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Descending pathways mediate adaptive optimized
coding of natural stimuli in weakly electric fish
Chengjie G. Huang*, Michael G. Metzen†, Maurice J. Chacron†‡

Biological systems must be flexible to environmental changes to survive. This is exemplified by the fact that
sensory systems continuously adapt to changes in the environment to optimize coding and behavioral responses.
However, the nature of the underlying mechanisms remains poorly understood in general. Here, we investigated
the mechanisms mediating adaptive optimized coding of naturalistic stimuli with varying statistics depending
on the animal’s velocity during movement. We found that central neurons adapted their responses to stimuli
with different power spectral densities such as to optimally encode them, thereby ensuring that behavioral
responses are, in turn, better matched to the new stimulus statistics. Sensory adaptation further required de-
scending inputs from the forebrain as well as the raphe nuclei. Our findings thus reveal a previously unknown func-
tional role for descending pathways in mediating adaptive optimized coding of natural stimuli that is likely generally
applicable across sensory systems and species.
INTRODUCTION
Growing evidence suggests that sensory systems optimally encode
natural stimuli by incorporating statistical information about envi-
ronmental signals (1–3). However, because natural stimulus statistics
vary with time, sensory neurons must adjust their responses (i.e.,
adapt) in order for their encoding efficiency to remain optimal (4).
While sensory adaptation has been observed ubiquitously across systems
and species (5), the nature of the underlying mechanisms remains poorly
understood to this day. Moreover, how adaptive optimized coding by
sensory neurons affects behavioral performance has not been system-
atically investigated to date.

The electrosensory system of wave-type gymnotiform weakly
electric fish is an attractive model system for understanding the neural
basis of behavior (6). These fish generate a quasi-sinusoidal signal of
individual frequency called the electric organ discharge (EOD) around
their bodies and rely on perturbations of this signal to acquire
information about their environment. In particular, when two fish are
in proximity to each other (<2 m) (7, 8), their EODs interfere with one
another, and the interaction between the two frequencies generates a
sinusoidal amplitude modulation (AM) of the EOD whose contrast
(i.e., envelope) strongly depends on the distance and orientation be-
tween both fish (9). Recent studies have focused on understanding
the statistics of these signals in the environment and have found that
they display scale invariance as the spectral power decays as a power
law with an exponent of −0.8 with increasing temporal frequency
(10). EOD perturbations including envelopes are sensed by an array
of electroreceptor afferents (EAs), which project to pyramidal cells
(PCells) within the electrosensory lateral line lobe (ELL). PCells are the
sole output neurons of the ELL and project to higher brain structures,
thereby giving rise to behavior (6). The response properties of ELL
PCells to envelope stimuli have been extensively studied [see (11) for
review]. In particular, it was found that ELL PCell response properties
were matched to natural envelope statistics such as to optimally encode
them,which, in turn, ensures that behavioral sensitivity ismatched to stimu-
lus statistics (12). The response properties of ELL PCells to envelopes are
strongly dependent on descending input from higher brain centers (13).
However, these previous studies for the most part did not consider
changes in envelope stimulus statistics.While we have demonstrated that
ELL PCells display adaptation in response to artificial (i.e., step) changes
in envelope (14), changes that occur in more natural settings have not
been considered to date.We thus investigatedwhether ELLPCells can alter
their response properties such as to optimally encode envelope stimuli
with different statistics that better reflect changes in the natural envi-
ronment and the consequences of such sensory adaptation on behavior.
RESULTS
We recorded neural and behavioral responses in awake behaving
weakly electric fish to envelope stimuli. Briefly, the animal was placed
in a tank while head-tail electrodes recorded behavioral responses
consisting of changes in the animal’s EOD frequency and stimuli were
delivered via two electrodes located on each side (Fig. 1, top). This
setup allows the simultaneous recording of neural and behavioral re-
sponses. We have previously shown that the response properties of
ELL PCells are matched to natural stimulus statistics such as to allow
optimal encoding via temporal whitening (12). Such optimized coding
by sensory neurons in turn ensures that behavioral sensitivity is
matched to natural stimulus statistics such that both decay similarly
with increasing frequency. Such matching makes intuitive sense as be-
havioral sensitivity is highest for frequencies that are most represented
in natural electrosensory stimuli (11, 12). Here, we investigated whether
neural and behavioral responses were adaptable to stimuli with different
statistics and investigated the nature of the underlying mechanisms.
ELL PCells receive feedforward sensory input from EAs and project
to higher brain centers including the midbrain torus semicircularis
(TS) and the telencephalon (Tel) (Fig. 1, bottom) that generate behav-
ioral responses. As mentioned above, ELL PCells also receive large
amounts of feedback from Tel and TS as well as neuromodulatory in-
puts from the raphe nuclei (Fig. 1, bottom).

Central electrosensory neurons adapt their properties such
as to optimally encode stimuli with different statistics
We investigated how neural and behavioral responses adapt to stimuli
whose statistics differ from that found under natural conditions. We
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thus used two adaptation stimuli that have approximately the same
overall power in the frequency range 0 to 1 Hz but have different
power-frequency relationships: One whose power is independent of
frequency (i.e., characterized by a power law exponent of 0) and another
whose power decays sharply with increasing frequency (i.e., character-
Huang et al., Sci. Adv. 2019;5 : eaax2211 30 October 2019
ized by a power law exponent of −2) (Fig. 1, top; see Materials and
Methods). These exponents were chosen such as to strongly differ from
the exponent found under natural conditions (i.e., −0.8) and thus
maximize the probability of eliciting sensory adaptation. Our protocol
consisted of presenting either stimulus and comparing ELL PCell
1 ms EOD period

Behavior

E1
E2

20 s

Neuron Stimuli

stim = 0

stim = −2Lo
g(

st
im

ul
us

 p
ow

er
)

Log(frequency)

PCell

EAs

Sensory
input

Behavior

ELL

Raphe
nucleus

Hi
gh

er
 b

ra
in

 a
re

as

Tel TS

Ascending
Descending

Direct
Indirect

Fig. 1. Experimental setup and relevant circuitry. Top: The fish is placed in an experimental tank. Behavioral responses consisting of changes in the EOD are
recorded via two electrodes (E1 and E2) placed at the head and tail of the fish, respectively. Neural recordings were obtained by placing electrodes in the brain.
Stimuli were delivered via two other electrodes (dark solid circles) placed on either side of the fish. We used stimuli whose power spectral density either decayed
strongly with increasing frequency (i.e., characterized by a power law exponent of −2, green) or was constant (i.e., characterized by a power law exponent of 0, orange).
Bottom: Simplified circuit diagram in which sensory input is transduced and sent via EAs to PCells within the ELL. PCells project to higher brain areas that mediate
behavioral responses including the midbrain TS and indirectly to Tel. PCells also receive large amounts of descending input (i.e., feedback) indirectly from Tel via TS as
well as neuromodulatory feedback from the raphe nuclei. Photo credit: Maurice Chacron at McGill University.
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responses in the early and late phases of the stimulus presentation
(see Materials and Methods). Overall, if ELL PCells display sensory
adaptation, we would expect that their responses do not match the
statistics of either stimulus and, thus, not optimally encode them
initially (Figs. 2A and 3A, middle panels, solid black lines), as the
power law exponents differ from those found under natural conditions
(Figs. 2A and 3A, left, compare dashed and solid black lines). Hence, the
response power spectra should initially not be independent of frequency
(i.e., not temporally whitened; Figs. 2A and 3A, middle, solid black
lines). However, if adaptation occurs such as to more optimally encode
the stimulus over time, then we would expect a gradual shift in ELL
PCell response properties to better match the adapting stimulus’ statis-
Huang et al., Sci. Adv. 2019;5 : eaax2211 30 October 2019
tics. This would then result in the response power spectral density be-
comingmore independent of frequency (i.e., temporally whitened; Figs.
2A and 3A, middle panels, solid green and orange lines).

Our results show that ELLPCell responses gradually adaptedwhen a
stimulus characterized with a power law exponent of −2 was presented
(Fig. 2B). The response power initially strongly depended on frequency
(Fig. 2B, left) but gradually becamemore independent of frequency (Fig.
2B, right), which is a signature of optimized coding. We quantified our
results using a whiteness index measure that is equal to unity if the
power spectral density is independent of frequency and is less oth-
erwise (seeMaterials andMethods). Our results show that thewhiteness
index gradually increased as a function of time (Fig. 2C, left). Overall,
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Fig. 2. ELL PCells adapt their responses such as to optimally encode stimuli characterized by a power law exponent of −2. (A) Schematic showing the adap-
tation stimulus power spectral density (left, solid black) together with that of natural stimuli (left, dashed black). Previous studies have shown that PCells optimally
encode natural stimuli. Hence, their response power spectral density to these is constant (middle, dashed black). We predict that the PCell response power spectral
density to the adaptation stimulus will initially not be independent of frequency (e.g., low pass; middle, solid black) but will gradually become more independent of
frequency (middle, green) via adaption. Behavioral sensitivity is initially matched to natural stimulus statistics (right, dashed black). We predict that adaptation at the
behavioral level will lead to changes in behavioral sensitivity such as to better match the statistics of the adaptation stimulus (right, solid green). (B) Spectrogram (i.e.,
running time power spectral density) of the response of an example PCell to the adaptation stimulus. The upper left and right insets show the response power spectral
densities as a function of frequency for this cell early (left) and late (right) during stimulus presentation. (C) Left: Whiteness index as a function of time for this same
PCell. Right: Whisker-box plots showing the population-averaged whiteness index values early and late during stimulus presentation. (D) Population-averaged behav-
ioral sensitivity as a function of frequency before (black) and after (green) stimulus presentation. (E) Left: Population-averaged behavioral exponents before (black) and
after (green) stimulus presentation. Right: Population-averaged matching index values before (black) and after (green) stimulus presentation. *P = 0.05 (Wilcoxon signed
rank test).
3 of 12



SC I ENCE ADVANCES | R E S EARCH ART I C L E
qualitatively similar results were obtained when instead presenting a
stimulus characterized with a power law exponent of 0 (Fig. 3, B and
C). The response power spectral density gradually became more
independent of frequency (i.e., more temporally whitened; Fig. 3B) as
quantified bywhiteness index values that increased as a function of time
(Fig. 3C). Across our dataset, we found that the whiteness index late
during stimulus presentation was significantly higher than that com-
puted immediately after stimulus onset (Fig. 2C, right: astim = −2, com-
pare black and green, n = 16, P = 1.2 × 10−4; Fig. 3C, right: astim = 0,
compare black and orange, n= 15,P= 9.8 × 10−4,Wilcoxon signed rank
tests).We note that changes in the response power spectral density were
not due to changes in firing rate (FR), coefficient of variation (CV), or
burst fraction (BF). This is because these did not significantly change
between immediately after stimulus onset and late during stimulus
presentation (fig. S1A; astim = −2: FR, P = 0.12; CV, P = 0.43; BF,
P = 0.10; fig. S2A; astim = 0: FR, P = 1.00; CV, P = 0.58; BF,
Huang et al., Sci. Adv. 2019;5 : eaax2211 30 October 2019
P = 0.37, Wilcoxon signed rank tests). Moreover, interspike interval
(ISI) distributions early and late during stimulus presentation were not
significantly different from one another (fig. S1, B and C, astim = −2,
P = 0.78; fig. S2, B and C, astim = 0, P = 0.48; Kolmogorov-Smirnov
tests). Thus, our results demonstrate that the response properties of
ELL PCells actively change such as to more optimally encode stimuli
that are characterized by different power law exponents.

We next investigated how the response properties of ELL PCells
changed to optimally encode sensory input in an adaptivemanner. Ear-
lier studies have suggested that optimized coding can be achieved when
neural sensitivity (i.e., tuning) increases to compensate for the decaying
stimulus power, such that the stimulus is filtered by the neural transfer
function, thereby removing redundancy (12, 15). This approach, how-
ever, fails to take into account neural variability (see Materials and
Methods and Eq. 2), which can have significant impact on filtering
(16). Rather, theory suggests that optimized coding is achieved by
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Fig. 3. ELL PCells adapt their responses such as to optimally encode stimuli characterized by a power law exponent of 0. (A) Same as Fig. 2A but for an
adaptation stimulus with exponent 0. (B) Spectrogram (i.e., running time power spectral density) of the response of an example PCell to the adaptation stimulus.
The upper left and right insets show the response power spectral densities as a function of frequency for this cell early (left) and late (right) during stimulus presen-
tation. (C) Left: Whiteness index as a function of time for this same PCell. Right: Whisker-box plots showing the population-averaged whiteness index values early and
late during stimulus presentation. (D) Population-averaged behavioral sensitivity as a function of frequency before (black) and after (orange) stimulus presentation. (E) Left:
Population-averaged behavioral exponents before (black) and after (orange) stimulus presentation. Right: Population-averaged matching index values before (black) and
after (orange) stimulus presentation. *P = 0.05 (Wilcoxon signed rank test).
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ensuring that both neural sensitivity (i.e., tuning) and variability are
matched to natural stimulus statistics, as recently demonstrated ex-
perimentally in the vestibular system (3, 17). This latter case corresponds
more to “information filtering” in which the signal-to-noise ratio is
considered.Hence, we hypothesized that changes in ELLPCell response
properties must involve changes in their tuning as well as variability to
optimally encode stimuli in an adaptive manner. To test this, we
measured ELL PCell tuning properties as well as their variability before
and after presentation of the adaptation stimulus. Our results show that
changes in ELL PCell response properties cannot be accounted for by
changes in tuning alone, irrespective ofwhether tuningwasmeasured in
response to sinusoidal stimulation (fig. S3) or to the adaptation stimulus
itself (fig. S4). Rather, our results show that adaptive optimized coding
can be explained by changes in tuning and variability, as considering
changes in both is necessary to correctly predict experimental data (fig. S5).

Adaptive optimized coding by central electrosensory
neurons ensures matching between behavioral sensitivity
and stimulus statistics
Do changes in ELL PCell response properties influence behavior? To
investigate this important question, we took advantage of the fact
that weakly electric fish give robust behavioral responses to sinusoidal
sensory input in that their EOD frequency tracks the time course of the
sensory input in a one-to-one fashion. Previous studies have shown that
the sensitivity of this behavioral response ismatched to natural stimulus
statistics (10, 12). Hence, we predict that, if adaptive optimized coding
by ELL PCells is behaviorally relevant, behavioral responses should bet-
ter match the adapting stimulus’ statistics late in adaptation (Figs. 2A
and 3A, right). To test this hypothesis, we compared the animal’s be-
havioral sensitivity using sinusoidal stimuli at different frequencies
before and after adaptation (see Materials and Methods). We found
that, over time, behavioral sensitivity shifted (fig. S6, A and B), such that
the best-fit power law exponent was closer to that of the adaptation
stimulus (Fig. 2, D and E, left; astim = −2; acontrol = −0.79 ± 0.05, black;
aadapted = −1.08 ± 0.07, green, P = 1.3 × 10−3, Wilcoxon signed rank
test; Fig. 3, D and E, left: astim = 0; acontrol = −0.94 ± 0.03, black;
aadapted = −0.72 ± 0.07, orange, P = 4.3 × 10−3, Wilcoxon signed rank
test). As a result, there was a better match late in adaptation between
the best-fit power law exponents of the adaptation stimulus power
spectral density and behavioral sensitivity, as quantified by significant
increases in the matching index (Fig. 2E, right; astim = −2; control =
−0.21 ± 0.05, black; adapted = 0.07 ± 0.06, green, P = 1.3 × 10−3; Fig.
3E, right; astim = 0; control = 0.06 ± 0.13, black; adapted = 0.28 ± 0.07,
orange, P = 4.3 × 10−3; Wilcoxon signed rank tests; see Materials and
Methods). We note that this match was not perfect as the best-fit
behavioral exponent did not reach that of the adaptation stimulus
in each case. This is discussed below.

Stimulus statistics encountered in the environment depend
on the animal’s level of activity
We next asked whether the power spectral densities of stimuli
experienced by weakly electric fish change in a manner mimicking
the adaptation stimuli used in this study (i.e., are characterized by dif-
ferent power law exponents). To do so, we recorded the interactions
between pairs of fish in a seminaturalistic setting where one animal is
freely moving while another is restrained in a tube (Fig. 4A). We sub-
sequently extracted movement trajectories from video recordings as
well as the simultaneous electrosensory stimuli recorded by a dipole
placed adjacent to the fish in the tube (Fig. 4A,N=4 pairs, 90min each).
Huang et al., Sci. Adv. 2019;5 : eaax2211 30 October 2019
We then segregated the obtained signals into periods when the fish’s
velocity was lower and higher (see Materials and Methods). When
considering the entire dataset, we found that the stimulus power de-
cayed with a power law exponent close to −0.8 (afull = −0.93 ± 0.04),
consistent with previous studies (10). We then considered epochs
when the longitudinal velocity was either below (i.e., “low velocity”)
or above (i.e., “high velocity”) its median value (Fig. 4B). The distribu-
tions of duration of epochs during which the animal’s velocity was low
or high were not significantly different from one another (Fig. 4B, inset;
P= 0.07, Kolmogorov-Smirnov test). Overall, we found that, for periods
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fish. (A) Schematic of the tank setup with an infrared (IR) camera recording of a
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trajectories in gray. A small dipole located close to the tube recorded the stimuli
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(see Materials and Methods). The dashed line indicates the median velocity. The inset
shows the probability densities of epoch duration during which the velocity was low
(dark blue) and high (light blue) velocities. These overlapped and were thus not signifi-
cantly different from one another. (C) Power spectral densities of the stimuli as a function
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stimuli. Inset: Whisker-box plots showing the best-fit power-law exponents for the
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of low velocity, the stimulus power spectral density decayed more
sharply with increasing frequency as quantified by a significantly lower
power law exponent (alow = −1.19 ± 0.04; P = 2.6 × 10−2, t test; Fig. 4C,
dark blue). In contrast, for periods of high velocity, the stimulus power
spectral density decayed less sharply with increasing frequency as quan-
tified by a significantly higher power law exponent (ahigh =−0.76 ± 0.06;
P = 9.6 × 10−3, t test; Fig. 4C, light blue). We note that analysis of
surrogate data where epochs were chosen randomly showed no sig-
nificant differences between the exponents (fig. S7A). Qualitatively
similar results were seen when changing the threshold over a wide
range of values (fig. S7B). These results show that stimulus statistics
depend on velocity. We hypothesize that weakly electric fish will ex-
perience stimuli characterized by different power law exponents in
their natural environment as detailed below.

Feedback from the Tel is necessary for sensory and
behavioral adaptation
What is the nature of themechanisms underlying sensory adaptation by
ELLPCells? Previous studies have shown that sensory input is conveyed
via midbrain structures to Tel, which in turn projects back to ELL (Fig.
1, bottom). We hypothesize that sensory adaptation is caused by a de-
scending signal that originates from Tel. To test this hypothesis, we first
lesionedTel prior to presenting the adaptation stimulus (Fig. 5A).Over-
all, we found that the neural response power spectral density strongly
depended on frequency and did not change as a function of time after
lesioning Tel (Fig. 5B, compare left and right), as quantified by the
whiteness index measure that was more or less constant as a function
of time (Fig. 5C, left). As a result, the population-averaged whiteness
index values early and late in adaptation were not significantly different
from one another (Fig. 5C, right; n = 8, P = 0.31, Wilcoxon signed rank
test).We further note that thewhiteness index values early in adaptation
after lesioning Tel were not significantly different from those obtained
under control conditions (P = 0.95, Wilcoxon rank sum). FR, CV, BF,
and ISI distributions were not significantly altered during stimulus pre-
sentation after lesioning Tel (fig. S8). We further note that lesioning
forebrain did not significantly alter response properties initially [fig.
S8, A (compare gray and black box plots), figs. S8, B, C]. Thus, our
results indicate that lesioning Tel did not affect neural responses over-
all but strongly impaired sensory adaptation. The lack of change in
neural response power was furthermore correctly predicted by our
theory (fig. S8D). Lesioning Tel also strongly impaired behavioral ad-
aptation as behavioral sensitivity no longer significantly changed dur-
ing stimulus presentation (Fig. 5, D and E, left, and fig. S8E). The
population-averaged behavioral exponents before and after presenting
the adaptation stimulus were not significantly different fromone anoth-
er (Fig. 5E, left; n = 9; acontrol(lesion) = −0.97 ± 0.07, aadapted(lesion) =
−0.90 ± 0.04; n= 8,P= 0.20,Wilcoxon signed rank test).We further note
that the behavioral exponent after lesionwasnot significantly different than
that obtained before lesioning Tel (Fig. 5E, left; P = 0.46, Wilcoxon signed
rank test). As a result, there were no significant changes in matching
index values overall [Fig. 5E, right; control, 0.02 ± 0.08; controllesion,
−0.11 ± 0.08; adaptedlesion,−0.12 ± 0.04;n=8,Pcontrol/control(lesion) = 0.46,
Pcontrol(lesion)/adapted(lesion) = 0.20, Wilcoxon signed rank tests].

Sensory and behavioral adaptation require serotonergic
neuromodulatory feedback
From our above findings showing that lesioning the forebrain prevents
sensory adaptation, we next wanted to investigate the feedback path-
ways originating from higher brain areas and how these interact with
Huang et al., Sci. Adv. 2019;5 : eaax2211 30 October 2019
ELL PCells. We therefore tested whether serotonergic feedback from
the raphe nuclei was necessary for sensory adaptation in contrast to the
direct or indirect pathways from TS to ELL. To do so, we injected the
5-HT2 receptor antagonist ketanserin (KET) while recording from ELL
PCells and/or measuring behavioral responses before presenting the
adaptation stimulus (Fig. 6A). Overall, results qualitatively similar to
those observed after lesioning the forebrainwere observed in that neural
responses no longer changed in response to the adaptation stimulus
(Fig. 6B) as quantified by the whiteness index (Fig. 6C). The population-
averaged whiteness index values early and late in adaptationwere not
significantly different from one another after KET application (n = 8,
P = 0.38, Wilcoxon signed rank). We note that KET application did
not alter neural responses, as the whiteness index values early in adap-
tation were not significantly different than those found under control
conditions (i.e., noKET application;P=0.16,Wilcoxon signed rank test).
Furthermore, FR, CV, BF, and ISI distributions were not significantly
different between early and late during stimulus presentation after
injecting KET (fig. S9). We further note that KET injection did not
significantly alter these response properties [fig. S9, A (compare gray
and black box plots), figs. S9, B, C]. The lack of change in neural re-
sponse power was furthermore correctly predicted by our theory (fig.
S9D). Moreover, behavioral responses did not change after presenting
the adaptation stimulus (Fig. 6, D and E, left, and fig. S9E), as the be-
havioral exponentswerenot significantlydifferent fromoneanother [Fig. 6E,
left; acontrol = −1.07 ± 0.11, gray; acontrol (KET) = −1.11 ± 0.13, black;
aadapted (KET) = −1.13 ± 0.09, green; n = 8, Pcontrol/control(KET) = 0.74,
Pcontrol(KET)/adapted(KET) = 0.84, Wilcoxon signed rank tests]. As a re-
sult, there were no significant changes in matching index values overall
(Fig. 6E, right; control, 0.07 ± 0.11; controlKET, 0.11 ± 0.13; adaptedKET,
0.13 ± 0.10; n = 8, Pcontrol/control(KET) = 0.74, Pcontrol(KET)/adapted(KET) =
0.84,Wilcoxon signed rank tests). Our results thus reveal a previous un-
known function for serotonergic pathways in that they are required for
sensory adaptation.
DISCUSSION
Summary of results
Here, we investigated whether ELL PCells can adapt their response
properties to optimally encode stimuli with different statistics, the
consequences of adaptation on behavior, as well as the nature of the
underlyingmechanisms. Our results show that, when stimuli character-
ized with different power law exponents were presented, the power
spectral densities of ELL PCell responses changed progressively such
as to become more independent of frequency, a signature of optimal
coding. Changes in ELL PCell response properties were due to changes
in both tuning and variability and led to changes in behavioral sensitiv-
ity to better match the adapting stimulus’ statistics. We also measured
electrosensory stimulus statistics and found that stimuli associated with
different longitudinal velocities were characterized by different power
law exponents.We then investigated the nature of the mechanisms that
underlie sensory adaptation by ELL PCells.We found that lesioning the
forebrain did not alter ELL neural or behavioral responses but pre-
vented adaptation. Further, we found that injecting the serotonergic re-
ceptor antagonist KET also prevented adaptation and did not alter ELL
neural or behavioral responses.

Natural electrosensory stimulus statistics change over time
Previous studies have investigated the statistics of the sensory input
experienced by weakly electric fish (9, 10) but have not considered
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different conditions. Here, we have shown that the statistics of the sen-
sory input experienced by weakly electric fish strongly depend on their
longitudinal velocities when in the dark. Intuitively, when the animals
move more, it is expected that the resulting stimuli will contain more
high-frequency components and, thus, that the power spectral density
will decay with an exponent lower in magnitude. In contrast, when the
animals move less, it is expected that the resulting stimuli will contain
more low-frequency components and, thus, that the power spectral
density will decay with an exponent higher in magnitude. Thus, al-
though they were obtained in the absence of light, our results suggest
that weakly electric fish will experience stimuli with different power law
Huang et al., Sci. Adv. 2019;5 : eaax2211 30 October 2019
exponents over the 24-hour day-night cycle. Specifically, because weak-
ly electric fish are nocturnal (18), it is expected that they will move at
higher velocities on average during the night than during the day and
will, thus, experience sensory input characterized by different power law
exponents under both conditions. Further studies are needed to test
these hypotheses.

What are the functional roles of neural and behavioral adaptation?
Our results show that, in response to adaptation stimuli, both neural
and behavioral responses adapt. Specifically, while neural response
power spectral densities became more independent of frequency, be-
havioral sensitivity was altered such that its power law exponent was
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Fig. 5. Sensory adaptation requires descending input from the forebrain. (A) Schematic showing the brain (left); we lesioned the forebrain (left: red cross) before
presenting the adaptation stimulus characterized by a power law exponent of −2 (middle left, solid black). Also shown is the power spectral density of the natural
stimulus (middle left, dashed black). We investigated whether neural response power spectral density (middle right) as well as behavioral sensitivity (right) changed
throughout stimulus presentation. (B) Spectrogram (i.e., running time power spectral density) of the response of an example PCell to the adaptation stimulus after
lesion. The upper left and right insets show the response power spectral densities as a function of frequency for this cell early (left) and late (right) during stimulus
presentation. (C) Left: Whiteness index as a function of time for this same PCell. Right: Population-averaged whiteness index values early (black) and late (green) during
stimulus presentation. (D) Population-averaged behavioral sensitivity as a function of frequency before lesion (gray), as well as before (black) and after (green) stimulus
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7 of 12



SC I ENCE ADVANCES | R E S EARCH ART I C L E
closer to that of the adapting stimulus. It should be noted that, while
the whiteness index values increased throughout adaptation, they did
not reach unity. This could be for multiple reasons including limited
recording time, as well as the possibility that responses are optimized
for a linear-nonlinear system, rather than a linear one (4). Previous
studies have found that, as a function of increasing frequency, both
behavioral sensitivity and natural stimulus power spectral densities
decayed with the same power law exponents (i.e., were “matched”)
(10). Thismakes intuitive sense as sensitivity is then highest for frequen-
cies that aremost highly represented in the stimulus, whichwould allow
an animal to more strongly modulate its EOD frequency and, thus,
appear stronger to potentially ward off an intruder (10). Our results
Huang et al., Sci. Adv. 2019;5 : eaax2211 30 October 2019
provide further evidence supporting the hypothesis that the functional
role of sensory adaptation is to maximize information transmission by
sensory neurons through temporal whitening and to match behavioral
sensitivity to stimulus statistics.We also note that the adaptation stimuli
used in this study are unlikely to be encountered in the natural
environment. This is because (i) their exponents were well outside of
the observed range and (ii) their overall variance (i.e., area under the
power spectral density curve) was the same, which is unlike that seen
under seminaturalistic conditions. In the case of (i), we note that this is
not a problemas the adaptation stimuli were used to attempt to elicit the
maximum changes in ELL neural and behavioral responses. This fact
could explain why adaptation did not lead to a perfect match between
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Fig. 6. Sensory adaptation requires descending serotonergic input from the raphe nuclei. (A) Schematic showing the brain (left); we injected the serotonergic
antagonist KET into the ELL (pipette) before presenting the adaptation stimulus characterized by a power law exponent of −2 (middle, solid black). Also shown is the
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behavioral sensitivity and the adapting stimulus’ statistics. Rather, the
observed power law exponents of the adapted behavioral sensitivity
were at the lower and upper limits of the range observed under natural
conditions, suggesting that this is the maximum operating range of the
system, which matches to the range natural stimulus statistics. In the
case of (ii), this implies that the overall intensity of the adaptation stim-
ulus characterized by a power law exponent of zero should be increased
relative to that of an adaptation stimulus characterized by a power law
exponent of −2 to better match our observations under a more realistic
setting. This increased intensity is not expected to qualitatively affect
our results and should, in fact, give rise to stronger adaptation in neural
responses than those observed in the current study. Further studies are
however needed to test these predictions.

Mechanisms mediating sensory and behavioral adaption
Our results have shown that lesioning the forebrain did not affect neural
or behavioral responses but did prevent adaptation. Hence, sensory and
behavioral adaptation are likely caused by signals descending from the
forebrain. Recent studies have uncovered the detailed anatomy of the
forebrain of Apteronotus leptorhynchus with regard to learning and
memory (19). In particular, they have identified reciprocal connections
whose anatomy supports functions such as the computation of an error
signal, which would be necessary to elicit sensory adaptation. One
possibility is that descending signals from the forebrain are relayed
via the midbrain TS, which then projects to the ELL via the nucleus
praeeminentialis. Previous studies have revealed a variety of functions
for descending input onto ELL PCells including gain control (20),
adaptive cancellation of redundant sensory input (21, 22), aswell as gen-
erating neural responses to sensory input (23, 24). Pharmacological in-
activation of descending input strongly affects ELL PCell tuning to
envelope stimuli (13). Further studies are needed to understand the na-
ture of the computations being performed by the forebrain to determine
sensory and behavioral adaptation to stimuli with different statistics.

Our results have further shown that the serotonergic antagonist KET
also prevented sensory and behavioral adaptation. Previous studies have
shown that ELLPCells receive large amounts of serotonergic input from
the raphe nuclei (25). Activation of this input (e.g., by raphe nuclei stim-
ulation) increases ELL PCell excitability via inhibition of small conduct-
ance calcium-activated potassium channels (26), which increases
responsiveness to stimulation [see (11) for review]. Further studies have
shown that increased excitability is likely mediated by 5-HT2 receptors
(27). Our results reveal a previously unknown role for serotonergic
input onto ELL PCells in that such input is necessary for adaptation.
Thus, another possibility is that descending input from the forebrain
is being relayed via serotonergic pathways. This possibility is, however,
unlikely because neuromodulatory inputs typically do not transmit
detailed information about the nature of sensory input (28). Rather,
it is likely that serotonergic input is needed to elicit plasticity for de-
scending synaptic input, as observed in other systems (29, 30), and
that the descending input from the forebrain is needed to determine
the nature of changes in ELL PCell response properties such as to op-
timally encode stimuli with different statistics. Further studies are
needed to characterize the response properties of neurons within
the raphe nucleus to the adaptation stimuli used here.

Implications for other systems
It is very likely that our results will be applicable to other systems. First,
there aremultiple anatomical and physiological similarities between the
electrosensory system of weakly electric fish and mammalian sensory
Huang et al., Sci. Adv. 2019;5 : eaax2211 30 October 2019
systems (31). In particular, recent studies have found remarkable simi-
larities between the electrosensory system of weakly electric fish and the
vestibular system of nonhuman primates (32), which is not surprising
from an evolutionary perspective as both are eighth nerve systems that
have likely evolved from the lateral line (33, 34). Moreover, a recent
study in the vestibular system has shown that sensory neurons are
adapted to the statistics of natural self-motion stimuli (17). In particular,
central vestibular neurons optimally encode natural self-motion stimuli
via temporal whitening, which is due to a match between their tuning
and variability as well as the stimulus statistics (17). Given that temporal
whitening has been observed in awide range of sensory systems (1–4, 15)
and that sensory adaptation has been observed ubiquitously [see (5)
for review], our results will likely be applicable to other systems. It was
shown that visual cortical neurons could adapt their properties to op-
timally encode visual stimuli with different spectral frequency content
(4), and it was proposed that the function of adaptation is tomaximize
information transmission of stimuli with time-varying statistics (5).
MATERIALS AND METHODS
Animals
The weakly electric fish A. leptorhynchus was used exclusively in this
study. Animals of either sex were purchased from tropical fish suppliers
and were acclimated to laboratory conditions according to published
guidelines (35). All procedures were approved by McGill University’s
animal care committee and were performed in accordance with the
guidelines of the Canadian Council on Animal Care.

Surgery
Surgical procedures have been described in detail previously (13, 24).
Briefly, 0.1 ± 0.5 mg of tubocurarine (Sigma-Aldrich) was injected in-
tramuscularly to immobilize the fish for electrophysiology and behav-
ioral adaptation experiments. The fish was then transferred to an
experimental tank (30 cm by 30 cm by 10 cm) containing water from
the animal’s home tank and respired by a constant flow of oxygenated
water through their mouth at a flow rate of ~10 ml/min. Subsequently,
the animal’s head was locally anesthetized with lidocaine ointment (5%;
AstraZeneca, Mississauga, ON, Canada), the skull was partly exposed,
and a small window was opened over the ELL recording site. For
forebrain lesion experiments (electrophysiology: n = 8 PCells; average
recording time, 112.4 ± 4 min; behavior: n = 9 fish; average recording
time, 186.7 ± 35.3 min), the skull over both forebrain hemispheres was
exposed and removed before lesioning the forebrain.

Stimulation
The EODofA. leptorhynchus is neurogenic and therefore is not affected
by injection of curare. All stimuli consisting of AMs of the animal’s own
EODwere produced by triggering a function generator to emit one cycle
of a sine wave for each zero crossing of the EOD, as done previously
(36). The frequency of the emitted sine wave was set slightly higher
(~40Hz) than that of the animal’s own EOD, which allowed the output
of the function generator to be synchronized to the animal’s discharge.
The emitted sine wave was subsequently multiplied with the desired
AM waveform (MT3 Multiplier; Tucker Davis Technologies), and the
resulting signal was isolated from the ground (A395 Linear Stimulus
Isolator; World Precision Instruments). The isolated signal was then
delivered through a pair of chloridized silver wire electrodes placed
15 cm away from the animal on either side of the recording tank per-
pendicular to the fish’s rostrocaudal axis. The resulting signal measured
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at the fish’s skin was approximated using a dipole (1-mm distance be-
tween the two poles) positioned next to the fish 2 mm away.

We used stimuli consisting of a 5- to 15-Hz noise (fourth-order
Butterworth) carrier waveform (i.e., AM) whose amplitude (i.e., envel-
ope) was further modulated sinusoidally at frequencies ranging from
0.05 to 1 Hz. This constitutes a behaviorally relevant range of fre-
quencies, whichmimicked the envelope signals due to relative move-
ment between two fish (10). Adaptation stimuli that consisted of a
100-s-long 5- to 15-Hz noise (fourth-order Butterworth) carrier sig-
nal whose amplitude was also noisy were played repetitively. The
noisy amplitude was characterized by power spectra that decayed
with exponents as a function of temporal frequency of either −2
(neurons: n = 16 PCells; average recording time, 106.3 ± 4.5 min; be-
havior: n = 20 fish; average recording time, 312 ± 26.7 min) or 0 (neu-
rons: n = 15 PCells; average recording time, 108.7 ± 5.4 min; behavior:
n = 15 fish; average recording time, 232 ± 29.8 min). We note that sen-
sitivity and whiteness index values were already significant when only
eight randomly selected neurons or fish were taken into account
(astim = 0: aneuron control = 0.22 ± 0.08, aneuron adapted = 0.5 ± 0.07,
P = 3.1 × 10−2, whiteness index (WI): P = 7.9 × 10−3, abehavior control =
−0.83 ± 0.05, abehavior adapted = −0.46 ± 0.11, P = 7.8 × 10−3; astim = −2:
aneuron control = 0.54 ± 0.12, aneuron adapted = 0.3 ± 0.1, P = 7.8 × 10−3, WI:
P=1.6×10−2,abehavior control=−0.85 ± 0.05, abehavior adapted = −1.25 ± 0.15,
P = 1.6 × 10−2; Wilcoxon signed rank tests). The depth of modulation
for both stimulus classes used during experimental stimulation was
approximately 20% of the baseline EOD amplitude as in previous
studies (13, 24, 37) as measured using a small dipole placed close
to the animal’s skin in the middle of the animal’s rostrocaudal and
dorsoventral axes (typically 0.2 mV cm−1).

Pharmacology
The composition of the vehicle saline was as follows (all chemicals were
obtained from Sigma): 111 mM NaCl, 2 mM KCl, 2 mM CaCl2, 1 mM
MgSO4, 1 mM NaHCO3, and 0.5 Mm NaH2PO4. The pH of the saline
solution was 6.8. Glutamate (Sigma) and the 5-HT2 receptor antagonist
KET (Sigma) were dissolved in saline before application, as done previ-
ously (27). Drug application electrodes were made using two-barrel KG-
33 glass micropipettes [outer diameter (OD), 1.5 mm; internal diameter
(ID), 0.86mm;A-MSystems] and pulled by a verticalmicropipette puller
(Stoelting) to a fine tip that was subsequently broken to attain a tip diam-
eter of approximately 5 mm for each barrel. The two barrels were used for
separate application of eitherKET (100mM)orNBOH(100 mM), aswell
as glutamate (1mM). During ELL recordings for which we injected KET,
we first used excitatory responses to glutamate application to confirm that
we were within proximity of the pyramidal neuron we were recording
from, as done previously (24, 38). KET (n = 8 PCells; average recording
time, 121.8 ± 1.1 min) was then ejected to the neuron to ensure a local
effect. For behavioral recordings, injections of KET (n = 8 fish; average
recording time, 240 ± 22.7 min) were performed bilaterally in ELL, as
done previously (12, 13, 24). All pharmacological injections were per-
formed using a duration of 130ms at ~20 psi using a Picospritzer (Gen-
eral Valve) as done previously (23). For pharmacological experiments
using KET, injections were done every 10 min during the adaptation
period. We note that injecting saline alone as a control did not alter be-
havioral or neuronal activity as shown in previous studies (24, 39).

Electrophysiology
We used well-established techniques to record extracellularly with
Woods metal electrodes from PCells (N = 59 total; average baseline FR,
Huang et al., Sci. Adv. 2019;5 : eaax2211 30 October 2019
17.81 ± 1.23 Hz) (40) located within the lateral segment of the ELL
based on recording depth and mediolateral placement of the electrode
on the brain surface as done previously (24, 41). All recordings were
digitized at 10-kHz sampling rate using CED 1401plus hardware and
Spike2 software (Cambridge Electronic Design) and stored on a com-
puter hard disk for offline analysis.

Behavior
Animals were immobilized by an intramuscular injection of 0.1 to
0.5 mg of tubocurarine and set up in the recording tank similarly to the
method described above. We note that behavioral responses were simi-
lar in both restrained and immobilized animals (10, 35, 42). Depending
on the experimental protocol (pharmacology or lesion experiments),
different surgeries were performed. For forebrain lesion experiments,
both hemispheres of Tel were exposed, and the connection between
the midbrain and forebrain was disrupted (n = 9 fish) to prevent any
connectivity. For pharmacological manipulations, both ELLs were
exposed on either side of the head to bilaterally inject KET (n = 8 fish;
average recording time, 240 ± 22.7 min). Pipettes containing KET were
placed approximately 200 to 300 mmbelow the surface of the hindbrain
in the region of the apical dendrites of the PCells. Multiple injections
(typically three to five) were performed to ensure that both hemispheres
of ELL were sufficiently affected by the pharmacological agents. Stimuli
were then presented as described above in the section on Stimulation to
elicit behavioral responses before and after drug application or forebrain
ablation. The animal’s behavior was recorded through a pair of electro-
des located at the rostrum and tail of the animal. The zero crossings of
the recorded EOD signal were used to generate a binary sequence as
described above that was low pass filtered (second-order Butterworth
with 0.05-Hz cutoff) to obtain the time-varying EOD frequency.

Stimulus statistics
To calculate the frequency content of movement envelopes resulting
from different velocities, we took 90-min recordings in different pairs
of fish (N = 4), as done previously (10). Briefly, trials were performed in
an experimental tank (45 cm by 35 cm by 15 cm) in the absence of light.
One of the two fish was placed in a tube, while the other fish was freely
moving around (fig. S1A). The tube was made of electrical transparent
clay with small holes at the top and bottom to guarantee freshwater
circulation. The clay was used tominimizemechanosensory or visual
perception of the other fish outside the chirp chamber. A 2-mm
transverse dipole adjacent to midpoint of the tube was used to measure
the local electric field. The dipole signal was used to extract the envelope
and was digitized at 50-kHz sampling rate using CED 1401plus
hardware and Spike2 software (Cambridge Electronic Design, Cam-
bridge, UK) and stored on a computer hard disk for offline analysis.
Trials were videotaped from above using a camera (frame rate,8 fps;
model UV-5803, Unique Vision, Longhua Town, Shenzhen, China)
equipped with infrared illumination to extract the position of the freely
moving fish relative to the dipole (Tracker software: https://physlets.
org/tracker/). We first extracted the envelope from the stimulus as de-
scribed previously (43) and computed the longitudinal velocity from the
freely moving fish using its trajectories. To separate high from low
velocities, we used the median longitudinal velocity in each recording
(population average, 2.28 ± 0.15 cm/s) as a threshold of the measured
longitudinal velocity of the freely moving fish. To obtain a continuous
signal, we concatenated the envelope traces corresponding to the differ-
ent activity levels accordingly. We note that concatenation will intro-
duce discontinuities in the signal, which will increase power at high
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frequencies butwill haveminimal effect on the low (i.e., <1Hz) frequen-
cies considered here. On average, the lengths of the traces obtained for
low and high velocities did not differ significantly (Fig. 4B, inset;
P = 0.07, Kolmogorov-Smirnov test). Furthermore, we generated a
surrogate dataset where the signal was randomly segregated into
segments of lengths drawn from the same distribution as obtained ex-
perimentally (see Fig. 4B, inset) and found similar power spectral den-
sities (fig. S7A). Note that low and highmovement envelopes could be
significantly separated using a wide range of thresholds ranging from
50 to 150% of the median velocity (fig. S7B).

Data quantification
All data analyses were performed offline using custom-written
codes in MATLAB software (MathWorks). Spike times were defined
as the times at which the recorded neural signal crossed a given thresh-
old value frombelow.Abinary sequencewas constructed from the spike
times by discretizing time into bins of 0.1-mswidth and setting the con-
tent of a given bin to 10,000 if a spike occurred within it or 0 otherwise.
The time-varying FR was obtained by low pass filtering the binary
sequence using a second-order Butterworth filter with cutoff frequen-
cies 0.2, 0.35, 0.75, 1.5, 2.5, and 3.5Hz for envelope frequencies 0.05, 0.1,
0.2, 0.5, 0.75, and 1 Hz, respectively, as done previously (39). Neural
sensitivity for a given sinusoidal frequency was then measured as the
ratio between the amplitude of the sinusoidal envelope stimulus as
extracted by the dipole and the amplitude of the neural FRmodulation.
We also quantified neural sensitivity to the adaptation stimulus using
linear systems identification techniques

Gð f Þ ¼ ∣Prsð f Þ∣
Pssð f Þ ð1Þ

where Prs(f) is the cross-spectral density between the adaptation stim-
ulus and the binary sequence, and Pss(f) is the adaptation stimulus
power spectral density as a function of frequency f. The cross-
spectral density was computed in MATLAB using nfft = 1024 × 260,
noverlap = nfft/2 with multitaper techniques with eight Slepian tapers
using the functions “cpsd” and “pwelch” in MATLAB, respectively. Be-
havioral responses weremeasured as changes in the animal’s EOD fre-
quency as done previously (12, 13, 39, 42). Specifically, the sequence of
inverse intervals between consecutive EOD zero crossings was used to
compute the instantaneous EOD frequency, which was then inter-
polated tomatch the sampling rate of the envelope stimulus and further
low pass filtered (second-order Butterworth filter with 0.05-Hz cutoff
frequency). Behavioral sensitivity for a given sinusoidal frequency was
then measured as the ratio between the amplitude of the sinusoidal
envelope stimulus as extracted by the dipole and the amplitude of the
sinusoidal EOD frequency modulation. The exponents were obtained
by fitting a power law to the behavioral and neural sensitivities as a
function of frequency, respectively. The whiteness index was measured
by taking the normalized area under the power spectral density curve
using a trapezoidal method and dividing by the maximum normalized
area to achieve a value between 0 and 1 as done previously (12, 39). The
matching index between the behavioral sensitivity and the adapting
stimulus was computed using 1 − |astim − abehavior| as done previously
(12), whereastim andabehavior are the best-fit power law exponents of the
adapting stimulus (i.e., either −2 or 0) and of the behavioral sensitivity,
respectively. We note that, as not all neurons could be held during the
full 2-hour-long adaptation stimulus presentation, we always compared
Huang et al., Sci. Adv. 2019;5 : eaax2211 30 October 2019
the average whiteness index values between the first and last three re-
petitions of the adaptation stimulus. Spectrograms were computed by
estimating the power spectral density of the spiking response for every
100 s during stimulation usingmultitaper techniques with eight Slepian
functions. Power spectra were then stacked for visualization. The time-
dependent whiteness index was computed as described above for every
100 s during stimulation.

Theory posits that the response power spectral density Prr(f) is
related to the gain |G(f )|, the stimulus power spectral density Pss(f ),
and the power spectral density of the trial-to-trial variability in the
neural response P0(f ) by the following equation (17, 44)

Prrð f Þ≈ P0ð f Þ þ ∣Gð f Þ∣2Pssð f Þ ð2Þ

Hence, we considered both the contributions of the variability as
well as the tuning function |G(f )| to predict the neural response to
stimulation. Trial-to-trial variability was estimated from responses
to at least three repeated presentations of the adaptation stimulus
each lasting 100 s (17).

Neural response statistics
We computed FR, CV, BF, and the ISI distribution for each neuron
early and late in stimulation from responses to three repeated presenta-
tions of the adaptation stimulus each lasting 100 s. ISI sequences were
computed as the time intervals between consecutive spikes, and prob-
ability distributions of ISIs as a function of logarithmic time were
partitioned into 60 bins. The CV was computed as the SD-to-mean
ratio of the ISI probability density. Furthermore, BF was computed
as the fraction of ISIs that is less than 10 ms (26, 38, 45).

Statistics
Statistical significance was assessed through Wilcoxon signed rank test
at the P = 0.05 level unless otherwise stated. Values are reported as box
plots unless otherwise stated. Error bars indicate mean ± SEM. On each
box, the central mark indicates the median, and the bottom and top
edges of the box indicate the 25th and 75th percentiles, respectively.
The whiskers extend to the most extreme data points not con-
sidered outliers, and the outliers are plotted individually using the
“▲” symbol. For datasets with n ≤ 10, the individual data points
are also shown.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/10/eaax2211/DC1
Fig. S1. Measures of neuronal activity are not significantly altered during presentation of
adaptation stimuli characterized by a power law exponent of −2.
Fig. S2. Measures of neuronal activity are not significantly altered during presentation of
adaptation stimuli characterized by a power law exponent of 0.
Fig. S3. Adaptive optimized coding cannot be predicted from changes in neuronal tuning to
sinusoidal stimuli alone.
Fig. S4. Adaptive optimized coding cannot be predicted from changes in neuronal tuning to
adaptation stimuli alone.
Fig. S5. Adaptive optimized coding can be predicted from changes in both neuronal tuning
and variability during adaptation stimulus presentation.
Fig. S6. Behavioral gains as a function of frequency.
Fig. S7. Best-fit power law exponents for stimulus statistics are largely independent of the
threshold used to separate low and high velocities.
Fig. S8. Neuronal response statistics are not changing after lesioning forebrain.
Fig. S9. Neuronal response statistics are not altered by KET injection.

View/request a protocol for this paper from Bio-protocol.
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