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Abstract: Cinnamic acid is one of the phenolic compounds that is isolated from cinnamon, or other
natural plants, and has a wide range of physiological activities. However, the application of cinnamic
acid is limited due to its poor solubility and low oral bioavailability. In this study, the feasibility
of producing octyl cinnamate by ultrasonic assistance, combined with a rotary evaporation under
vacuum, was studied using methyl cinnamate and octanol as the starting materials. A Box–Behnken
design (BBD) was employed to evaluate the effects of the operation parameters, including reaction
temperature (55–75 ◦C), reaction time (4–12 h), and ultrasonic power (90–150 W) on the production of
octyl cinnamate. Meanwhile, the synthesis process was further optimized by the modeling response
surface methodology (RSM). The data indicated that octyl cinnamate was efficiently synthesized
from methyl cinnamate and octanol using the ultrasound plus vacuum system; further, this system
was superior to the conventional method. According to the RSM model for the actual experiments,
a reaction temperature of 74.6 ◦C, a reaction time of 11.1 h, and an ultrasound power of 150 W
were determined to be the best conditions for the maximum molar conversion of octyl cinnamate
(93.8%). In conclusion, the highly efficient synthesis of octyl cinnamate by a rotary evaporator with
an ultrasound plus vacuum system was achieved via RSM optimization.

Keywords: lipase; cinnamate ester; response surface methodology; ultrasound; vacuum; transesterification

1. Introduction

Cinnamic acid, 3-phenyl-2-propenoic acid, is an organic compound with the struc-
tural formula C6H5CH=CHCOOH. Cinnamic acid occurs naturally in plants or materials
and is one of the main phenolic compounds [1]. Cinnamic acid and its derivatives are
phytochemical compounds with a wide range of biological effects. Several studies have
reported that cinnamic acid displays antioxidant, antimicrobial, anticancer, neuroprotective,
anti-inflammatory, and anti-diabetic properties [2,3]. However, due to the low bioavailabil-
ity of cinnamic acid and its derivatives, which leads to limited intestinal absorption [1],
improvements in the entrapment of phenolic acids are now emphasized. According to
previous studies, the bioavailability of phenolic acids can be enhanced by esterification,
which increases their lipophilic properties for use in drugs [4,5]. In addition, esters are
insoluble in water, many organic sunscreens are also composed of esters, which can increase
the water resistance of sunscreen products and enhance the sunscreen effect.
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In general, the chemical synthesis of esters has several disadvantages, such as non-
specific reactions, long reaction times, many byproducts, environmental pollution, etc. [6–8].
In addition, the temperature and pH can cause a tendency for phenolic esters to oxidize,
which makes them difficult to synthesize by chemical methods [9]. In recent years, products
synthesized via biocatalysis can be identical to natural products, which has made the
application of biocatalysis in ester synthesis become more popular [10]. Enzymatic catalysis
is carried out under moderated reaction conditions (pH, temperature, and atmospheric
pressure), and the substrate is more regulated, allowing the production of high-quality
natural products [11,12]. The advantages of biocatalysis are that they are suitable for
industrial use, i.e., in their high specificity, selectivity, low energy consumption, and high
yield [13,14].

As a biocatalyst, lipase can not only hydrolyze triglycerides [15,16], but also catalyze
the reverse synthesis of esters under certain conditions [17,18]. A previous study used the
immobilized lipase Novozym® 435 to esterify cinnamic acid with an alcohol in organic
solvent media. The results showed that more hydrophobic solvent mixtures and lower
water activity improved enzyme activity and bioconversion [19]. In addition, compounds
can be obtained via lipase-catalyzed esterification, deamination reaction, or in the isola-
tion of optically active racemates under organically solvent conditions [20,21]. However,
some biocatalytic reactions still require long reaction times in order to achieve the desired
results. Several studies have shown that ultrasonic or vacuum operation contribute to
the efficiency of esterification that is catalyzed by immobilized lipases, such as retinyl
laurate [22], phenylethyl ester [23], 4′-acetoxyresveratrol [24], ethyl butyrate [25], and
D-isoascorbyl palmitate [26]. Nowadays, ultrasound has been widely used for the ex-
traction, emulsification, and chemical and/or enzymatic synthesis of compounds [27–29].
Although ultrasound-assisted biocatalysis is an effective method to shorten the reaction
time, excessive substrate or formation of hydrophilic byproducts can cause enzyme inhibi-
tion or produce a hydrophilic hindrance layer in lipase-catalyzed reaction, thus reducing
the lipase activity [30,31]. Further, technical difficulties arise in practice due to the steric
hindrance of long-chain substrates, which increases the time to complete the synthetic
reaction. To overcome these problems, an eco-friendly process for the synthesis of octyl
cinnamate using ultrasonic irradiation, combined with a rotary evaporator system under
vacuum condition was used in this paper.

In this study, the synthesis of octyl cinnamate by transesterification of methyl cinna-
mate and octanol was investigated using an immobilized lipase (Novozym® 435). Ultra-
sonic irradiation combined with a rotary evaporator system was used to shorten the reaction
time and remove byproducts in order to avoid reducing the enzyme activity. Additionally,
reaction parameters affecting the synthesis of octyl cinnamate were evaluated. The optimal
synthesis conditions of octyl cinnamate were modeled by a response surface methodol-
ogy (RSM)—which used a three-level–three-factor Box–Behnken design—including the
effects of reaction time, reaction temperature, and ultrasonic power in regard to the molar
conversion of octyl cinnamate.

2. Results and Discussion
2.1. Effect of Ultrasound Plus Vacuum

Esterification of cinnamic acid can increase the stability, solubility/lipophilicity, and
antioxidant effect of oil-based formulations, and it is also more suitable for human absorp-
tion in terms of physiological activity. Several studies have been attempted regarding the
lipase-catalyzed modification of cinnamic acid derivatives with fatty acids or triacylglyc-
erols, but it takes a long time to obtain synthetic products [32]. The hydrophilic character
of phenolic acids has been reported to reduce their antioxidant effect in inhibiting the
autoxidation of fats and oils. To modify their solubility in oil-based formulations and
emulsions, esterification of phenolic acid is one of the solutions [33]. Recently, the synthesis
of 3,4-dimethoxycinnamoylated phospholipids via lipase-catalyzed interesterification of
egg-yolk phosphatidylcholine with the ethyl ester of 3,4-dimethoxycinnamic acid has been
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developed [34]. Lue et al. optimized the esterification of cinnamic acid and oleyl alcohol by
the use of immobilized lipase Novozym® 435 in organic solvent media [19]. However, the
process takes 12 days to complete the reaction.

Hence, a new synthetic route for the synthesis of octyl cinnamate in a solvent-free
environment was attempted in this study. The transesterification reaction of methyl cin-
namate with octanol catalyzed by lipase was used for the synthesis of octyl cinnamate, as
shown in Scheme 1.
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Scheme 1. Ultrasonic irradiation plus vacuum system for production of octyl cinnamate.

In order to perform lipase-catalyzed reactions without the use of organic solvents,
only the reactants need to be mixed in non-aqueous, ultrasonic, and vacuum systems.
Solvent-free systems are those in which the reactants are used as solvents in the reaction,
which can greatly increase the reaction rate [35–37]. In this case, octanol was used as a
reactant and solvent. The reaction was performed using a vacuum rotary evaporator and
the flask was continuously rotated with a vacuum in a constant-temperature water bath.
After the reaction, the reaction product was analyzed using an HPLC chromatogram with
a UV detector at 307 nm. The reactant and reaction product are shown in Figure 1a,b,
respectively. Methyl cinnamate had a shorter retention time (3.5 min) in the C18 column,
while the reaction product, octyl cinnamate, had a longer retention time (5.5 min) due to
octyl group increasing its hydrophobicity.
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Figure 1. HPLC analysis of the reaction mixture (a) before and (b) after lipase-catalyzed transesterifi-
cation reaction.

This study is the first reported ultrasound plus vacuum system for biocatalytic syn-
thesis of octyl cinnamate. The effect of various synthetic equipment on the conversion of
octyl cinnamate was compared. Considering the reaction volume, the enzyme amount
of 5000 PLU was employed in order to avoid the influence of the enzyme amount. The
effect of ultrasound plus vacuum on the lipase-catalyzed synthesis of octyl cinnamate at a
reaction temperature of 55 ◦C, and a substrate concentration of 1 mM are shown in Figure 2.
The molar conversions of H, HRE, and HS were only about 20% after 4 h of reaction, but
the molar conversion of HRES was 40%. The result showed that under the condition of
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ultrasound plus vacuum-assisted biosynthesis, not only was the molar conversion of octyl
cinnamate increased within 4 h, but the highest conversion was also reached after 24 h.
This is due to the lipase-catalyzed synthesis of octyl cinnamate using a rotary evaporator
with a vacuum, which creates a negative pressure environment that helps to remove the
formed methanol and thus shifts the reaction equilibrium towards the synthetic path in
Scheme 1. It has been reported that the osmotic dehydration at vacuum had higher mass
transfer kinetic constants and dehydration efficiency indices than it would at atmospheric
pressure [38]. Hong et al. found the esterification conversion of triacylglycerol increased
with an increasing vacuum [39]. Lee et al. also demonstrated that a vacuum can be used
to control the content of water—a byproduct of the esterification reaction—in order to
improve the conversion of disononyl adipate [40]. In addition, many studies have also
shown that ultrasound can be effective in enhancing lipase-catalyzed reactions [41,42].
Ultrasound is one of the green chemical synthesis techniques that has been successfully ap-
plied in organic chemistry [43,44]. Ultrasound contributes to high-frequency vibrations that
cause cavitation in the liquids. Due to the high penetration effect, it can transmit powerful
energy [45]. The energy increases the bonding probability when the substrate and enzymes
interact. It has been reported that lipase-catalyzed transesterification with ultrasound had a
higher external mass transfer coefficient and a lower substrate concentration at the external
surface of the immobilized enzyme [46]. After comparing the results of various equipment,
HRES showed the most efficient and highest conversion rate; as such, this system was
selected to study the optimization of reaction conditions.
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Figure 2. Effect of equipment on the molar conversion of octyl cinnamate. H: rotary evaporator
without vacuum; HRE: rotary evaporator with vacuum; HS: ultrasonic bath; and HRES: rotary
evaporator with vacuum and ultrasonic bath. The ultrasonic bath was operated at 150 W.

2.2. Prime Experiment

For the experimental design of the response surface methodology, preliminary tests
were carried out using the rotary evaporator with vacuum and ultrasonic bath at a reaction
temperature of 65 ◦C, a substrate concentration of 1 mM, and an enzyme amount of
5000 PLU (0.5 g). The results showed that the molar conversion of octyl cinnamate increased
with increasing the reaction time. A value of 82.4% molar conversion was reached after
12 h; further, equilibrium was reached after 24 h (Figure 3a). Figure 3b shows the effect
of reaction temperature on the molar conversion of octyl cinnamate, indicating that the
molecular conversion of octyl cinnamate increased with an increase in reaction temperature.
The lipase-catalyzed reaction at different reaction temperatures produced a significant
effect on the synthesis of octyl cinnamate within 4 h. The highest molar conversion of octyl
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cinnamate was 93.9% when the reaction temperature was 75 ◦C and the reaction time was
12 h.

Molecules 2022, 27, x FOR PEER REVIEW 5 of 12 
 

 

For the experimental design of the response surface methodology, preliminary tests 
were carried out using the rotary evaporator with vacuum and ultrasonic bath at a reac-
tion temperature of 65 °C, a substrate concentration of 1 mM, and an enzyme amount of 
5000 PLU (0.5 g). The results showed that the molar conversion of octyl cinnamate in-
creased with increasing the reaction time. A value of 82.4% molar conversion was reached 
after 12 h; further, equilibrium was reached after 24 h (Figure 3a). Figure 3b shows the 
effect of reaction temperature on the molar conversion of octyl cinnamate, indicating that 
the molecular conversion of octyl cinnamate increased with an increase in reaction tem-
perature. The lipase-catalyzed reaction at different reaction temperatures produced a sig-
nificant effect on the synthesis of octyl cinnamate within 4 h. The highest molar conversion 
of octyl cinnamate was 93.9% when the reaction temperature was 75 °C and the reaction 
time was 12 h. 

  
(a) (b) 

Figure 3. Effects of (a) reaction time, and (b) temperature, on the molar conversion of octyl cin-
namate. 

2.3. Experimental Design and Model Fitting 
In the present study, a three-level–three-factor Box–Behnken design was employed 

to optimize the enzymatic synthesis of octyl cinnamate. Based on the preliminary experi-
mental results (Table 1), the variables chosen for this study were reaction time (4–12 h), 
reaction temperature (55–75 °C), and ultrasonic power (90–150 W). Table 1 also shows the 
actual yields obtained in the experiments. Among the different treatments, the highest 
molar conversion (93.5 ± 2.1%) was obtained in treatment 4 (time 12 h, temperature 75 °C, 
and ultrasonic power 120 W), and the lowest molar conversion (35.5 ± 0.1%) was obtained 
in treatment 1 (time 4 h, temperature 55 °C, and ultrasonic power 120 W). The manipu-
lated and response variables were analyzed to fit a regression model. The second-order 
polynomial equation obtained was as follows: 𝑌 = −45.3866 + 1.311𝑋1 + 11.22625𝑋2 − 0.46767𝑋3 + 0.0045625𝑋12 − 0.3782𝑋22 + 0.00116806𝑋32− 0.061625𝑋1𝑋2 − 

0.000391667𝑋1𝑋3 + 0.023167𝑋2𝑋3 (1)

Table 1. Box–Behnken design matrix and responses of dependent variables for the synthesis of octyl 
cinnamate. 

Treatments a 
Independent Variable 

Molar Conversion (%) Temperature 
(°C) 

Time (h) Power (W) 

Figure 3. Effects of (a) reaction time, and (b) temperature, on the molar conversion of octyl cinnamate.

2.3. Experimental Design and Model Fitting

In the present study, a three-level–three-factor Box–Behnken design was employed
to optimize the enzymatic synthesis of octyl cinnamate. Based on the preliminary exper-
imental results (Table 1), the variables chosen for this study were reaction time (4–12 h),
reaction temperature (55–75 ◦C), and ultrasonic power (90–150 W). Table 1 also shows the
actual yields obtained in the experiments. Among the different treatments, the highest
molar conversion (93.5 ± 2.1%) was obtained in treatment 4 (time 12 h, temperature 75 ◦C,
and ultrasonic power 120 W), and the lowest molar conversion (35.5 ± 0.1%) was obtained
in treatment 1 (time 4 h, temperature 55 ◦C, and ultrasonic power 120 W). The manipu-
lated and response variables were analyzed to fit a regression model. The second-order
polynomial equation obtained was as follows:

Y = −45.3866 + 1.311X1 + 11.22625X2 − 0.46767X3 + 0.0045625X1
2 − 0.3782X2

2 + 0.00116806X3
2 − 0.061625X1X2 −

0.000391667X1X3 + 0.023167X2X3
(1)

Table 1. Box–Behnken design matrix and responses of dependent variables for the synthesis of
octyl cinnamate.

Treatments a

Independent Variable
Molar Conversion (%)Temperature

(◦C) Time (h) Power (W)

X1 X2 X3
Actual

Values b

RSM
Predicted

Value

RSM
Deviation

1 55 (−1) c 4 (−1) 120 (0) 35.5 ± 0.1 35.1 0.5
2 75 (1) 4 (−1) 120 (0) 67.6 ± 0.3 67.3 0.4
3 55 (−1) 12 (1) 120 (0) 71.2 ± 0.3 71.6 0.4
4 75 (1) 12 (1) 120 (0) 93.5 ± 2.1 93.9 0.5
5 55 (−1) 8 (0) 90 (−1) 60.1 ± 0.2 61.1 1.0
6 75 (1) 8 (0) 90 (−1) 87.8 ± 0.2 88.6 0.9
7 55 (−1) 8 (0) 150 (1) 60.6 ± 2.3 59.7 0.9
8 75 (1) 8 (0) 150 (1) 87.8 ± 0.5 86.8 1.0
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Table 1. Cont.

Treatments a

Independent Variable
Molar Conversion (%)Temperature

(◦C) Time (h) Power (W)

X1 X2 X3
Actual

Values b

RSM
Predicted

Value

RSM
Deviation

9 65 (0) 4 (−1) 90 (−1) 55.9 ± 0.6 55.4 0.5
10 65 (0) 12 (1) 90 (−1) 82.8 ± 0.1 81.4 1.4
11 65 (0) 4 (−1) 150 (1) 46.8 ± 0.4 48.2 1.4
12 65 (0) 12 (1) 150 (1) 84.8 ± 0.3 85.3 0.5
13 65 (0) 8 (0) 120 (0) 73.4 ± 0.1 72.6 0.1
14 65 (0) 8 (0) 120 (0) 72.5 ± 0.3 72.6 0.9
15 65 (0) 8 (0) 120 (0) 71.8 ± 0.5 72.6 0.8

a: Treatments were run in random order; b: all analyses were conducted in triplicate and averaged; c: (−1), (0),
and (1) are coded levels.

The analysis of variance is shown in Table 2. The results showed that the regression
model fully reflected the actual relationship between the responses and the significant
variables (R2 = 0.997). The coefficient of determination (R2) is the percentage of the variation
that can be explained by the regression model in regard to the total variation. In this
case, the R2 is close to 1, indicating that the developed model is well adapted. Figure 4
shows the predicted and actual conversion of octyl cinnamate. The adjusted coefficient of
determination (Adj. R2 = 0.992) is also very high, indicating the high significance of the
model. A “p > F” value of less than 0.05 indicates that the model (p < 0.0001) is significant.
In this case, the linear terms of temperature (X1, p < 0.0001) and time (X2, p < 0.0001)
provided a significant positive effect on the production of octyl cinnamate. The quadratic
term of time (X2

2, p = 0.0003) was also statistically significant. In addition, interaction terms
of temperature × time (X1 × X2; p = 0.0129) and time × power (X2 × X3; p = 0.0080) were
also observed.

Table 2. Analysis of variance for synthetic variables on response percent molar conversion.

Source Sum of Squares Degree of Freedom p > F a

Linear
Temp. (◦C) (X1) 1488.67 1 <0.0001

Time (h) (X2) 1996.49 1 <0.0001
Power (W) (X3) 5.43 1 0.1340

Quadratic
Temp2 0.77 1 0.5312
Time2 135.2 1 0.0003

Power2 4.08 1 0.1821
Interactions

Temp × Time 24.3 1 0.0129
Temp × Power 0.055 1 0.8641
Time × Power 30.91 1 0.0080

Regression model
Model 3692.08 9 <0.0001

Residual 9.84 5
Lack of fit 8.5 3 0.1972
Pure error 1.34 2

Total 3701.92 14

R2 = 0.997; Adj R2 = 0.992; C.V. % = 2
a p > F = level of significance.
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2.4. Mutual Effect of Parameters

Figure 5 shows the effect of reaction temperature, time, and ultrasonic power on the
molar conversion of octyl cinnamate. Figure 5a represents the effect of different reaction
times and reaction temperatures on conversion at a fixed ultrasonic power of 120 W. At a
low reaction temperature of 55 ◦C and a short reaction time of 4 h, the molar conversion was
below 40%. The conversion increased with increasing reaction temperature and reaction
time. At 75 ◦C and 12 h, the molar conversion reached very high levels (>90%). In contrast,
the ultrasonic power has little effect on the molar conversion of octyl cinnamate. As
shown in Figure 5b,c, the contour lines are almost parallel, indicating that the ultrasonic
power has little effect on the molar conversion of octyl cinnamate. In the present study,
both reaction time and reaction temperature have a significant effect on molar conversion.
A similar compound commonly used as a UVB absorber, octyl methoxycinnamate, was
synthesized by the esterification of p-methoxycinnamic acid with 2-ethyl hexanol using
Rhizopus oryzae lipase, but it required 4 days to reach 91.3% conversion [47]. Vosmann
et al. used lipase-catalyzed esterification in the solvent-free system to synthesize long-chain
alkyl esters of p-methoxycinnamic acid, which in most cases required more than 72 h to
achieve high conversion [48]. The longer the length of the alcohol the more it hinders
substrate access to the active site of the enzyme, reducing the conversion rate of synthesis.,
e.g., the esterification of cinnamic acid with butanol and octanol obtained 73% and 55%
yield after 7 days of reaction, respectively [49]. Hence, the use of ultrasound plus vacuum
systems in lipase-catalyzed reactions can greatly reduce the reaction time and improve the
synthetic conversion.

2.5. Attaining Optimum Conditions

The optimal conditions for the lipase-catalyzed synthesis of octyl cinnamate were
predicted using the optimization function of the Design Expert Software. Table 3 shows the
optimum condition for their experimental and predicted values. The maximum conversion
of octyl cinnamate was obtained at 74.6 ◦C, 11.1 h, and 150 W, yielding 93.8% conversion.
This experimental value is very close to the predicted value of the RSM model, which is
94.6%. The results indicate that RSM is an effective tool for modeling and optimizing the
enzymatic synthesis process and that the rotary evaporator with a vacuum and ultrasonic
bath can significantly reduce the reaction time of lipase-catalyzed synthesis of octyl cinna-
mate. The rotary evaporator with vacuum can evaporate the solvent to gas at temperatures
below the boiling point of the solvent or even at room temperature. In this case, methanol, a
byproduct of the reaction, can be evaporated during the reaction, thus allowing the reaction
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to proceed toward the synthetic pathway. Therefore, an ultrasound plus vacuum system
can increase the conversion and shorten the reaction time. In addition, the Novozym®

435 was used in an ultrasound-assisted packed-bed bioreactor operated continuously at
a temperature of 73 ◦C for 7 days. The conversion was maintained between 93 and 97%,
indicating that Novozym® 435 showed stable activity for long-term operation [23]. In this
study, Novozym® 435 was repeatedly used at optimum condition and the conversion of
octyl cinnamate was found to be more than 90%.
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Table 3. Experimental and predicted values of the optimization conditions.

Independent Variable a Molar Conversion (%)

X1 X2 X3 ActualValue b RSM Predict RSM Deviation

74.6 11.1 150 93.8 94.6 0.8
a: Independent variable; X1: temperature (◦C); X2: time (h) X3: power (W); and b: mean of duplicate determinations.
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3. Materials and Methods
3.1. Materials

Immobilized lipase Novozym® 435 (10000 PLU g−1; propyl laurate units)—from
Candida antarctica B (EC 3.1.1.3), supported on a macroporous acrylic resin—was purchased
from NovoNor disk Bioindustrials Inc. (Copenhagen, Denmark). Methyl cinnamate
was purchased from Sigma Chemical Co. (St. Louis, MO, USA). Further, 1-octanol was
purchased from Showa Chemical Industry Co., Ltd. (Tokyo, Japan). Molecular sieve 4 Å
was obtained from Davison Chemical (Baltimore, MD, USA). All chemicals used were of
analytical reagent grade.

3.2. Lipase-Catalyzed Synthesis of Octyl Cinnamate

All materials were dehydrated overnight through a 4 Å molecular sieve. Novozym®

435 was used as a biocatalyst for the transesterification of methyl cinnamate with octanol
(Scheme 1). Before the reaction, 1 mM (1.62 mg) of methyl cinnamate and 5000 PLU
(0.5 g) of Novozym® 435 were mixed thoroughly with octanol (10 mL) in a glass flask.
Under different experimental conditions, a rotary evaporator (EYELA N-1100, Tokyo
Rikakikai Co., Ltd., Tokyo, Japan) and a temperature-controlled ultrasonication water bath
(Delta DC150H, New Taipei, Taiwan) were run at 80 rpm and 110 Torr for the emission-type
glass flask.

3.3. Quantitation of Octyl Cinnamate

The reaction mixture of octyl cinnamate was analyzed by a high-performance liquid
chromatography (HPLC). The 10-fold diluted sample was injected (20 µL) into an HPLC
(Hitachi L-7400; Tokyo, Japan) equipped with a UV detector and an Inertsil ODS-3 column
(5 µM, 250 mm × 4.6 mm). The isocratic elution was performed with 0.1% acetic acid and
methanol at a flow rate set to 1 mL/min, and octyl cinnamate was detected under UV light
at 307 nm. The integrated area of octyl cinnamate and methyl cinnamate in the HPLC
chromatogram was used in order to calculate the molar conversion. The molar conversion
was defined as: Peak area of octyl cinnamate per peak area of methyl cinnamate and octyl
cinnamate × 100%.

3.4. Response Surface Methodology

A Box–Behnken design for 15 experimental runs was employed in this study. To avoid
bias, the 15 experiments were performed in random order. The variables and levels of
octyl cinnamate biosynthesis selected for this study were: reaction time (4–12 h), reaction
temperature (55–75 ◦C), and ultrasonic power (90–150 W), which are coded as shown
in Table 1. Each experimental point was carried out in duplicate. The experimental
data (Table 1) were analyzed by the response surface regression procedure of Design-
Expert (Version 8.0.6.1, Stat-Ease Inc., Minneapolis, MN, USA), resulting in a second-order
polynomial equation (Equation (1)), as shown below:

Y = β0 + β1X1 + β2 X2 + β3X3 + β12X1X2 + β13X1X3 + β23X2X3 + β11X1
2 + β22X2

2 + β33X3
2 (2)

where Y is an experimental response, β0 is a constant; β1, β2, and β3 are linear coeffi-
cients; β11, β22, and β33 are secondary effect coefficients; and β12, β13, and β23 are variable
interaction coefficients. Further, X1 = temperature, X2 = time, and X3 = ultrasonic power.

4. Conclusions

In this study, an ultrasonic plus vacuum system was constructed to efficiently assist
the immobilized lipase (Novozym® 435) in the catalytic synthesis of octyl cinnamate. In
this study, in order to model and optimize the biocatalysis, an RSM model based on the
Box–Behnken design for the synthesis of octyl cinnamate was chosen, and the data were
fitted and predicted. The high R2 value indicates that a lipase-catalyzed synthesis of octyl
cinnamate via an ultrasound plus vacuum system was successfully established by the use
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of a Box–Behnken design and RSM. The optimal conditions were: reaction temperature
74.6 ◦C, reaction time 11.1 h, and ultrasonic power 150 W. The conversion of octyl cinnamate
under these conditions was 93.8%, while the predicted data of the RSM model were 94.6%.
In conclusion, the combination of a vacuum evaporation system and solvent-free reaction
conditions can shorten the reaction time and reaction temperature for the synthesis of
octyl cinnamate.
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