its closest homology in EC is
b2499, a non-essential gene with the same function. In
this case, RBH incorrectly predicted it as non-essential.
However, the combined influence of DES, PHYS, Nc
and CAI allowed our method to successfully override
the incorrect assignment by RBH. These two examples
highlighted the power of the integrative approach.

On the other hand, ACIAD2640 was determined as an
essential gene by both targeted mutagenesis (25) and the
RBH approach, while our method incorrectly predicted it
as non-essential. The main reason we failed to predict it as
essential is this gene has a paralog in AB, which resulted in
a strongly unfavorable PA score. Its predicted subcellular
localization further cemented the incorrect assignment.

Our predictions in PA and BS suggested a similar
conclusion (Figure 5). The RBH method is sometimes
considered too stringent for mapping orthologs (55),
because if the forward BLAST yields a paralogous best
hit, regardless of whether the reciprocal BLAST corrects
the error by recovering an actual ortholog, both pairs will
be excluded. Therefore, we also performed homology
mapping using COG groups. Using this alternative
method of homology mapping did not change our
conclusions (Supplementary Figure S9).

A simple way to increase the coverage of homology
mapping is to include homologs that are not orthologs
by choosing a more relaxed E-value cutoff. By gradually
loosening the E-value thresholds, we compared our
approach with the RBH method in ROC curves
(Supplementary Figure S10). It was clear that our
method dominated the RBH method in the entire range
of the ROC curves.

DISCUSSIONS

By taking advantage of the abundant genomic sequences
and functional genomics data available in four bacterial
species, EC, PA, AB and BS, we have developed a
machine learning-based approach that predicts essential
genes by integrating features potentially associated with
gene essentiality in Prokaryotes. Although essential gene
data sets are also available in many other genomes (56),
most of them were determined by transposon mutagenesis
whose results may contain systematic biases (24,52). To
strike a balance between comprehensiveness and validity
of our analysis, we chose to include all three bacterial
species (EC, AB and BS) whose essential gene were
determined by targeted mutagenesis, which are considered
the highest quality, and the one (PA) whose essential genes
were determined by transposon mutagenesis by two inde-
pendent groups.

Our 10-fold cross-validations in four organisms showed
AUC scores �0.9, suggesting that gene essentiality, albeit
a complex property is highly predictable by learning the
characteristics underlying gene essentiality. We believe this
is the best cross-validation result in the same organism to
date in predicting essential genes. We attributed thisT
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significant improvement over previous studies to
incorporating both intrinsic and context-dependent
features. In particular, we discovered domain enrichment,
which has not been considered in previous studies, as the
strongest feature.

Our results that protein domain enrichment is a much
stronger feature in predicting gene essentiality than
orthologs (PHYS) suggests that gene essentiality is likely
preserved through the function of protein domains or
domain combinations instead of through the conservation
of the entire genes. This is unexpected but reasonable
because numerous examples can be found in literature
that supports this postulation. For example, DNA poly-
merase III subunits t and g domain III (PF12169) (57)
only has a single copy in EC, PA and BS. The host gene
of this domain, dnaX, is essential in all three species;
however, the sequence identity among them is low. To
further support the modularity within essential genes,
previous studies have discovered that although some
genes as a whole are essential, not all domains are
required for the essential function. For example, E. coli
ftsK (b0890) is an essential gene consisting of two
domains: N-terminal (amino acid 1–780) and C-terminal
(amino acid 780–1329) domains. Only the N-terminal
domain of this gene is required for its role in cell
division and viability (58).

Another reason DES is more predictive than orthologs
is that protein domains are more transferable between or-
ganisms than orthologs. For example, our data showed
that EC and PA share <35% of their genes as orthologs,
but they share almost 70% of domains. A list of domains
that have the highest and lowest DES is given in
Supplementary Table S4. Identifying and exploring such
domains that are actually responsible for carrying out the
essential function, or ‘essential domains’, will greatly
improve our understanding of the mechanistic basis of
gene essentiality.

Other dominant features besides DES are mostly intrin-
sic features while the strongest context-dependent feature
CEB ranks seventh among the 13 features. This suggests
that a gene’s essentiality is primarily determined by its bio-
chemical functions, while whether these functions are es-
sential can also be influenced by the bacteria’s growth
conditions. For instance, the rewiring of the gene regula-
tory networks under different conditions may alter the
degree of a gene’s essentiality to the organism. Further
investigations on the influence from the context-dependent
features may shed light on the conditional gene essentiality.

Most of the errors in our current method are influenced
by strong features. For example, false positive predictions
often have high Phylogenetic score (PHYS). Although
essential genes tend to be more evolutionarily conserved
than non-essential genes, less than a quarter of the highly
conserved bacterial genes were essential when tested
experimentally in model bacteria (9–12). Therefore,
assigning an excessive weight on gene conservation will
inevitably create false positive errors. On the other hand,
false negative errors, i.e. essential genes that were incor-
rectly predicted as non-essential, are often the result of
combined effect of other features failing to override the
decisions made by strong features. These errors can be

corrected by further studying the role each feature plays
in determining essentiality and adjusting their relative
weights.
Our study is also significant in that this is the first report

that gene essentiality can be reliably transferred between
distantly related organisms using a machine learning-
based approach. When using our method to transfer
essentiality between distantly related organisms, the
accuracy of predicting essential genes can be affected by
the following four factors:
First, the essential gene data set on which the classifiers

are trained should be of high quality. Errors in the
training dataset will significantly reduce the accuracy of
predictions, as we observed in PA!EC.
Second, the essentiality should be transferred under the

same or highly similar growth conditions. Gene essential-
ity is likely a contextual property (49). Organisms are
likely to use different sets of essential genes under different
conditions. Predicting essential genes under different con-
ditions than those of the training set will likely result in
decreased predictive accuracy, as we observed between EC
and AB. However, a recent study on E. coli conditional
essential genes showed that <20% of the total essential
genes are different between glycolysis and glucose metab-
olisms (59). Therefore, our algorithm will still be useful in
capturing the majority of the essential genes in the target
organism even when the growth conditions are different,
although the best performance will be achieved under the
same or highly similar growth conditions.
Third, the evolutionary distance seems to play an

important role in the accuracy of predictions. It is
encouraging to see that the classifier can transfer gene es-
sentiality between Gram-negative and Gram-positive
bacteria, although the accuracy of transferring is lower
than between gram-negative bacteria. An interesting
future direction would be to investigate further to what
extent our method can be applicable. For example, to
what extent can essential genes be transferred between
Prokaryotes and Eukaryotes?
Fourth, the prediction also depends on the availability

of features with a similar distribution between organisms.
To be useful in the prediction, the features have to have a
similar distribution in both organisms in order to allow
accurate training and testing (Supplementary Figure S5).
The comparison between our method and homology

mapping highlights the limitations of homology
mapping. Homology mapping is most useful in closely
related organisms, such as S. cerevisiae and S. mikatae
(22). However, in more divergent organisms, it is severely
limited by the number of conserved orthologs. In contrast,
our approach does not have this limitation because the
prediction is based on the features that can be computed
for all genes; therefore, it can easily explore the gene space
for which homology mapping is inapplicable of.
Another advantage is that because our approach can

incorporate organism-specific and context-dependent
features, e.g. gene expression or the number of paralogs
in the target organism, it can potentially identify in one
organism essential genes whose orthologs are non-essential
in other organisms, e.g. ACIAD2634 in Table 3.

Nucleic Acids Research, 2011, Vol. 39, No. 3 805



Our method can be easily extended to predict essential
genes in an unstudied organism. The genomic sequences of
the genes and functional genomics data from microarray
gene-expression analysis are often available in an
organism before the whole-genome mutagenesis experi-
ments are carried out. As a result, the essentiality predic-
tion could be done prior to a costly whole-genome
screening using mutagenesis experiments.
In summary, by integrating features available to all

genes, our method provides a valuable alternative for pre-
dicting essential genes beyond orthologs. The application
of our approach to bacterial species has tremendous po-
tential to significantly improve our ability to re-engineer
microorganisms as well as to respond to many emergency
situations, such as bioterrorist attack or bioremediation
of oil-spilled Gulf regions. Although our research was
performed in Prokaryotes, where the highest quality
essential gene datasets are available, the conclusions
drawn from this study are expected to be also valid in
other domains of life.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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