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Emergence of brain-inspired small-world
spiking neural network through neuroevolution

Wenxuan Pan,1,2,5 Feifei Zhao,1,5 Bing Han,1,2 Yiting Dong,1,3 and Yi Zeng1,2,3,4,6,*

SUMMARY

Studies suggest that the brain’s high efficiency and low energy consumption may be closely related to
its small-world topology and critical dynamics. However, existing efforts on the performance-oriented
structural evolution of spiking neural networks (SNNs) are time-consuming and ignore the core struc-
tural properties of the brain. Here, we introduce a multi-objective Evolutionary Liquid State Machine
(ELSM), which blends the small-world coefficient and criticality to evolve models and guide the emer-
gence of brain-inspired, efficient structures. Experiments reveal ELSM’s consistent and comparable
performance, achieving 97.23% on NMNIST and outperforming LSM models on MNIST and Fashion-
MNIST with 98.12% and 88.81% accuracies, respectively. Further analysis shows its versatility and
spontaneous evolution of topologies such as hub nodes, short paths, long-tailed degree distributions,
and numerous communities. This study evolves recurrent spiking neural networks into brain-inspired
energy-efficient structures, showcasing versatility in multiple tasks and potential for adaptive general
artificial intelligence.

INTRODUCTION

How can the human brain perform many intricate advanced cognitive functions yet run on less power than a light bulb? Numerous studies

extend to unravelling the complex wiring rules and firing patterns that govern its operation. There is a notable consistency in brain anatomy

across the human species, with different regions frequently associated with specific cognitive functions.1 Notably, densely connected com-

munity structures and hub nodes within these specific regions enhance the efficiency of information processing and integration in the brain.2,3

From a static topological perspective, the mammalian cortex, including the human brain, has been shown to be a complex network that

balances randomness and regularity,4–7 exhibiting small-world characteristics with densely clustered local connections and short path

lengths.4,8,9 Dynamically, in the face of complex and fluctuating environments, the human brain demonstrates optimal computational and

information processing capabilities near the critical state where network activity oscillates between order and disorder, as well as synchrony

and asynchrony.10–13

Developing efficient transmission topologies and optimal dynamic structures is not the result of artificial design but rather a product of

natural evolution.While existing human-crafted network structuresmay enhance performance, they often remain constrained by inherent par-

adigms.14 To empower models to autonomously discover optimal network architectures, the field of Neural Architecture Search (NAS) has

emerged.15–20 Although most NAS work aligns with the deep learning trend, focusing on searching for deep network structures,21–25 to

the best of our knowledge, none of these algorithms consider the biologically economical small-world topology and critical dynamics char-

acteristic of the brain.

The spiking neural network (SNN), categorized as the third-generation neural network, not only emulates the discrete communication of

biological neurons but also integrates multiple biological plasticity learning rules, which is more in line with the information processingmech-

anism in brain.26 In this work, we utilize a large-scale, recurrently connected SNN known as Liquid State Machines (LSM),27 a kind of reservoir

network, which consists of three parts: the input information is processed by a liquid layer containing randomly fixed connections, and then

abstracted by the readout neurons into the final output as shown in Figure 1. Owing to its intricate liquid structure and low training cost, LSM

serves as a suitable model for investigating brain-inspired connectivity.27–33

Most existing evolutionary LSMs predominantly concentrate on parameter optimization, such as liquid density34,35 and liquid size,36 often

resulting in inefficiency. An evolutionary framework of a three-step search is introduced,35 including architectural parameters such asmultiple-

liquid architecture, liquid density, excitatory neuron ratio, and so forth. The impact of dividing the internal architecture of a large liquid into
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multiple small liquids on network efficiency is analyzed.37 Some studies respectively apply covariance matrix adaptive evolutionary strategy

(CMA-ES) and differential evolution algorithm (DE) to optimize the topology and parameters of the reservoir.34,38 Other NAS-based SNN

models aim to maximize classification accuracy with limited computing resources. For instance, energy-efficient SNN architectures39 are

evolved for both classification accuracy and the number of spikes. However, directly using performance as a fitness function is prohibitive

and time-consuming. A NAS scheme is explicitly designed for SNNs,40 with an indirect evaluation method as the evolution goal, which saves

the time of directly using the trained classification accuracy and ismore in line with the computingmechanismof biological neurons. But archi-

tecturally, the search space for just one backward connection is not large enough. In summary, while these studies contribute valuable insights

and methodologies to the field, they either fall short on evolutionary innovation, exhibit inefficiency or do not fully leverage the unique to-

pological characteristics of the brain, ultimately constraining their learning capabilities and efficiency.

Inspired by the topology of the biological nervous system, this article introduces a multi-objective evolutionary SNN model that not only

incorporates various brain-inspired topological properties but also consistently enhances general performance across multiple tasks. The

main highlights can be summarized in the following three points.

(1) We evolve the architecture of a recurrent spiking neural network to exhibit biologically plausible small-world topological properties

(densely local-connected hub nodes, large number of communities, and long-tail degree distribution) and a dynamic critical steady

state. Brain-inspired evolutionary goals simultaneously bring about an improvement in classification accuracy.

(2) The proposedmulti-objective evolutionary algorithm considers static small-world coefficients, encompassing shortest path length and

clustering coefficients, and dynamic criticality, serving as fitness functions to guide the emergence of brain-inspired efficient structures.

(3) Our model achieves classification accuracy of 98.12%, 97.23%, and 88.81% on MNIST, NMNIST, and Fashion-MNIST, respectively, su-

perior among models of similar complexity. Experimental results demonstrate that adaptively evolved LSMs improve performance

with biologically plausible structures and firing patterns with lower complexity and energy consumption. In reinforcement learning

tasks, the decision-making ability that outperforms other algorithms demonstrates the versatility of ELSM across multiple tasks. The

degree distribution of the evolved network nodes exhibits the characteristics of a long-tailed distribution, similar to that found in bio-

logical brains.

RESULTS

Image classification task

Experimental settings

We validate our model on MNIST,41 NMNIST,42 and Fashion-MNIST43 datasets to prove the effectiveness. The evolved model (whose liquid

connection pattern is denoted asCopt ) is trained for 5000 epochs. Multiple evolutions are conducted with varying random seeds, and Figure 1

presents the best outcome among these trials.

We construct four ablation models: 1) baseline LSM model with randomly generated liquid layers (marked as RLSM), 2) evolved small

world topologies LSM model after 1000 generations (marked as ESLSM), 3) evolved criticality LSM model after 1000 generations (marked

as ECLSM), 4) evolved multi-objective LSM model after 1000 generations (the proposed model, marked as ELSM) for the ablation studies

of fitness functions on MNIST, NMNIST, and Fashion-MNIST.

Figure 1. The architecture of LSM

In the traditional definition, randomly connected spiking neurons simultaneously receive time-varying signals from external inputs and other neurons. The

recursive connectivity enables input signals to be converted to liquid layer dynamics, which are then abstracted by the readout layer.
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To ensure the fairness of the comparison experiment, except for the liquid connectivity (the best individual Copt ), the other settings of the

comparison model during training are the same, including the weight of the liquid layer, the connection between the input and the liquid

layer, and the connection between the liquid layer and the readout layer.

The settings for the evolutionary algorithm used in the experiments are detailed in Table 1. All network weights, including the input-liquid

weight matrix, liquid-readout weight matrix, and weights inside the liquid layer (the value of the weight rather than the connectivity which is

obtained by neuroevolution) are initialized randomly. We set the batch size for all image datasets to 100. The weights between the liquid layer

and the readout layer are updated using the AdamWoptimizer, with a learning rate of 0.001 and a weight decay applied every 50 epochs at a

rate of 0.0001.

Comparative result

The comparison between the proposed ELSM and other models on MNIST, NMNIST, and Fashion-MNIST is shown in Table 2. ELSM

achieves 98.12%, 88.81%, and 97.23% accuracy on MNIST, Fashion-MNIST, and NMNIST, respectively. ELSM outperforms the best LSM

models reported so far NALSM44 by 0.51% and 2.97% on MNIST and Fashion-MNIST, and is superior to another NAS-LSM35 on

NMNIST by 4.73% as shown in Table 2. On MNIST, ELSM surpasses other evolved-architecture LSM, LSM-SHADE,38 and Multi-liquid

LSM37 by 3.62% and 2.62%, respectively. Overall, ELSM exhibits better performance than all other LSM models on MNIST and Fashion-

MNIST.

We also list the SOTAperformance achieved by deepmodels: for example, onNMNIST andMNIST, BP-STA achieves accuracies of 99.71%

and 99.67%, respectively, outperforming ELSM by 2.48% and 1.55%. However, its number of parameters is 34 and 649 times larger than

ELSM’s. When the complexity is similar, ELSM outperforms many hierarchical models as shown in Table 2.

The neuroevolution process we have designed adopts a multi-objective approach, guiding the evolutionary algorithm toward efficiency

from the perspectives of both physical topology and network dynamics in the brain, rather than directly pursuing classification accuracy as the

sole criterion for evaluating fitness. Surprisingly, as the evolution progresses, individuals not only exhibit brain-inspired properties of small-

world and critical state but also demonstrate a significant improvement in classification accuracy, particularly when compared to other LSM

models.

Ablation study

Static and dynamic evolution goals. To investigate the impact of various evolutionary goals on the performance of individuals, we conduct

ablation studies across each dataset using four models: RLSM, ECLSM, ESLSM, and ELSM—detailing their classification accuracies on each

dataset in Table 3. Randomly generated LSMs have low accuracy and large variance. ECLSM performs 97.51 G 0.06%, 96.7 G 0.24%, and

88.54G 0.1% onMNIST, NMNIST, and Fashion-MNIST, which is significantly better than all RLSMs by 1.62%, 6.6% and 3.96%. ESLSMachieves

97.88 G 0.12%, 96.65 G 0.23%, and 88.24 G 0.13% on MNIST, NMNIST, and FMNIST, outperforming RLSMs by 1.99%, 6.55% and 3.66%

respectively. The evolutionary models outperform RLSM, with ELSM, which incorporates both small-world properties and criticality as evolu-

tionary goals, showcasing the best performance across various datasets. It can be seen from Table 3 that ELSM has better accuracy and

smaller variance than ESLSM and ECLSM, reaching 98.02 G 0.03%, 97 G 0.23%, and 88.78 G 0.04% performance on MNIST, NMNIST,

and Fashion-MNIST respectively.

The comparison of ESLSM, ECLSM, and ELSM across all datasets is presented in Figure 2. Regarding criticality, different ECLSM and ELSM

have evolved multiple times (different random seeds) for different datasets. The small-world property is data-independent, meaning that the

result of a single evolutionary run can apply to all datasets. However, the chosen optimal individual Copt might vary for each dataset, as it is

determined based on the training accuracy after 100 epochs.

Table 1. Detailed parameter settings of ELSM

Parameters Value Description

rinit 0.01 initial connection density

r1 0.001 minimum density allowed by evolution

r2 0.03 maximum density allowed by evolution

N 8000 number of liquid neurons

Gth 1000 maximum number of generations

Nc 60 population size

Noffs 80 mating pool size

nm 5 number of mutated genes

T 20 number of time steps

k 2 number of crossover points

mrate 0.5 mutation probability
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For Figures 2A–2C, the smaller the value on the x axis, the stronger the criticality. For Figures 2D–2F, the larger the value on the x axis, the

more obvious the small-world characteristics. From the results of polynomial fitting (shown in blue), it can be seen that as the evolution pro-

ceeds, the fitness ofCopt of each generation increases continuously and the classification accuracy also increases. It shows a certain degree of

positive correlation between the indirect time-saving evolution goal of ELSM and the classification accuracy. In Figures 2A–2F, red marks

consistently appear at the top, indicating that ELSM outperforms better performance than single-objective evolution while ensuring maxi-

mized two evolutionary objectives.

Liquid size analysis. By adjusting the number of liquid neurons, denoted asN, we conduct a comparative analysis of the classification per-

formance of reservoirs of different sizes on the MNIST and Fashion-MNIST. After several runs, the average results are shown in Table 4.

The results show that the 8000-size reservoir performs best (98:02G0:03) compared to the 5000 (97:65G0:31), 6000 (97:67G0:26), 7000

(97:72G0:23) and 9000 (97:87G0:18) sizes. LSMmarked in Table 4 represents the highest accuracy among other LSMs achieved by NALSM.44

It can be seen that changing the size of ELSM does not affect its superiority over all LSMs. Regardless of size changes, ELSM consistently out-

performs all LSMs on different datasets, which demonstrates the proposed brain-inspired evolution has strong adaptability across diverse

network sizes and tasks.

Energy consumption analysis. The energy consumption of spiking neural networks is often qualified by the number of spikes generated.

We count the spikes ofCopt evolved in the 0th generation, the 500th generation, and the 1000th generation, which are labeled ELSM-0, ELSM-

500, and ELSM respectively. The variations before and after evolution are tracked as depicted in Table 5.

Observations indicate a substantial reduction in spiking activity for the initial models (ELSM-0) following 1000 generations of evolution. To

establish a benchmark, the timestep for NALSM44 is consistent with the configuration of ELSM (20). The spiking activity and corresponding

classification accuracy of NALSM in Table 5, showcasing the superiority of ELSM in efficiency: on MNIST, ELSM achieves a 3.55% higher

Table 2. Comparative performance of different LSM and SNN models on MNIST, NMNIST, and Fashion-MNIST datasets

Dataset Model Structure Layers Accuracy (%)

MNIST Unsupervised-SNN53 Hierarchical SNN 2 95

LIF-BA54 Hierarchical SNN 3 97.09

Temporal SNN55 Hierarchical SNN 2 97.2

STiDi-BP56 Hierarchical SNN 2 97.4

SN57 Hierarchical SNN 3 97.93

STDBP58 Hierarchical SNN 7 99.4

BP-STA59 Hierarchical SNN 8 99.67

CMA-ES-LSM34 LSM 2 92.6

LSM-SHADE38 LSM 2 94.5

Multi-liquid LSM37 LSM 2 95.5

NALSM44 LSM 2 97.61

ELSM LSM 2 98.12

NMNIST DECOLLE60 Hierarchical SNN 2 96

AER-SNN61 Hierarchical SNN 2 96.3

STBP NeuNorm62 Hierarchical SNN 8 99.53

BP-STA59 Hierarchical SNN 10 99.71

lonicLSM63 LSM 2 91.48

NAS-LSM35 LSM 2 92.5

ELSM LSM 2 97.23

NALSM44 LSM 2 97.51

Fashion-MNIST SL-SNN64 Hierarchical SNN 3 85.3

Unsupervised-SNN53 Hierarchical SNN 2 85.31

BS4NN65 Hierarchical SNN 2 87.3

STDBP58 Hierarchical SNN 7 90.1

BackEISNN66 Hierarchical SNN 6 93.45

NALSM44 LSM 2 85.84

ELSM LSM 2 88.81
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accuracy than NALSM, while saving approximately 50% of energy. On NMNIST, ELSM enhances accuracy by 1.53% and concurrently reduces

energy consumption by roughly 60%.

This decline in energy consumption is accompanied by a notable enhancement in classification accuracy, underscoring the efficiency of the

evolutionary process on different datasets: onMNIST, compared to the unevolvedmodel, ELSM-500 achieves approximately a 30% reduction

in energy and a 2.86% increase in accuracy, whereas ELSM reduces energy by approximately 60% and enhances accuracy by 3.02%. On

Table 3. Final performance of models with different evolution goals on all datasets

Dataset Model Accuracy (%)

MNIST RLSM 95:89G0:97

ESLSM 97:88G0:12

ECLSM 97:51G0:06

ELSM 98:02G0:03

NMNIST RLSM 90:1G29:94

ESLSM 96:65G0:23

ECLSM 96:7G0:24

ELSM 97G0:23

Fashion-MNIST RLSM 84:58G1:48

ESLSM 88:24G0:13

ECLSM 88:54G0:1

ELSM 88:78G0:04

Figure 2. Comparison of ESLSM, ECLSM and ELSM on different datasets

(A–C) Results on evolving criticality on MNIST, NMNIST and Fashion-MNIST. The x axis represents the distance between the criticality of the individual and 1, as

shown in Equation 15.

(D–F)Results onevolvingsmall-worldpropertiesonMNIST,NMNISTandFashion-MNIST. Thexaxis represents thesmall-worldcoefficientof the individual as shown in

Equation 8. The green dot represents the result of 5000 epochs training of Copt selected in every 100 generations and is fitted by a polynomial (blue line). The green

marks with variance indicate the final single-object evolution results of ECLSM and ESLSM, and the red mark indicates the multi-object evolution result of ELSM.
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NMNIST, ELSM-500 achieves approximately a 50% reduction in energy and a 14.32% increase in accuracy, whereas ELSM reduces energy by

approximately 60% and enhances accuracy by 14.67%.

Overall, validation on multiple datasets shows that the evolutionary process endows ELSM with superior classification performance and

energy consumption, significantly outpacing the most optimal LSM model44 in terms of efficiency.

Decision-making task

In order to verify the versatility of ELSM acrossmultiple tasks, we construct a 3x5 T-shapedmaze as shown in Figure 3A, in which ELSM receives

the current state of the agent as input, and outputs a probability distribution over actions: up (0), right (1), and down (2). The liquid size is set to

64, and other parameters and algorithm processes are consistent with the image recognition task. Each action taken by the agent is recorded

as a step, and the total simulation is 500 timesteps.

Specifically, the state of the agent has three dimensions which are the observed conditions in the three directions (maybe wall, road, food,

and poison, represented by 0, 1, 2, and 3, respectively). For example, the state of the agent shown in Figure 3A at the starting point is recorded

as (0, 1, 0), that is, walls are seen to the left and right, and the road is seen ahead.

Parameters update

ELSMcalculates the lossofeachstepbasedon the rewardcollectedandupdates theparametersof the readout layerbasedonthePolicyGradient

algorithm. The change in the distance between the agent and food after taking the action is denoted as dis, and the reward function is:

reward =

8>><
>>:

3; achieve food
� 3; achieve poison
1; dis < 0
� 1; disR0

(Equation 1)

Comparative results

To evaluate the decision-making ability of ELSM, we compare it with the classic reinforcement learning algorithmQ-learning45 (g = 0:9, a =

0:1 in the taken Bellman equation Eq. 2), DQN46 (one input layer, one hidden layer with 50 neurons and one output layer, g = 0:99, a = 0:1),

and a two-layer LSTM47 (one layer LSTM contains 64 neurons and one fully connected layer) also trained by the policy gradient algorithm. The

Table 4. Average performance of different-sized LSM on MNIST and Fashion-MNIST

Dataset Model N Accuracy (%)

MNIST LSM – 97.61

ELSM 5000 97:65G0:31

ELSM 6000 97:67G0:26

ELSM 7000 97:72G0:23

ELSM 8000 98:02G0:03

ELSM 9000 97:87G0:18

Fashion-MNIST LSM – 85.84

ELSM 5000 87.52 G 0.24

ELSM 6000 87:81G0:19

ELSM 7000 88:43G0:12

ELSM 8000 88:78G0:04

ELSM 9000 88:22G0:35

Table 5. Energy consumption comparison on different datasets

Model

MNIST NMNIST

Accuracy (%) Spikes Accuracy (%) Spikes

NALSM45 95.67 17419.02 95.7 22936.37

ELSM-0 95.1 20775.96 82.56 21772.15

ELSM-500 97.97 14497.91 96.92 10776.75

ELSM 98.12 8709.58 97.23 8976.97

ll
OPEN ACCESS

6 iScience 27, 108845, February 16, 2024

iScience
Article



sum of rewards obtained by models within T = 500 steps is calculated as the performance, which is recorded as Reward, as shown in

Equation 3.

Qðs; aÞ = Qðs; aÞ+a

�
rewardðs; aÞ + gmax

a0
Q0ðs0; a0Þ � Qðs; aÞ

�
(Equation 2)

Reward =
XT

t
rewardt (Equation 3)

The complexity of each model and the average performance over multiple runs are shown in Figure 3B. The performance of LSTM is the

worst, probably because such model is not suitable for this task, resulting in overfitting. The performance of DQN is worse than Q-learning,

probably because the state and action space of the T-maze task is small, while Q-learning can quickly find the optimal strategy and DQNuses

a deep network to approximate the Q-value adding a lot of unnecessary computing cost. The stability of Q-learning is better than DQN and

LSTM but lags behind the proposed ELSM. It can be seen that ELSM surpasses other algorithms in both performance and stability with low

complexity, owing to the advantages of its brain-inspired static and dynamic topology internally.

DISCUSSION

A long time ago, when the Liquid StateMachine (LSM) was first proposed as a tool for exploring brain function,27 many studies33,48,49 adopted

it in computational models as a general supervised learning technique.50 These studies have replicated some biologically plausible findings

using LSM, although limitations in network scale and algorithmic mechanisms have constrained their application in computational modeling.

Nevertheless, these pioneering efforts have demonstrated the potential of LSMs to investigate the mechanisms underlying brain-inspired

structures and functions.

Recent work on the performance-oriented evolution of SNN architectures is often time-consuming and does not adequately capture the

topological characteristics associated with brain function. In this work, we introduce ELSM, an evolutionary recurrent Spiking Neural Network

model, which uniquely adopts both static small-world topological characteristics and dynamic criticality inspired by brain function—as indi-

rect evolutionary goals. ELSM achieves classification accuracies of 98.12%, 97.23%, and 88.81% on MNIST, NMNIST, and Fashion-MNIST

respectively, and outperforms the best LSM models reported so far by 0.44% and 2.97% on MNIST and Fashion-MNIST, surpassing many

deep SNN models with an equivalent number of parameters. On MNIST and NMNIST, ELSM achieves performance comparable to deep

SNNs, while maintaining extremely low model complexity. Evolution not only enhances the performance of ELSM but also significantly re-

duces energy consumption. The ablation experiments confirmed that the above two evolutionary goals have a certain degree of positive cor-

relation with the classification accuracy, and the performance of the evolvedmodel far exceeds that of the random LSM. At the same time, the

multi-objective evolution model (the proposed ELSM) performs better than the single-objective model. In addition to image classification

tasks, ELSM also shows good performance in decision-making tasks compared to other common reinforcement learning models, demon-

strating the versatility of ELSM.

We further analyze more structural brain-inspired topological features as follows.

Hourglass structure and sparse coding in Drosophila mushroom body

Some studies have found an hourglass-like mapping relationship in the mushroom body module of theDrosophila brain: the nervous system

converges from the ultra-high-dimensional signals provided by sensory cells to a small number of projection neurons (PNs), and conducts

sparse encoding through a large number of Kenyon cells (KCs). Subsequently, lower-dimensional signals are extracted to characterize the

real world. This process bears a resemblance to the information processing methodology of LSM, as illustrated in Figure 4. The dotted

Figure 3. T-maze task

(A) The T-maze environment where triangles represent agents, and green and red endpoints represent food and poison, respectively. The horizontal width of the

maze is 3, and the vertical length is 5.

(B) Performance and complexity of different models on T-maze.
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box highlights the hourglass structure similar to that in the mushroom body of Drosophila, marking a distinct difference between LSM and

hierarchical neural networks.

Emergence of structural properties exist in the brain

To study the effect of evolution on the brain-inspired topology of ELSM, we count the changes in structural properties such as clustering co-

efficient, community, and criticality, as shown in Table 6. The clustering coefficient is used to measure the degree of node aggregation. Com-

munities count the number of communities with a size of 5 in the network that can communicate through 4 common nodes.

While the clustering coefficient increases, the shortest path length slightly decreases (from 0.196 to 0.195), and notably, the total number of

connections remains constant. Specifically, the connection density is about 1% in the randomnetwork, compared to amarginally lower 0.8% in

the evolved network. This demonstrates that evolution achieves rapid and efficient information transfer not by adding more connections, but

rather by optimizing existing connections, thereby reducing cost (in terms of the number of connections). The evolved network experiences a

substantial increase in its clustering coefficient due to a rise in hub nodes, along with the emergence of more overlapping communities. This

suggests a more intricate and highly interconnected set of relationships between subnetworks. Under limited connectivity, larger clustering

coefficients, closer community connections, shorter shortest paths, and a state closer to criticality prove that our proposed multi-objective

evolutionary algorithm can optimize LSM from both static and dynamic perspectives, and the evolved network architecture is more in line

with the core structural characteristics found in the human brain.

The change of the network degree distribution before and after evolution is shown in Figure 5. Figure 5A shows the degree distribution

of random LSM, following a normal distribution and the degrees of all nodes are concentrated between 100 and 200. After 1000 gener-

ations of evolution, the small-world properties of the network become obvious, and the degree shows an obvious long-tail distribution,

as shown in Figure 5B. The evolutionary process results in the emergence of a small number of hub nodes. Among the 8000 neurons,

the degrees of most nodes are concentrated between 0 and 100, with fewer nodes as the degree increases. The highest node degree

observed is 1525.

Overall, ELSM demonstrates its versatility across multiple tasks with its biologically more plausible small-world coefficient and

criticality, surpasses the best LSM models reported so far on MNIST and Fashion-MNIST datasets while achieving comparable per-

formance to many deep SNN models with considerably less complexity. Upon analysis, it is evident that the evolved model pos-

sesses numerous topological structures that align with brain networks, including the presence of hub nodes, community clusters,

and short path lengths.

Figure 4. The ELSM inspired by the Drosophila mushroom body

The dashed box marks the hourglass structure found in the Drosophila mushroom body, consistent with LSM.

Table 6. Changes in topology properties of ELSM before and after neuroevolution

Model Clustering coefficient (H) Communities (k = 4) Criticality (jm � 1j) Density (r)

Random 285.15 2 0.265 1%

Evolved 319.65 1255 0.096 0.8%
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Limitations of the study

The replication of the cerebellum’s connectivity patterns using a low-power microcontroller,51 confirms that the evolution of neural net-

works drives the tuning of synapses to reduce systemic free energy. From the perspective of energy consumption, the characteristics of

the brain’s energy-saving operation mechanism under the immense pressure of information processing, including optimal input and

noise, excitation/inhibition balance, the size of neurons and neuron clusters, have been analyzed.52 These studies have broadened

the scope of potential objectives for brain-inspired evolution, drawing from diverse mechanisms of the human brain. However, their

practical applicability in computational modelling remains to be validated. In the future, as neuroscience progresses, we will further

explore these feasibilities in the field of artificial intelligence and more operation properties found in brain networks, hoping to identify

more effective and energy-efficient brain-inspired functional features on SNNs that can be leveraged to guide efficient evolutionary

processes.

In terms of applications, SNNs with various architectures (not just LSM or other deep SNNs) can be configured to form multiple brain re-

gions through global self-organization and co-evolution. This enables the realization of numerous advanced cognitive functions and facili-

tates research on transfer learning, lifelong learning, and other related topics.
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All original code has been deposited at https://github.com/BrainCog-X/Brain-Cog/tree/main/examples/Structure_Evolution/ELSM and

is publicly available as of the date of publication. DOIs are listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Spiking neural network foundation

In this paper, we adopt leaky integrate-and-fire (LIF) neurons as the basic units of signal transmission. The formula for updating their mem-

brane potential over time is as follows:

d =
IðtÞ � VmðtÞ

t
(Equation 4)

Vmðt + 1Þ = ðVmðtÞ + dÞð1 � SðtÞÞ+VrSðtÞ (Equation 5)

SðtÞ =

�
1;VmðtÞRVth

0;VmðtÞ<Vth
(Equation 6)

Vmðt + 1Þ and VmðtÞ are the membrane potential at time t + 1 and t, respectively. As shown in Equation 4, d is determined by the membrane

potential VmðtÞ, the magnitude of the current IðtÞ and the membrane potential time constant t. When the membrane potential reaches the

threshold Vth, themembrane potential is reset to Vr at the same time as the spike is transmitted (indicated by SðtÞ as Equation 6). According to

the membrane potential VmðtÞ and SðtÞ at time t, the updating law of the membrane potential at the next time is shown in Equation 5.

The standard LSM model is divided into three layers: an input layer, a liquid layer formed of sparsely connected neurons, and a readout

layer. Weights of readout layer are optimized by backpropagation algorithm,67 while weights in the liquid layer are randomly set. The LIF

neuron model and backpropagation algorithm of the proposed evolutionary LSM are based on BrainCog framework.68

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

NALSM44 GitHub https://github.com/combra-lab/NALSM

ELSM This paper https://github.com/BrainCog-X/Brain-Cog/

tree/main/examples/Structure_Evolution/

ELSM

Other

MNIST77 Yann LeCun et al.77 http://yann.lecun.com/exdb/mnist/

Fashion-MNIST43 Github https://github.com/zalandoresearch/

fashion-mnist

NMNIST42 Orchard, G et al.42 https://www.garrickorchard.com/

datasets/n-mnist
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Neuroevolution algorithm

Randomly initialized liquid layer connectivity will be evolved to emerge more brain-inspired structures and dynamics. The whole neuroevo-

lution process is presented as Algorithm 1.

Initialization

In a population ofNc individuals to be initialized, each individual represents the liquid connection pattern C of anN liquid neurons reservoir.

We use a binary encoding method, each gene cij has two values of 0 or 1, indicating whether there is a synapse i connecting the presynaptic

neuron and a post-synaptic neuron j (0< i; j <N). Each individual is limited to be sparse and has only N �N � rinit synaptic connections inside
(the initial liquid density is recorded as rinit ).

A randommatrix R is generated, and the values of all elements rij in R are between 0 and 1. The BooleanmatrixC is obtained by calculating

the result of R < rinit , as Equation 7:

cij =

�
1; if rij % rinit
0; if rij > rinit

(Equation 7)

Evaluation

Identifying small-world topologies

Small-world networks are described as exhibiting two properties69: a high clustering coefficient and a short average path length. Local short

paths between most nodes with hubs induce highly connected sub-networks and a few long-distance connections, enabling efficient infor-

mation transmission in the brain. To quantify these small-world characteristics, the calculation method we adopt,70 referred to as the small-

world coefficient, is as follows:

l =
H

L
(Equation 8)

The clustering coefficient and the short path length between nodes are represented byH and L, respectively. The computation of the clus-

tering coefficient for a single node is given by Equation 9, where oi denotes the degree of neuron i. Here, a pair is defined as two edges that

share neuron i as a common endpoint. Let ei represent the number of all pairs of edges with i as the intermediate node. If two edges that both

pass through neuron i are called a pair, ei is the number of all pairs of edgeswith i as the intermediate node. The overall clustering coefficient is

then calculated as the average clustering coefficient across all neurons, given that there are N neurons in the liquid layer.

hi =
2ei

oiðoi � 1Þ (Equation 9)

H =

PN
i hi

N
(Equation 10)

The shortest path length of the network is calculated as Equation 11, where dst represents the shortest path length between s neuron and t

neuron (dst = 0 if the path does not exist). V is the liquid neuron set.

Algorithm 1. The neuroevolution process of ELSM

Initialize: Population Pð0Þ = fC1;C2;.;CNc g;
Output: Evolved individual Copt ;

for g = 0 to Gth do

if g = Gth � 1 then

Accuracy = Train (PðgÞ, 100)
Copt = Max (PðgÞ, Accuracy)

return Copt

end if.

obj½g;0� = SmallWorld (PðgÞ)
obj½g;1� = Criticality (PðgÞ, data)

P0ðgÞ = CrossoverAndMutate (Select(PðgÞ, obj, Noff ))

Pðg + 1Þ = Merge (PðgÞ, P0ðgÞ)
Pðg + 1Þ = Select (Pðg + 1Þ, obj, Nc )

end for.
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L =
X
s;t ˛V

dst

NðN � 1Þ (Equation 11)

Identifying criticality

A commonly used concept to measure the critical state of the nervous system is called branching ratio is derived from the branching process

theory71 and describes the spatiotemporal cascade activity of the cerebral cortex in homeostasis. Specifically, the local branching ratio miðtÞ at
time t reflects the propensity of neuron i to either increase or decrease its activity in response to spikes transmitted within the liquid layer. This

parameter is defined as follows.72

miðtÞ =

PN
j

Pt+f+D
l = t+f+1 mjðlÞcijPN

j

Pt�f� 1
l = t�f�D mjðlÞcji

(Equation 12)

mðtÞ =

PN
i miðtÞmiðtÞPN

i miðtÞ
(Equation 13)

m =

PT
t mðtÞ
T

(Equation 14)

Consider t = 1; 2; 3;.;T as discrete timesteps. cij denotes the presence or absence of a synapse connecting the presynaptic neuron i to

the postsynaptic neuron j, taking a value of 1 (if a synapse is present) or 0 (if not). The termmiðtÞ represents the firing status of neuron i at time t,

adopting a binary value: 0 for non-firing and 1 for firing. Therefore, Equation 14 is the ratio of the sum of the postsynaptic neuron spikes to the

sum of the presynaptic neuron spikes during the simulated time T. Studies have shown that the closer the value of m is to 1, the closer the

dynamics of the network are to the critical state.44,72,73 Therefore, the quantitative criticality is calculated as follows:

m = jm � 1j (Equation 15)

Givenmore than one fitness function, we take into account both the physical topology characteristics and dynamic changes of the network

when selecting superior individuals as the parents of the next generation. Referring to the fitness function proposed in Equation 8 and

Equation 14, a larger small-world coefficient, l, indicates a model structure more reflective of small-world characteristics. The smaller m is,

the closer the model dynamics are to the critical state. Therefore, this multi-objective optimization problem (MOP) can be described as

F : U/R:

argmin
C˛U

FðCÞ = ff1ðCÞ; f2ðCÞg (Equation 16)

s:t:r1 % rðCÞ% r2

rðCÞ is the density of the liquid layer, defined as the ratio of the number of liquid layer connections N �N. To keep the liquid density rðCÞ
stable during the evolution, the range of which is limited to r1 and r2. The first evolutionary goal f1ðCÞ is to maximize the small-world

coefficient:

f1ðCÞ = minð� lðCÞÞ (Equation 17)

where l is calculated as Equation 8, measuring the static LSM topology properties.

The second evolutionary goal f2ðCÞ is to minimize the criticality coefficient, which is formulated by:

f2ðCÞ = min mðCÞ (Equation 18)

where m is calculated as Equation 15, measuring the dynamic LSM topology properties.

Selection

The elitism approach and nondominated sorting strategy of the NSGA-II algorithm74 are used here to generatemating pools of sizeNoffs and

next-generation individuals. We employ the elitism approach and the nondominated sorting strategy from the NSGA-II algorithm74 to create

mating pools of size Noffs and to generate the subsequent generation of individuals.

Crossover

Consider two individuals,C1 andC2, who are crossed to produce offspringC3 andC4. We employ the k-point crossover operator rule, select-

ing k genes as the crossover points:

ca1b1
; ca2b2

;.; cakbk
(Equation 19)
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where 0<ak ;bk <N. Based on the chosen crossover points, each gene is divided into k + 1 segments:

�
C0;0;Ca1b1

�
;

S1

�
Ca1b1+1;Ca2b2

�
; :::;

S2

�
Cakbk+1;CNN

�
Sk+1

(Equation 20)

We get the matrix E and D where Es1 , Es3 , ., Ds2 , Ds4 , ., are set to 1. The remaining elements in E and D are set to 0. Therefore:

C3 = C1 � E +C2 � D (Equation 21)

C4 = C1 �D +C2 � E (Equation 22)

Mutation

Assuming that C1 is mutated into C5, flip bit mutation75 is performed on nm genes of C1. The mutation probability is set as mrate: a random

numbermrand is generated for each offspring after crossover, ifmrand <mrate, the mutation is accepted. Eachmutation is to select a gene cij in

C1 for inversion:

cij = :cij (Equation 23)

Parents PðgÞ and population formed by crossover and mutation P0ðgÞ are merged, and the selection operator is applied to generate the

next generation Pðg + 1Þ.

Next generation

The above neuroevolution process of initialization, evaluation, selection, crossover, and mutation is repeated forGth generations. Ultimately,

every individual in the final generation undergoes training for 100 epochs, and the one with the highest classification accuracy, denoted as

Copt , is chosen as the outcome of the evolutionary process.

Static and neuromorphic image processing

MNIST

The handwritten datasetMNIST is one of the classicmachine learning datasets, comprising 70,000 grayscale images of handwritten digits 0–9.

It is divided into 60,000 training examples and 10,000 testing examples. The size of each image is 28 � 28 pixels.

Fashion-MNIST

The Fashion-MNIST dataset consists of 70,000 grayscale images, with 60,000 for training and 10,000 for testing, distributed across ten cate-

gories. Each sample is a 28 � 28 grayscale image.

NMNIST

NMNIST is a neuromorphic version of MNIST converted to MNIST images by an actuated pan-tilt camera platform. After 300 ms of signal

acquisition, the dataset includes 60,000 training images and 10,000 test images, each of size 34 � 34 pixels and with 2 channels.

For the staticMNIST and Fashion-MNIST datasets, the inputs to themodel are grayscale images with normalized pixel values ranging from

0 (black) to 1 (white). For the neuromorphicNMNIST, an extra preprocessing ensemblemethod76 is adapted to convert the event stream into a

frame stream, which is then fed into the model for classification. The two channels are combined into one by summing.

Training procedure and techniques

At each time step, a randomly generated weight matrix transforms the normalized grayscale image into the activity of a liquid layer consisting

ofN LIF neurons. This layer not only receives external input but also processes feedback from its previous firing pattern (0 indicates no firing,

while 1 indicates firing) through a liquid-liquid weightmatrix of sizeN �N. Subsequently, the firing pattern of the liquid layer is transmitted to a

readout layer via a fully connectedN � 10 weight matrix. After T time steps, the output of the model is the average value at each time step of

the output layer’s cumulative spikes. The backpropagation algorithm is employed to optimize the weights between the liquid and readout

layers.

QUANTIFICATION AND STATISTICAL ANALYSIS

Use Python for statistical analysis. The results in Tables 3 and 4 are the average values of multiple runs and their error ranges.
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