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ABSTRACT: We report a novel method with higher than 90% accuracy in diagnosing buccal mucosa
cancer. We use Fourier transform infrared spectroscopic analysis of human serum by suppressing
confounding high molecular weight signals, thus relatively enhancing the biomarkers’ signals. A narrower
range molecular weight window of the serum was also investigated that yielded even higher accuracy on
diagnosis. The most accurate results were produced in the serum’s 10—30 kDa molecular weight region
to distinguish between the two hardest to discern classes, i.e., premalignant and cancer patients. This
work promises an avenue for earlier diagnosis with high accuracy as well as greater insight into the
molecular origins of these signals by identifying a key molecular weight region to focus on.

B INTRODUCTION

Vibrational spectroscopy as a method to discern between
cancerous and healthy patients has been a popular field of
study in recent years."”” The potential for this field of research
is great, especially when the focus is on spectral analysis of
biofluids, which can allow for minimally invasive detection of
these diseases through simple swabs or blood/urine tests. This
in turn could allow for more readily available screening for
these diseases, leading to earlier detection. However, due to
the lack of transferability of the results to the clinical setting,
little of this positive impact has occurred."”

The ability to detect cancers at an early stage has a dramatic
effect on the cost of treating the disease. For example, early
stage colon cancer treatment costs can increase nearly 4-fold
when having to treat at a late stage.3 In practice, the
effectiveness of screening has been demonstrated: a UK
study found 46 cases of cancer from computed tomography
scanning 2500 people, with 80% of the cases being early
stage.”” Biofluid spectroscopy could provide a fast, easy,
affordable, minimally invasive method for cancer screening by
comparing an unknown patient sample with a premade
database of known healthy and known cancerous samples to
determine if there is an affliction."*’

Blood is a particularly useful biofluid for inspection due to its
high protein and lipid concentration. In addition, low
concentration nucleic acid fragments and changes in these
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levels are some of the best indicators of disease. Much of the
current research is focused on subsets of blood: the plasma and
serum."” In whole blood, hemoglobin and other red blood cell
associated molecules can interfere with the spectra. Therefore,
the plasma is preferred as the molecular concentrations within
are more sensitive to a disease. Serum is a subset of plasma
without the coagulating factors, which enables easier storage
and use. Without these natural coagulants present, other
decoagulating chemicals do not need to be added. Character-
izing a serum sample, by quantifying the minute quantity of
markers within, is key for being able to tell if it is diseased or
not.*

One of the best methods for this analysis is vibrational
spectroscopy, particularly for it being a nondestructive
procedure, allowing us to examine a sample in as close to a
natural composition as possible without labelin%. Much of the
investigations are proof-of-principle studies.” "> These typi-
cally demonstrate the potential of Fourier transform infrared
(FTIR) or Raman spectroscopy to distinguish between
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diseased and healthy samples in a relatively small sample set.
Of these studies, many of them are investigating cancers in the
attempt to distinguish characteristic spectral biomarkers for
them.

Recently, there has been a study demonstrating better
quantification of molecules, such as glycine in serum, by only
using the <10 kDa fraction as it removes large obscurin§
signals from globulin (>80 kDa) and albumin (>60 kDa).!
Potentially even subsets of serum will be more accurate for the
identification of spectral biomarkers for certain diseases.
Further research using attenuated total reflectance (ATR)-
FTIR has been done in this area, looking at using ultrafiltration
on samples to get better detection of the low molecular
weights.'>'® Therefore, it is necessary to see if this effect can
be transferred to transmission FTIR.

Subsequently, Roy et al. looked at if the same 10 kDa cutoff
could be useful for detecting hepatitis in human serum with
ATR-FTIR."” The results demonstrated a significantly lower
accuracy from the <10 kDa subset. It can be hypothesized that
a viral infection operates differently from a cancer and should
therefore produce different signatures in the blood. The choice
of <10 kDa also remains unjustified as the potentially
obscuring molecules mentioned are >60 kDa. It would also
be useful to see if this cutoff is optimal. We chose to test these
hypotheses in this study.

It is apparent that by finding biomarkers for cancer within a
subset of the serum, the ability to discern the molecules
providing the signal would be improved without the
unnecessary obscuring molecules and their intense signals.
Thereby, the spectral biomarker can be connected to the real
change in blood molecular concentration caused by the cancer,
or the body’s reaction to it. Finding this connection would be a
major step in the field of spectral diagnosis.

Buccal mucosa was chosen as a suitable cancer to test the
potential of fractionating serum before analysis due to recent
Raman spectroscopy-based research into its potential for
screening by Sahu et al.'® The feasibility of classification was
explored before bein$ followed up by a larger and more
comprehensive study.” The latter study contained suitable
premalignant and related disease controls and produced
sensitivity and specificity values of 64 and 80% respectively
in determining the presence of an abnormality. Higher values
were obtained for determining the correct abnormality from
the glioma, premalignant, and oral cancer options used in the
model. It was noted that these values are comparable to
current screening techniques.

In this study, serum samples were filtered and segmented
into different molecular weight windows to see if, by removing
obscuring molecules, detection accuracy can be improved for
buccal mucosa cancer.

To surmise, the key hypotheses being tested are the
following:

e Is transmission FTIR effective at diagnosing buccal
mucosa?

e Are the key signaling molecules for this cancer being
obscured by larger molecules in the blood?

e What molecular weight region is best to investigate?

B EXPERIMENTAL METHOD

Patient Selection. A premalignant control was selected as
this would best emulate a practical diagnosis scenario where
the disease of interest should be discernible from similar,

nonmalignant diseases. A study on ovarian cancer performed
similar control, effectively discerning cancer patients from
other benign ovarian patients.”’ A healthy control is used as a
reference and to potentially allow quantification of the cancer
severity if patient outcomes are monitored.

Here 126 patients were analyzed, with 42 of them being
cancer patients, 40 premalignant, and 44 healthy. A full
summary of these is given in Table S4, with additional detail in
Table S1. In this study, certain factors could influence the
serum spectra such as age, sex, diet, lifestyle habits, e.g,
smoking, pre-existing conditions, or other diseases. Aside from
diet, efforts were made to eliminate or control these, and the
method of choosing a narrow molecular weight window was
aimed at minimizing them. The available samples for buccal
mucosa patients were predominantly male. Therefore, only
male patients were selected for this initial study. All
premalignant and cancer patents were tobacco users, and a
healthy tobacco user control was used. The patient’s reference
diagnoses were clinically determined in TATA hospital.

Sample Preparation. The blood serum was collected,
under ethical guidelines and approved by the ethical
committees in India, from the Advanced Centre for Treatment,
Research and Education in Cancer (ACTREC) and D.Y. Patil
University Navi Mumbai, India. Written informed consent was
obtained from all the subjects as well. Samples were stored at
—80 °C until being thawed for analysis. The serum was
segmented into two fractions using Millipore 500 xL S0 kDa
centrifugal filters. The centrifuge was run for 20 min at 14000g.
Whole serum, <50 kDa low molecular weight (LMW) and >50
kDa high molecular weight (HMW) fractions were analyzed
(see Figure S1). For the FTIR measurement, each fraction was
diluted in a 1:24 ratio of sample to Milli-Q_ultrapure water
before 500 uL was deposited on a 25 mm diameter CaF, slide
purchased from Crystran, ensuring the surface was covered to
the edges, and left to dry overnight for analysis. Dilution was to
ensure absorption was in the correct range for the FTIR
measurement and to reduce the variable deposition “coffee ring
effect”’ (Figure S2 and Figure S3).

Henceforth, the molecular windowing experiment will refer
to the FTIR measurements conducted on a narrower
molecular weight range of the serum. This is achieved by
filtering twice using upper and lower cut off filters. For the
molecular windowing experiment, serum samples were first
filtered through 100 kDa filters. Both filtrate and concentrate
were collected, and the filtrate was moved on to further
filtering using 50, 30, 10, and 3 kDa filters until 6 subsets of
serum were produced. Each of the fractions, i.e., 0—3, 3—10,
10, 30, 30—50, 50—100, >100 kDa and whole serum were all
analyzed for comparison (Figure S4).

Spectral Acquisition. FTIR spectra were acquired with a
PerkinElmer “Spectrum Two” FTIR spectrometer used in
transmission mode. The resolution was 4 cm™', and spectra
were acquired for 5 s with 10 accumulations over a range of
750—4000 cm ™.

Preprocessing of Spectra. Spectra were trimmed to the
1000 data points in the 800—1800 cm™ fingerprint region of
most interest, then preprocessed with a background correction
using the Asymmetric Least Squares Smoothing (ALSS)
baselining algorithm.” This was followed by average normal-
ization.

Postprocessing of Spectra. Instead of directly feeding
1000 dimensions of a spectrum to a support-vector machine
model (SVM), the spectra were first analyzed to extract up to
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Table 1. FTIR Cross-Validation Sensitivity (Sen), Specificity (Spc), and Principal Components (PCs) Results for Classifying
between Buccal Mucosa Cancer Samples from Healthy and Premalignant Using PCA-SVM*

Classification of cancer and

Classification of cancer and all Average cross-validation accuracies

Classification of cancer and healthy Premalignant other (%)

Fraction Sen (%) Spc (%) PCs Sen (%) Spc (%) PCs Sen (%) Spe (%) PCs PCA-SVM LDA SVM
LMW 88 88 29 83 84 46 65 81 30 82.3 76.5 772
HMW 94 82 10 83 83 15 81 89 24 86.1 83.9 83.1
Whole 89 86 29 90 84 27 84 90 43 87 82.7 79.7

“Post-cross-validation results using LDA or SVM alone are also included for comparison, demonstrating a similar accuracy trend but with lower

accuracies overall.

50 principal components (PCs) (orthogonal features), which
were subsequently analyzed using a support-vector-machine
model (see Figure SS and Figure S6). This dimensionality
reduction should help reduce the chances of a model
overfitting. Linear PCA-SVM and complete “leave-one-out”
cross validation were chosen due to effectiveness from earlier
studies and in internal testing.

The model was benchmarked against the community
standard on Data Optimisation Model Evaluation®”
(DOME) methodology (see Table S3).

Further investigation was carried out to compare the cross-
validated accuracies obtained from SVM and LDA alone, i.e.,
using the FTIR spectra directly, as opposed to using the
relevant number of PCs for PCA-SVM analysis (see Table 1).
It can be clearly observed that the PCA-SVM analysis
produced higher accuracies on average compared to SVM or
LDA analysis alone. Table S7 offers additional information on
these classifications.

B RESULTS AND DISCUSSION

Comparison of Whole Sera with LMW and HMW
Fractions. The average spectral differences for whole serum
can be seen in Figure 1.
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Figure 1. Difference in the average spectra of cancer and
premalignant patient serum from healthy for whole serum. Error in
faded color around each line shows level of distinction for each
spectrum.

The background subtracted spectra (preprocessed) were
used to calculate the PCs. An example of the variation of
accuracy and specificity with the number of PCs is shown in
Figure 2. The highest accuracy and specificity combinations
were chosen for analysis of spectra from low molecular weight
(<S50 kDa), high molecular weight segments (>50 kDa), and
the whole sera. The cross-validated sensitivity and specificity
results for classifying the spectra are summarized in Table 1.
The separability of the groups is high all round with >80%
accuracy. There is a 95% confidence interval of approximately
4% for classifications on the cohort size used.
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Figure 2. (A) Explained variance graph depending on the number of
principle components (PCs) used. (B) Cross-validated sensitivity and
specificity values dependent on the number of PCs used in the model.
Example graph to demonstrate how the accuracy plateaus after a
sufficient number of principle components. The cross-validated
accuracy does not decrease after a point as the SVM algorithm
ignores the unnecessary components and minimal or no overfitting
occurs. The two graphs mimic one another; the plateau in panel B
starts at 25 principle components whereas in panel A there is 99.84%
variance explained. This example is from the classification of the
whole cancer vs premalignant subset.

The FTIR results for whole serum demonstrates the ability
to effectively distinguish between healthy, premalignant, and
cancerous serum samples with high (>85%) accuracy.
Additionally, the ability to classify using the spectra from low
and high molecular weight subsets of the serum was
demonstrated, although no obvious benefit was evident.
Therefore, we zoomed-in to narrower molecular windows to
investigate further.

Narrower Molecular Windowing. We continued to
search for the narrow molecular weight windows of the
blood serum where the accuracy is the highest. In this
experiment (shown in Figure 3), the 10—30 kDa subset
performed significantly better than the whole serum, producing
a highly accurate cross-validated classification where all the
patients were classified correctly. Even though the sample size
for this experiment is small, the confidence interval depicted in
Figure 3 is higher. However, the results indicate a valuable 10—
30 kDa window of interest for further investigation.
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Figure 3. Classification accuracies between FTIR spectra of
premalignant and cancer patients for different serum molecular
weight subsets (molecular windows). The 95% confidence interval is
shown by the gray lines over the bars. The 10—30 kDa window
performed significantly better than the whole serum.

It is worth noting that although our hypothesis that the key
signaling molecules were being obscured by the larger proteins
in the serum'” was not disproved, it did not result in a higher
classification accuracy. In this regard, the results were similar to
the hepatitis study by Roy et al.">'” However, our spectra are
majorly different after the reduction of the contribution of
albumin, globulin, and other high weight components.

It is valuable to discern the root biological cause of the
spectral shifts observed. Knowing what molecular weight
fraction the key information is present in as well as the key
peaks of interest can be used together to help identify potential
biomarker molecules.

The identification of the 10—30 kDa region as providing the
best overall classification accuracy (above 90%) indicates that
the molecular weight splitting method can potentially have
significant value, especially if this specific region can be
examined in further studies.

B CONCLUSIONS

The potential of FTIR for screening of buccal mucosa cancer is
demonstrated, with classification accuracy of 87% for the
whole serum. The additional use of ultrafiltration provided
more information about the signal’s origins, with contributing
factors present in both the high and low molecular weight
regions. Furthermore, the molecular windowing showed even
greater promise from its even higher classification accuracy for
the 10—30 kDa window. This can inform a follow-up study
into the root cause of the spectral biomarker identified. Other
benefits of a narrower molecular window include suppressing
external factors, such as alteration of a serum composition due
to differences in diet and food culture, and internal factors such
as hormonal differences between genders, the stage of
menstruation, the age of patients, and the copresence of
other diseases, infections, and inflaimmation in a patient.
Narrowing the molecular window establishes a foundation to
minimize numerous possible influences that can deteriorate the
accuracy of cancer diagnosis. Further study focused to these
factors will be required in future to verify the degree of the
individual influences.
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