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Abstract

Background: Ascaris lumbricoides and Ascaris suum are socioeconomically important and widespread parasites of humans
and pigs, respectively. The excretory-secretory (ES) molecules produced and presented at the parasite-host interface during
the different phases of tissue invasion and migration are likely to play critical roles in the induction and development of
protective immune and other host responses.

Methodology/Principal Findings: The aim of this study was to identify the ES proteins of the different larval stages (L3-egg,
L3-lung and L4) by LC-MS/MS. In total, 106 different proteins were identified, 20 in L3-egg, 45 in L3-lung stage and 58 in L4.
Although most of the proteins identified were stage-specific, 15 were identified in the ES products of at least two stages.
Two proteins, i.e. a 14-3-3-like protein and a serpin-like protein, were present in the ES products from the three different
larval stages investigated. Interestingly, a comparison of ES products from L4 with those of L3-egg and L3-lung showed an
abundance of metabolic enzymes, particularly glycosyl hydrolases. Further study indicated that most of these glycolytic
enzymes were transcriptionally upregulated from L4 onwards, with a peak in the adult stage, particularly in intestinal tissue.
This was also confirmed by enzymatic assays, showing the highest glycosidase activity in protein extracts from adult worms
gut.

Conclusions/Significance: The present proteomic analysis provides important information on the host-parasite interaction
and the biology of the migratory stages of A. suum. In particular, the high transcriptional upregulation of glycosyl hydrolases
from the L4 stage onwards reveals that the degradation of complex carbohydrates forms an essential part of the energy
metabolism of this parasite once it establishes in the small intestine.
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Introduction

Ascariasis is the most prevalent internal macro-parasite of

humans (Ascaris lumbricoides) and pigs (Ascaris suum) worldwide.

Approximately 1.2 billion people infected, with a prevalence that

is highest in children of the tropics and subtropics [1]. Infected

children show signs of malnutrition, growth stunting, intellectual

retardation, and cognitive and educational deficits [2]. Ascaris also

causes major production losses in pigs, including reduced growth

rates associated with a decrease in feed conversion efficiency [3].

In addition, lesions in pig livers (i.e. ‘milk spots’) caused by

migrating larvae represent considerable losses as such livers are

condemned [4]. Traditionally, ascariasis is usually controlled by

mass treatment with anthelmintics. However, due to the short

activity of the anthelmintics and an environment often highly

contaminated with Ascaris eggs, reinfections can occur rapidly.

Hosts become infected by the oral ingestion of Ascaris eggs

containing infective third-stage larvae (L3s). After hatching in

the gastrointestinal tract, the larvae penetrate mainly the caecal

wall and undergo a hepatopulmonary migration, after which,

ultimately, the adult females and males establish and develop in

the small intestine. During a primary infection, migrating

larvae cause pathological lesions in the gut, liver and lungs. A

short-lived immunological reaction against the migrating L3s is

seen in the liver 7 days after infection, and is characterized by

the production of B cells and CD4+ T cells in the local lymph

nodes [5]. Two weeks after the infection, the immunological

reaction changes from a liver to a lung response, in which the

local lymph nodes are enlarged [5]. After the hepatopulmonary

migration of the larvae, an intestinal hypersensitivity reaction is

seen in the gut, characterized by an accumulation of mast cells,

eosinophils and IgA- and IgE-producing cells in the gut
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mucosa. Pathophysiological changes in the gut, such as

increased mucus secretion and mucosal permeability, caused

by enhanced secretion of IL-4 and IL-13, have also been

observed [6]. After a prolonged exposure, pigs develop a strong

protective immunity in the gut, which prevents new incoming

larvae from penetrating the intestinal wall. Recently, Masure et

al. [7] showed that eosinophils play a crucial role in generating

this immune barrier.

The proteins produced and presented at the parasite-host

interface during these different phases of tissue invasion and

migration are inferred to play a critical role in the induction

and development of immune responses [8]. Such proteins can

be present on the outermost layers of the cuticle and in the

excretory-secretory (ES) products, which are mainly released

from the cuticular surface, specialized excretory/secretory

organs and the worm intestine [8,9]. To date, little is known

about these components from A. suum. Limited by technical and

practical constraints, earlier studies of ES products from A. suum

were mainly focused on exploring their chemical composition,

ultrastructure and immunological role [10–14]. Recently, with

major developments in mass spectrometry and genomic

technologies, many of the previous challenges and limitations

in the proteomic analysis of parasite ES proteins have been

overcome, and have led to the characterisation of ES proteomes

for parasitic nematodes including Ancylostoma caninum, Brugia

malayi, Haemonchus contortus, Teladorsagia circumcincta and Trichi-

nella spiralis [15–22]. Nonetheless, there has been no profound

proteomic analysis of Ascaris ES products at critical stages of

development. The aim of this study was to characterize the ES

proteins of three different larval stages of A. suum (i.e. L3-egg,

L3-lung and L4) using tandem mass-spectrometry combined

with the recently completed A. suum genome for annotation

[23]. In addition, transcriptomic datasets of the larval stages

[23] were used to investigate transcription of genes encoding

some of the proteins identified in the ES products from the

three larval stages.

Methods

Ethics statement
All animal experiments were conducted in accordance with the

E.U. Animal Welfare Directives and VICH Guidelines for Good

Clinical Practice, and ethical approval to conduct the studies were

obtained from the Ethical Committee of the Faculty of Veterinary

Medicine at Ghent University (Identification number EC2011/

176) who have also approved the document.

Parasite material
Adult worms of A. suum were collected from naturally infected

pigs at the local slaughterhouse as part of the normal work at the

abattoir. Subsequently, male and female worms were dissected and

the intestine, reproductive system and cuticle collected and stored

at 280uC until use. Eggs of A. suum were obtained from the uteri of

female worms, and cultured in 0.1% K2Cr2O7 for 28–30 days at

25uC. After 90% of the eggs had become fully embryonated, the

infective L3s were hatched from the eggs as described previously

by Urban and Douvres [24] and then separated from eggshell

fragments and other debris by baermannization.

Two groups of two pigs were experimentally infected with

larvated eggs of A. suum by gavage. Pigs of group one were each

inoculated with 500,000 eggs and euthanized seven days post

infection (pi) in order to collect the lung stage larvae (L3-lung),

whereas pigs of group two each received 30,000 eggs and were

euthanized 14 days pi to collect intestinal stage larvae (L4). L3-

lung and L4 were separated from lung tissue and small intestinal

contents of host by baermannization, respectively.

Preparation and analysis of ES products
All three larval stages (L3-egg, L3-lung and L4) were cultured

for five days in RPMI 1640 medium with 10 mM L-Glutamine

(GIBCO, Invitrogen) containing 0.2 mg/ml gentamycin (10 mg/

ml GIBCO, Invitrogen), 1% amphotericin B (250 mg/ml, Sigma),

1 mg/ml streptomycin (Sigma) and 1,000 U/ml penicillin (Kela

pharma). The viability of larvae was checked daily and the culture

fluid was collected every 24 h and filtered through a 0.22 mm filter

(PALL Corporation). After 5 days, the filtrates were pooled and

then concentrated and dialysed against phosphate-buffered saline

(PBS) at 4uC using filters (Amicon, YM-10 membranes, Millipore).

Proteins were precipitated through the addition of 6 volumes of

cold acetone for 18 h at 220uC. The proteins were pelleted by

centrifugation at 13,000 rpm for 15 min at 4uC. The pellet was

resuspended in PBS and stored in aliquots at 280uC. For SDS-

PAGE analysis, protein samples (20 mg per lane) were mixed with

loading buffer (2% SDS, 50 mM Tris HCl and 5% b-mercapto-

ethanol), boiled for 5 min and then separated on 12% SDS-PAGE

gels using a standard procedure [25]. After staining with

Coomassie Brilliant Blue (Invitrogen), the entire gel lane was

sliced in 10 equal pieces (horizontally) and used for subsequent

liquid chromatography-tandem mass spectrometric (LC-MS/MS)

analysis.

In-gel and in-solution tryptic digestion and LC-MS/MS
analysis

Tryptic in-gel digestion was performed as described previously

[26]. In brief, to ensure better transfer of buffers, each protein

band was cut into 1 mm2 portions, washed twice in 50%

acetonitrile with 25 mM ammonium bicarbonate, reduced with

10 mM dithiothreitol in 25 mM ammonium bicarbonate, alkylat-

ed with 100 mM iodoacetamide in 25 mM ammonium bicarbon-

ate and digested with trypsin (200 ng per band) at 37uC for 18 h.

Peptides were extracted with acetonitrile and dried in a Speedvac.

Author Summary

The gastro-intestinal nematodes Ascaris lumbricoides and
Ascaris suum are amongst the most prevalent parasites of
humans and pigs, respectively. To date, little is known
about A. suum excretory-secretory proteins, which are
present at the parasite-host interface and likely to play a
critical role in the induction and development of the
immune response. The aim of this study was to identify the
excretory-secretory proteins of the migratory stages of A.
suum utilizing LC-MS/MS. In total, 106 proteins were
identified, some of which are known as important players
in the parasite-host interface. Interestingly, an abundance
of glycosyl hydrolases was observed in the ES material of
the intestinal L4 stage larvae. By combining the proteomic
analysis with in depth genomic, transcriptomic and
enzymatic analyses we could show that the glycosyl
hydrolase protein family has undergone a massive expan-
sion in A. suum and that most of the glycolytic activity is
present in the intestinal tissue of the adult parasites. This
could suggest that the degradation of complex carbohy-
drates forms an essential part of the energy metabolism of
this parasite once it establishes in the small intestine.
These findings provided useful information on the host-
parasite interaction and the biology of this parasite, which
can support the concerted efforts to develop better
intervention strategies.

Proteomics of Ascaris suum ES Products
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The in-solution digestion was performed as previously described

[27]. In brief, 10 mg of the acetone-precipitated ES proteins were

resuspended in 20 ml of 0.5 M triethylammonium bicarbonate

buffer, reduced with 2 ml of 10 mM dithiothreitol and incubated at

60uC for 1 h. Subsequently, 1 ml of 200 mM methyl methanethio-

sulfonate in isopropanol was added and incubated for 10 min at

room temperature. The solution was digested with trypsin

(resuspended in triethylammonium bicarbonate) in at a ratio of

1/50 (amount trypsin/protein) overnight at 37uC.

Dried peptides were dissolved in 40 ml 0.1% formic acid (FA)

and 20 ml was desalted for 10 min on a C-18 pre-column (C18

PepMap100, 5 mm65 mm, i.d. 300 mm Dionex) with 0.1% FA.

Separation was performed by means of reversed phase nano-

HPLC (25 cm PepMap C18 analytical column, Dionex) at 60uC
using a linear gradient of H2O: ACN (97:3, 0.1% FA) to H2O:

ACN (20:80, 0.1% FA) at 300 nl/min over 70 min. The different

peptides were analyzed on an ESI Q-TOF Premier (Waters,

Wilmslow, UK) in a data dependent mode, with automatic

switching between MS and MS/MS for up to 7 higher charge

ions, when the intensity of the individual ions rose above 50 counts

per sec. Fragmentation of the precursors was performed by means

of CID. The capillary voltage was set at 1.9 kV, and the cone

voltage was set at 100. M/z ratios for MS ranged between x and y

and for MS/MS between x and y. M/z ratios selected for MS/MS

were excluded for 150 sec. A custom collision energy profile was

used.

Figure 1. Protein profile of the A. suum ES products. Protein profile of the A. suum L3-egg, L3-lung and L4 ES products displayed on a 12% SDS-
PAGE stained with Coomassie blue. Each lane was loaded with 15 mg of protein. Molecular weight markers are indicated to the left. The 10 gel slices
used in the trypsin digests are indicated on the right.
doi:10.1371/journal.pntd.0002467.g001
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Database searching and sequence analysis
Data were searched against an in-house Ascaris sequence

database (18,542 protein entries), which is based on the recently

published A. suum genome [23], using the search engine Mascot

Daemon (v.2.3, Matrix Science, London, UK), allowing a

maximum of one miscleavage. Carbamidomethyl (C) was specified

as fixed modification and carbamidomethyl (N-term), deamidated

(NQ) and oxidation (M) were considered as variable modifications

for in-gel digest. For in solution digests, methylthio (C) was selected

as the fixed modification, and deamidated (NQ) and oxidation (M)

as variable modifications. An error-tolerant Mascot search was

performed as well. The peptide tolerance and MS/MS tolerance

were set to 0.35 Da and 0.45 Da, respectively. Only the most

parsimonious group of protein identifications were reported from

the identified proteins, and the identification threshold was set at

p,0.01. For the proteins that were annotated based on only one

peptide, the identification threshold was set at p,0.0001. An

estimate of the relative abundance of the predicted proteins in the

trypsin digestion was assessed using the Exponentially Modified

Protein Abundance Index (emPAI) [28] together with the MS

score, sequence coverage, detected peptides numbers. For

redundant identifications, the emPAI value from the hit with the

highest score was considered. The Gene Ontology (GO) database

was used for inferring the molecular function of individual proteins

identified. The protein sequences were analysed for the presence

of signal peptides and transmembrane regions with SignalP 3.0

and TMHMM 2.0 (http://www.cbs.dtu.dk/services/TMHMM/),

respectively. The subcellular localization was predicted with

SecretomeP 2.0. The sequences of the identified proteins were

then used to BLAST search the A. suum genome to identify

homologous sequences. This was done through the WormBase

(http://www.wormbase.org/) (E-value threshold = 1E-16).

Amino acid sequences of selected eukaryotic glycosyl hydrolases

listed in the CAZy database (http://www.cazy.org/) were

downloaded and used for multiple alignment and consecutive

phylogenetic analyses. These sequences included: Homo sapiens

alpha acid glycosidase (AAG) (P10253), dual catalytic sucrase-

isomaltase (SUIS) (P14410), maltase-glucoamylase (MGA)

(O43451), alpha glucosidase AB (GANAB) (Q14697), alpha

glucosidase C (GANC) (Q8TET4); Bos taurus AAG (Q9MYM4);

Mus musculus AAG (P70699); Coturnix japonica AAG (O73626);

Oryctolagus cuniculus SUIS (P07768); Suncus murinus SUIS (O62653);

Rattus norvegicus SUIS (P23739); Sus scrofa GANAB (P79403);

Drosophila melanogaster AAG-like (Q7KMM4) and Caenorhabditis

Table 1. Protein identifications in A. suum L3-egg ES products.

Category/Protein identitya IDb Score Coverage Unique sequences emPAI Sigc

%

Metabolic pathway

Endochitinase GS_04985 205 13 2 0.24 ++

GS_08584/GS_15811d 146 18/10 1 0.57 ++

Motor activity

Myosin-4 GS_03209 54 1 1 0.02 2

Paramyosin GS_12985 122 3 3 0.1 2

Tropomyosin GS_20722 97 6 1 0.12 2

Binding

14-3-3-like protein GS_05590 174 14 4 0.51 2

32 kDa beta-galactoside-binding lectin lec-3 GS_06140 96 5 1 0.10 +

Globin-like protein GS_08818 73 12 2 0.21 2

Histone H2A* GS_13585 99 23 2 0.67 ++

GS_19480 141 25 2 0.67 ++

Histone H2B.1/H2B.2 GS_12983 55 19 2 0.67 ++

Histone H4 GS_02440 166 40 4 2.3 2

Nucleoside diphosphate kinase GS_12864 98 6 1 0.33 2

Other

Serpin-like protein GS_15000 49 19 3 0.27 2

GS_19115 50 7 2 0.09 2

GS_19745 77 4 1 0.11 2

Unknown

PAN domain-containing protein GS_06520 265 12 4 0.27 +

Hypothetical protein CBG_20511 GS_15101 79 11 2 0.08 ++

Unknown GS_06759 125 8 3 0.17 ++

Unknown GS_19262 77 1 1 0.03 2

aThe proteins identified were categorized by their molecular function according to information obtained from the Gene Ontology database.
bThe accession number in A. suum genome database (available on WormBase, www.wormbase.org).
cThe identified proteins were predicted to be either a classical secretory protein (+), non-classical secretory protein (++) or not secreted (2) by secretion prediction using
SignalP and SecretomeP.
doi:10.1371/journal.pntd.0002467.t001
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Table 2. Protein identifications in A. suum L3-lung ES products.

Category/Protein identitya IDb Score Coverage Unique sequences emPAI Sigc

%

Metabolic pathway

Maltase-glucoamylase GS_07553 78 2 1 0.05 +

GS_15893 142 6 2 0.15 2

GS_16769 132 8 3 0.18 ++

GS_23879 171 4 4 0.08 ++

Neprilysin-1 GS_08219 66 1 1 0.02 +

Sucrase-isomaltase GS_01568 277 19 4 0.66 2

GS_02444 258 13 3 0.28 2

GS_05716 80 11 1 0.19 2

GS_08447 69 2 1 0.04 ++

GS_17323 129 3 1 0.05 2

GS_20796 121 2 1 0.04 2

GS_22047 151 6 3 0.12 ++

Structural

Cuticlin-1 GS_10816 63 3 1 0.09 2

Cuticle collagen 12 GS_16238 147 17 2 0.27 ++

Cuticle collagen 13 GS_12737 289 8 1 0.34 ++

Peptidyl-prolyl cis-trans isomerase B GS_15602 197 7 2 0.29 2

Binding

14-3-3-like protein GS_05590 73 3 1 0.11 2

C-type lectin GS_12842 102 49 2 1.70 2

Latent-transforming growth factor beta-binding protein 1 GS_21305 102 0 1 0.01 ++

Thyrotropin-releasing hormone-degrading ectoenzyme GS_02555 123 4 1 0.08 ++

Transmembrane cell adhesion receptor mua-3 GS_11192 253 2 6 0.06 ++

Other

Aspartic protease 6 GS_13572 239 9 2 0.25 +

Pepsin inhibitor Dit33 GS_22518 81 6 1 0.13 ++

Poly(U)-specific endoribonuclease GS_22743 101 4 1 0.05 +

Protein DAO-2 GS_24324 120 13 1 0.54 +

Serine protease GS_07735 78 2 1 0.05 +

Serpin-like protein GS_19115 303 14 2 0.29 2

Unknown

24 kDa protein of As22 GS_08591 219 17 2 0.36 +

DOMON domain-containing protein GS_00339 144 20 2 0.43 2

Excretory/secretory mucin MUC-5 GS_22776 529 56 1 4.62 ++

Heh-1 GS_20415 66 5 1 0.12 2

Transthyretin-like protein 5 GS_01881 85 9 1 0.25 +

Venom allergen 3 GS_10381 103 12 2 0.26 ++

von Willebrand factor domain-containing protein GS_02090 66 3 1 0.07 ++

Hypothetical protein LOAG_00319 GS_14306 72 14 1 0.30 2

Hypothetical protein LOAG_07538 GS_11367 109 5 1 0.12 2

Unknown GS_01811 72 14 1 0.29 2

Unknown GS_02698 83 11 1 0.33 2

Unknown GS_03310 89 4 1 0.14 +

Unknown GS_09456 119 20 2 0.56 +

Unknown GS_10718 171 34 2 0.92 +

Unknown GS_12589 133 11 1 0.58 +

Unknown GS_15853 245 18 2 0.67 2

Proteomics of Ascaris suum ES Products
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elegans AAGR1-4. The protein sequences were subjected to

MUSCLE alignment (http://www.ebi.ac.uk/Tools/msa/muscle/

), and alignments verified and visually checked and edited, as

required, in Jalview (http://www.jalview.org/). The program

ClustalX 2.0.10 was used to generate phylogenetic tree following

analysis using the neighbour-joining method (1000 replicates) [29].

Finally, the program WebLogo application (http://weblogo.

threeplusone.com/create.cgi) was used to provide a graphical

representation of the amino acid homology around the catalytic

sites of some of the glycosyl hydrolases of A. suum and C. elegans.

RNA extraction and quantitative real-time PCR (qPCR)
Total RNAs from larvae and adult worm tissue samples were

isolated using TRIzol (Invitrogen), followed by further purification

with the RNeasy Mini kit (Qiagen), according to the manufactur-

er’s instructions. An on-column DNase digestion was performed

using the RNase-free DNase set (Qiagen) to remove any possible

genomic DNA. The RNA concentrations were determined

(NanoDrop ND-1000 spectrophotometer, NanoDrop Technolo-

gies) and its quality was verified (Experion Automated Electro-

phoresis System, Bio-Rad). For all samples, the RNA quality

indicator (RQI) calculated (ExperionTM software, Bio-Rad) was

8.0, demonstrating high RNA integrity.

The qPCR analyses were performed as described previously

[30]. Tubulin and glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) were selected as housekeeping genes. The primer sets

used were designed by Primer3 software (http://frodo.wi.mit.edu/

primer3/) and are listed in Table S1.

Analysis of differential transcription
A transcriptome dataset was generated from the L3-egg, the L3-

liver, the L3-lung and the intestinal L4 stages as part of a previous

study [23]. Briefly, following RNA-seq, all paired-end reads for

each library constructed were aligned to the predicted A. suum gene

set using TopHat. Levels of transcription (reads per kilobase per

Million mapped reads (RPKM)) were calculated using Cufflinks

[31]. To obtain the RPKM values for genes of interest, accession

numbers from the A. suum genome were used to search the

transcriptomic datasets.

Protein extraction and enzymatic assays
Protein extracts of larval stages or adult worm tissues were

produced by grinding the frozen material to a fine powder in a

liquid nitrogen-cooled pestle and mortar. The powder was

sequentially subjected to a two-step process with reagents of

increasing solubilising power [32]. For the water-soluble protein

fraction, 4 ml of PBS, pH 7.4, were used to resuspend the powder

for 2 h at 4uC by gentle ‘head-over-head’ mixing. The insoluble

material was pelleted by centrifugation at 120,0006g for 15 min

and the supernatant retained. For the water-insoluble protein

fraction, the pellet was incubated at 22uC for 3 h using an

extraction buffer consisting of 5 M urea (Sigma), 2 M thiourea

(Sigma), 2% CHAPS (Sigma) and 2% SB3-10 (Sigma) in 40 mM

Tris, pH 7.4. The supernatant was collected, as described for the

water-soluble protein fraction. A general use cocktail of protease

inhibitor (Sigma) was added to each extracts to avoid proteolytic

degradation. Protein concentrations were measured with the

Bradford reagent (Sigma), and proteins stored at 280uC.

The glycosidase assays were conducted by incubating 5 mg of

protein extract with 30 mM of substrate at pH 6.5 for 40 min at

37uC. Reactions were quenched by the addition of 3 M Tris. The

glucose was quantified using the Glucose Assay Kit (Sigma). The

substrates used in the assays included maltose, lactose and sucrose.

Each analysis was performed three times, and the results presented

as the average of the three readings. For statistical analysis, the

unpaired student t-test was used to test differences in activity

between the different protein homogenates. The level of signifi-

cance for analyses was set at P#0.05.

Results

Proteins profiles of the excretory/secretory material
The protein profiles of the ES products from each of the three

larval stages of A. suum, displayed by SDS-PAGE and Coomassie

staining, are shown in Figure 1. The analysis revealed a complex

and distinct banding pattern for the ES of three individual stages.

Most ES proteins from L3-egg were distributed between 10–

120 kDa, whereas those of L3-lung were mainly between 30 and

100 kDa, with a smear above 40 kDa. L4 ES represented a

complicated profile, with major bands between 37 and 150 kDa,

and some fainter bands in the 20–30 kDa range.

Protein identifications
Mascot searches of the MS/MS spectra for both the in-gel and

in-solution approaches yielded 20, 45 and 58 protein identities

within ES products of L3-egg, L3-lung and L4 stages, respectively.

The full lists of proteins identified are provided in Tables 1 (L3-

egg), 2 (L3-lung) and 3 (L4). Most ES proteins detected were

inferred to be stage-specific [85% (n = 17) for L3-egg, 69% (n = 31)

for L3-lung and 74% (n = 43) for L4], and 15 proteins identified in

ES products were shared by at least two larval stages. The

identities of proteins shared by all three stages are given in

Figure 2. ES products from L3-lung and L4 shared 14 proteins,

representing 31% and 24% of their sub-total, respectively, whereas

the L3-egg shared only 2 and 3 proteins with L3-lung and L4,

respectively. Finally, two proteins shared by all three ES samples

included a 14-3-3-like protein and a serpin (Figure 2).

In silico prediction of classical and non-classical secretion showed

that 9 (45%), 25 (56%) and 42 (72%) of the identified proteins

Table 2. Cont.

Category/Protein identitya IDb Score Coverage Unique sequences emPAI Sigc

%

Unknown GS_17230 198 11 2 0.49 2

Unknown L3E_00366 150 4 1 0.21 2

aThe proteins identified were categorized by their molecular function according to information obtained from the Gene Ontology database.
bThe accession number in A. suum genome database (available on WormBase, www.wormbase.org).
cThe identified proteins were predicted to be either a classical secretory protein (+), non-classical secretory protein (++) or not secreted (2) by secretion prediction using
SignalP and SecretomeP.
doi:10.1371/journal.pntd.0002467.t002
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Table 3. Protein identifications in A. suum L4 ES products.

Category/Protein identitya IDb Score Coverage % Unique sequences emPAI Sigc

Metabolic pathway

Fructose-bisphosphate aldolase 1 GS_19276 189 14 3 0.28 2

Fumarate reductase GS_20429 78 2 1 0.07 2

Glutathione S-transferase 1 GS_16802 150 11 1 0.16 2

Maltase-glucoamylase GS_00984 65 5 1 0.13 ++

GS_07553 93 21 1 0.16 +

GS_15893 642 32 9 1.00 2

GS_18934 101 7 2 0.20 ++

GS_21210 66 15 1 0.43 ++

GS_23879 1143 16 20 0.46 ++

Neprilysin-1 GS_08219 1114 14 14 0.39 +

GS_10348 198 4 5 0.13 ++

GS_19140 331 6 6 0.14 ++

Phosphoenolpyruvate carboxykinase GTP GS_20378 63 4 1 0.08 2

Sucrase-isomaltase GS_05716 175 25 3 0.67 2

GS_08447 97 1 1 0.04 ++

GS_16354 95 5 1 0.08 ++

GS_19777 259 6 4 0.14 ++

Structural

Peptidyl-prolyl cis-trans isomerase 3 GS_07454 82 8 1 0.21 ++

Binding

14-3-3-like protein GS_05590 96 3 1 0.11 2

Aminopeptidase N GS_04166 106 4 3 0.13 ++

GS_05584 143 3 1 0.05 ++

GS_05746 696 14 12 0.29 +

C-type lectin protein 160 GS_02845 194 7 2 0.36 +

GS_04559 835 35 8 1.76 +

GS_12996 170 10 3 0.26 ++

Enolase GS_21295 87 3 1 0.08 2

GH family 25 lysozyme 2 GS_22190 441 39 5 3.27 ++

Nucleoside diphosphate kinase GS_12864 66 9 1 0.15 2

Phosphatidylethanolamine-binding protein GS_22941 103 16 2 0.19 ++

Thyrotropin-releasing hormone-degrading ectoenzyme GS_02555 404 26 7 0.66 ++

Zonadhesin GS_01761 771 22 9 1.00 ++

GS_11354 66 1 1 0.04 +

GS_11656 693 24 4 0.71 +

Other

Aspartic protease 6 GS_14901 340 15 2 0.17 +

GS_15316 753 24 5 0.90 +

GS_19445 919 26 5 1.24 +

Poly(U)-specific endoribonuclease GS_22743 638 16 7 0.56 +

Serpin-like protein GS_19115 395 18 3 0.29 2

Unknown

24 kDa protein [Anisakis simplex] GS_07900 68 16 1 0.41 ++

As14 GS_02102 217 25 1 0.26 +

Transthyretin-like protein 5 GS_21838 69 18 1 0.40 2

Transthyretin-like protein 46 GS_02516 119 18 2 0.45 +

Venom allergen 3 GS_10381 131 16 3 0.41 ++

Unknown GS_01911 63 4 1 0.11 ++
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from L3-egg, L3-lung and L4 ES products, respectively, were

predicted to be either a classical or non-classical secreted protein

(Tables 1–3).

All proteins identified were subsequently categorized based on

their molecular function, according to information from the GO

database. Assigned were: metabolic pathway, structural, motor

Table 3. Cont.

Category/Protein identitya IDb Score Coverage % Unique sequences emPAI Sigc

Unknown GS_01916 63 6 1 0.20 +

Unknown GS_01929 89 5 1 0.13 +

Unknown GS_03310 264 13 2 0.67 +

Unknown GS_03433 90 3 1 0.08 2

Unknown GS_04618 125 5 1 0.28 2

Unknown GS_06231 183 20 3 0.74 +

Unknown GS_08453 82 11 2 0.30 2

Unknown GS_08951 613 14 6 0.38 ++

Unknown GS_09456 116 9 1 0.56 +

Unknown GS_11305 123 1 1 0.03 ++

Unknown GS_23530 126 17 2 0.43 +

Unknown L3E_00366 124 8 2 0.21 2

Unknown L4_01560 131 32 2 0.95 ++

Unknown L4_03658 162 20 1 0.31 +

aThe proteins identified were categorized by their molecular function according to information obtained from the Gene Ontology database.
bThe accession number in A. suum genome database (available on WormBase, www.wormbase.org).
cThe identified proteins were predicted to be either a classical secretory protein (+), non-classical secretory protein (++) or not secreted (2) by secretion prediction using
SignalP and SecretomeP.
doi:10.1371/journal.pntd.0002467.t003

Figure 2. Venn diagram of similar proteins. Venn diagram showing the distribution of the number of proteins identified in ES products from L3-
egg, L3-lung and L4 of A. suum. The proteins identified are listed on the right.
doi:10.1371/journal.pntd.0002467.g002
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activity, binding, other functions and proteins of unknown

function (Figure 3). From the entire annotated ES protein dataset,

24% (n = 38) of proteins did not have any known function or

known homologues in other organisms. Comparison of the results

obtained for the three larval stages indicated an increase in the

number of proteins involved in metabolic pathways from the L3-

egg stage to the L3-lung and L4 stage larvae, whereas only two

endochitinase homologues were identified from the L3-egg. In

contrast, motor activity proteins, including proteins such as

myosin-4, paramyosin and tropomyosin, were unique to L3-egg.

Finally, 9% of proteins identified in L3-lung ES products,

including cuticlin-1, cuticle collagen 12 and 13, represented

‘structural’ proteins, whereas those belonging to this category were

less represented in L3-egg (none) and L4 (2%). Of the 17 binding

proteins identified 82% of them were ATP-, ion-, carbohydrate-

and DNA-binding proteins.

Glycosyl hydrolases in Ascaris suum
The most frequently identified proteins in ES products were

glycosyl hydrolases belonging to family 31 (GH31). In total 16

GH31 proteins were identified in the ES products of L3-lung and

L4 larvae with homology to maltase-glucoamylases and sucrase-

isomaltases. Six and 5 GH31 proteins were identified in L3-lung

and L4, respectively, and another 5 for both of these larval stages.

In order to obtain more information on these proteins, we

subsequently BLAST searched the A. suum genome for additional

members of this GH31 family. In total, 32 protein sequences were

identified, all showing homology to GH31 proteins (Table 4). The

length of the protein sequences ranged from 80 to 1772 amino

acids (aa), suggesting that some of the sequences were not full

length. Twenty of the predicted GH31 proteins were predicted as

either secreted through a classical or non-classical pathway.

The GH31 protein sequences ($700 aa) representing Ascaris

were aligned with those of homologous proteins from other species

for subsequent phylogenetic analysis (Figure 4, panel A). The

unrooted tree indicated clustering of the majority of the GH31

proteins of A. suum with acid-active GH31 enzymes (i.e. AAG,

SUIS, MGA, AAGR1-2), whereas only one (i.e. GS_18807)

clustered with neutral-active GH31 enzymes (i.e. GANAB and

GANC). The results of a comparative analysis of the amino acid

sequence homology around the catalytic site of 13 A. suum GH31

proteins (codes GS_0471, GS_05082, GS_06701, GS_08447,

GS_13054, GS_17123, GS_17323, GS_18807, GS_19777,

GS_20796, GS_22047 and GS_23879) and the 4 GH31 proteins

present in C. elegans (AAGR1- AAGR 4) (Figure 4, panel B)

indicated that the signature motifs around the catalytic nucleophile

are largely conserved between these two nematode species.

In the transcriptomic analysis, the RPKM values for all GH31

proteins identified here showed that most of them are transcrip-

tionally upregulated in the late larval stages (L3-lung and L4) of A.

suum (Table 4). Based on the RPKM values, GH31 proteins with

the highest transcription were GS_18934, GS_13054 and

GS_19777, with RPKM values of .500 in L4. A qPCR analysis

of genes encoding GH31 proteins (codes GS_18934 and

GS_19777) was conducted to (1) verify the transcriptomic data

and (2) to analyse their transcription profiles in different tissues of

adult A. suum (Figure 5 panel A). Indeed, transcription levels of

both genes were higher in L4 compared with other stages. In

addition, the transcription linked to these GH31 was in the

intestine of both female and male adults of A. suum, whereas almost

no transcription was detected in either the reproductive system or

the cuticle of both sexes (Figure 5, panel A).

To confirm the intestinal location of the GH31 proteins,

enzymatic assays were performed to measure glycolytic activity in

protein homogenates from different adult A. suum tissues (Figure 5,

panel B). Particularly maltose and sucrose were degraded following

incubation with homogenates from the intestinal tracts of both

adult male and female worms. The glycolytic activity measured

was markedly higher in the water-insoluble protein fractions

compared with the water-soluble fraction (P,0.05). In addition,

the intestinal homogenates from males showed higher activity

compared with females (P,0.05). The degradation of lactose was

only observed after incubation with the water-insoluble protein

fraction produced from the adult male intestines.

Discussion

The goal of this study was to identify the ES proteins produced

and released by the larval stages of A. suum in vitro and to infer the

functions of these molecules during the migratory phase of the

parasite through the body of the host animal. In total, 106 proteins

were identified, of which 62% were predicted to either contain a

signal peptide, suggesting secretion through a classical pathway, or

predicted to be secreted via a non-classical pathway. The other

38% of proteins lacked a detectable signal sequence. Although no

changes were observed in the motility or physical appearance of

the larvae during the in vitro culture, some atypical secreted

proteins were detected. The highest number of ‘non-secreted’

Figure 3. Gene ontology. Gene Ontology terms relating to molecular function assigned to the proteins identified in ES products from L3-egg, L3-
lung and L4 of A. suum.
doi:10.1371/journal.pntd.0002467.g003
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proteins for L3-egg was 55% compared with 45% and 26% for

L3-lung and L4, respectively. Some of these ‘atypical secreted’

proteins, including 14-3-3 and serpin, may include their secretion

in extracellular vesicles as described for other helminths, such as C.

elegans [33], Fasciola hepatica and Echinostoma caproni [34]. However,

the presence of some typical intracellular proteins in the ES

material, such as histones, for example, suggests that there was

some cellular damage in the larvae leading to leakage of

intracellular proteins into the medium. The precise reason for

this is unclear, but it is possible that the hatching procedure, and

the subsequent washing steps have a role. Moreover, keeping the in

vitro culture as short as possible may help reducing the possibly

invisible leakage of intracellular proteins into the medium.

Therefore, in the future it would be interesting to analyse ES

material that has been collected after only few hours of in vitro

culture.

Among the 106 ES proteins identified in this study, two (i.e. a

serpin-like and a 14-3-3 protein) were released by all three larval

stages investigated. Serpins are serine protease inhibitors with a

wide spectrum of functions in numerous biological systems, such as

blood coagulation, complement activation and inflammation

[17,19,35,36]. Analysis of the A. suum genome and transcriptomes

showed that they contain 10 serpin-encoding genes [23], whereas

8 and 3 serpin genes have been identified in the genomes of C.

elegans and B. malayi [35], respectively. A number of studies have

previously reported on the presence of serpins in nematode ES

products and experimental evidence indicates that many of them

can have an immune-evasive function [36]. Interestingly, earlier

studies of A. suum have shown that the activities of host proteases,

such as trypsin and chymotrypsin, were greatly decreased from the

micro-environment of live worms with a functioning gastrointes-

tinal system [37]. Subsequently, Martzen et al. [38,39] showed that

inactive chymotrypsin complexes were formed in the muscle

sarcolemma and in the epithelial surface of the gut of adult A. suum

as well as in developing eggs and larvae of this nematode. In this

way, the serine protease inhibitors may not only protect the worms

from degradation in host digestive environment but might also

mask the surface of developing larvae, permitting them to evade

the host’s immune system as they migrate from the intestine to the

liver and the lungs. Whether the serpins detected in the ES

products from A. suum are involved in these processes is still

unclear.

In addition to the serpin, a 14-3-3 protein was also detected in

the ES material of all three larval stages. Such 14-3-3 proteins

represent a family of relatively conserved regulatory proteins,

which can bind a range of functionally diverse signaling proteins.

In C. elegans, a 14-3-3 protein regulates daf-2/insulin-like signaling

pathway, which is critical for regulating development, longevity,

metabolism and stress resistance [40]. Although the 14-3-3

proteins have been isolated and characterized recently as

molecules with a significant role in the parasite biology and

immunology within the context of the host–parasite relationship

[41–43], currently, little information is available on their actual

role in parasites.

Further comparison of the protein composition of the larval ES

proteins showed that more overlap existed between L3-lung and

L4 compared with L3-egg. Glycosyl hydrolases belonging to family

31 (GH31) were particularly prominent in ES products from L3-

lung and L4. The identification of 16 GH31 proteins is an

intriguing outcome of this study, particularly since no other studies

have reported the presence of such enzymes in the ES products

from nematodes. An analysis of the A. suum genome and

transcriptomes revealed 32 putative GH31 protein encoding

genes/sequences. Although the exact number of GH31 protein

genes in A. suum is less than 32, because of short or incomplete

sequences in the current dataset, it is still clear that this gene family

has undergone a large expansion compared with other nematode

species. A preliminary analysis indicated the presence of only 4

GH31 protein genes in the genomes of C. elegans, B. malayi and T.

spiralis (results not shown). The results presented in the present

study also indicated that most of the GH31 proteins were

transcriptionally upregulated from the L4 larval stage onwards,

with a peak in the adult stage of Ascaris, in particular in intestinal

tissues. This finding was also confirmed by enzymatic assays,

Table 4. List of glycosyl hydrolases identified in the A. suum
genome, their sequence length and their gene levels in
different larval stages.

RPKM values

Gene IDa
AA
length Sigb L3-egg L3-liver L3-lung L4

ES
materialc

GS_05082 735 2 0,2 0,02 0,03 0,02

GS_16769 587 ++ 0,06 13,45 0,2 1,14 +

GS_17323 600 + 0,33 141,38 11,02 9,61 +

GS_04731 1047 + 0,02 4,64 1,33 1,05

GS_10423 226 ++ 29,27 435,4 182,9 11,19

GS_00493 153 2 0,11 0,11 0,16 0,09

GS_01568 311 2 0,05 0,05 0,08 0,05 +

GS_02444 380 2 0,04 0,04 0,06 0,04 +

GS_08026 107 ++ 0,15 0,15 0,22 0,13

GS_08447 895 ++ 0,02 0,02 0,03 0,02 +

GS_16354 408 ++ 0,04 0,04 0,06 0,03 +

GS_23821 195 + 0,08 0,08 0,12 0,07

GS_24300 573 ++ 0,03 1,3 2,52 0,05

GS_07553 217 + 0,08 0,08 0,11 0,07 +

GS_15893 459 2 0,04 0,04 26,65 0,93 +

GS_22047 830 ++ 0,02 0,02 0,03 0,02 +

GS_00984 255 2 0,06 0,06 0,09 0,06 +

GS_20796 743 2 0,02 0,02 0,03 0,02 +

GS_21210 80 2 0,2 0,2 0,3 0,18 +

GS_18807 935 2 8,58 17,06 62,88 22,98

GS_06701 828 + 2,07 2,87 50,98 39,96

GS_18934 359 ++ 8,29 2,02 249,19 989,82 +

GS_05716 181 2 0,09 0,09 0,13 1,1 +

GS_13054 457 ++ 0,22 5,71 15,67 705,7

GS_17123 737 ++ 0,02 0,02 0,03 0,48

GS_21706 521 ++ 0,03 0,67 0,09 11,18

GS_23879 1772 ++ 0,61 0,39 9,98 56,22 +

GS_04250 479 2 1,65 9,45 4,42 38,01

GS_00096 460 ++ 0,04 0,11 0,05 97,35

GS_12078 373 2 0,04 0,04 0,06 3,05

GS_19777 966 ++ 1,07 24,87 159,14 1054,46+

GS_23076 995 + 0,02 0,02 2,49 17,89

aThe accession number in A. suum genome database (available on WormBase,
www.wormbase.org).
bThe identified proteins were predicted to be either a classical secretory protein
(+), non-classical secretory protein (++) or not secreted (2) by secretion
prediction using SignalP and SecretomeP.
cGH31 proteins identified in the ES material are marked with an ‘+’.
doi:10.1371/journal.pntd.0002467.t004
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Figure 4. Phylogenetic tree and signature motifs of GH31 proteins. A. Unrooted phylogenetic tree of the A. suum GH31 proteins (with a
minimum sequence length of 700 amino acids) and other selected eukaryotic GH31 protein following neighbour-joining analysis. The values at the
branch nodes represent bootstrap values (maximum 1000). B. Comparative analysis of the amino acids around the catalytic nucleophile (Trp and Asp)
of GH31 proteins for the C. elegans GH31 proteins AAGR1-4 and the A. suum GH31 proteins (GS_04731, GS_05082, GS_06701, GS_08447, GS_13054,
GS_17123, GS_17323, GS_18807, GS_19777, GS_20796, GS_21706, GS_22047 and GS_23879).
doi:10.1371/journal.pntd.0002467.g004

Figure 5. qPCR and glucosidase hydrolytic activity analysis of GH31 proteins. A. A qPCR analysis for two GH31 proteins on cDNA produced
from different larval stages and adult worm tissues. B. Comparison of the glucosidase hydrolytic activity in water-soluble (white bars) and water-
insoluble extract (black bars) from different adult tissues. Results are shown as average + SD. Substrates used in the assays were lactose, maltose and
sucrose. (Int F: female intestine; Int M: male intestine; Rep F: female reproductive system; Rep M: male reproductive system; Cut F: female cuticle; Cut
M: male cuticle). (* P,0.05).
doi:10.1371/journal.pntd.0002467.g005

Proteomics of Ascaris suum ES Products

PLOS Neglected Tropical Diseases | www.plosntds.org 12 October 2013 | Volume 7 | Issue 10 | e2467



showing the highest glycosidase activity in intestinal protein

extracts from adult worms. It has been suggested [44] that Ascaris

takes most of its nutrients from the partially digested host food in

the intestine. The present findings suggest that the degradation of

complex carbohydrates forms an essential part of the energy

metabolism of this parasite once it is established in the small

intestine. The highest level of glycolytic activity was consistently

found in the water insoluble protein fraction, suggesting that the

enzymes are associated or directly bound to a cell membrane. In

mammals, it has been shown that the sucrose-isomaltase complex

is anchored to the small intestinal brush border through a highly

hydrophobic segment in the N-terminal region of the isomaltase

subunit [45,46]. However, none of the A. suum GH31 protein

sequences were predicted to contain such a transmembranic

region. Therefore, further research is needed to determine the

exact cellular location of the GH31 proteins within the intestinal

tissues of A. suum. If the results would show that they are actually

located on the intestinal surface, it would make them interesting

drug and/or vaccine targets.

Apart from the shared proteins, most of the proteins identified

were unique to a particular larval stage. Amongst the ES proteins

identified in L3-egg, there were at least two different endochiti-

nases. Chitinases are enzymes that catalyze the hydrolysis of beta-

1, 4-N-acetyl-d-glucosamine linkages in chitin polymers. Studies of

B. malayi (a filarioid nematode) showed that a chitinase was

secreted during the exsheathment process of the microfilariae in

the mosquito vector and from the eggshell during hatching of the

larvae within the reproductive tract of the adult stage [47]. RNAi

studies of Acanthocheilonema viteae (also a filarioid) showed that

chitinase was also critical in the moulting process of the nematode

[48]. Interestingly, Geng et al. [49] previously reported on the

abundant secretion of a chitinase in the perivitelline fluid

surrounding the infective A. suum larva just prior to hatching from

the egg. This chitinase is however different from that identified

here. During the larval cultivation, many of the larvae need to lose

the L2 cuticle, which is usually still present around the infective L3

larvae when they hatch from the egg. Therefore, it is possible that

the chitinases identified herein are involved in the exsheathment

process.

Analysis of ES products from L3-lung and L4-ES resulted in the

identification of various proteins that have consistently been found

in ES material of other parasites, such as the transthyretin-like

proteins, C-type lectins and venom allergens [15,17,18,50]. The

transthyretin-like proteins are one of the largest conserved

nematode-specific protein families of which the function is still

largely unclear. Recent data published by Wang et al. [51] on

TTR-52, one of the 57 transthyretin-like proteins present in C.

elegans suggest that these proteins act extracellulary to mediate cell-

cell interactions.

C-type lectins belong to a type of carbohydrate-binding protein

family, known as lectins. These molecules are widely distributed

throughout the animal kingdom and have a diverse range of

functions, including cell-cell adhesion, immune responses to

pathogens and apoptosis [15,52]. Notably, C-type lectins were

also particularly abundant in the secretions from T. canis and

hookworms [50,53]. The recent report of the sequence similarity

of C-type lectins from A. suum to host to dendritic cell receptors

suggests that the parasites may utilize lectins to bind to

carbohydrate moieties on the surface of host cells to avoid

pathogen recognition mechanisms in hosts [54]. The identification

of several C-type lectins in the current study could indeed indicate

that they play an important, yet undiscovered, role at the parasite-

host interface.

Venom allergens belong to the SCP/TAPS protein family and

are basically found in every species investigated so far. Despite the

fact that the exact function of SCP/TAPS proteins remains

unknown, various studies have shown that they are amongst the

most abundant proteins expressed and secreted during the

transition from the free-living to the parasitic life stages, suggesting

an important role in the onset of parasitism [55]. Compared with

the number of SCP/TAPS proteins identified in the ES material of

some other species [20,56,57], it is surprising that only 2 were

identified in the current study. However, this finding is concordant

with previous evidence from genomic and transcriptomic datasets

[23] indicating the presence of only 12 SCP/TAPS-encoding

genes in the A. suum with relatively limited transcription levels

(results not shown).

In conclusion, this study provides the first in-depth character-

ization of the ES products from the larval stages of A. suum, a

crucial step in enhancing our knowledge and understanding of the

biology of this parasite and its interactions with its mammalian

host. The study provides a basis for further molecular investiga-

tions aimed at exploring the biological role of the proteins

identified and their potential as vaccine and/or therapeutic

targets.
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