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Few‑qubit quantum refrigerator 
for cooling a multi‑qubit system
Onat Arısoy1 & Özgür E. Müstecaplıoğlu2*

We propose to use a few‑qubit system as a compact quantum refrigerator for cooling an interacting 
multi‑qubit system. We specifically consider a central qubit coupled to N ancilla qubits in a so‑called 
spin‑star model to be used as refrigerant by means of short interactions with a many‑qubit system 
to be cooled. We first show that if the interaction between the qubits is of the longitudinal and 
ferromagnetic Ising model form, the central qubit is colder than the environment. We summarize how 
preparing the refrigerant qubits using the spin‑star model paves the way for the cooling of a many‑
qubit system by means of a collisional route to thermalization. We discuss a simple refrigeration cycle, 
considering the operation cost and cooling efficiency, which can be controlled by N and the qubit–
qubit interaction strength. Besides, bounds on the achievable temperature are established. Such few‑
qubit compact quantum refrigerators can be significant to reduce dimensions of quantum technology 
applications, can be easy to integrate into all‑qubit systems, and can increase the speed and power of 
quantum computing and thermal devices.

The widespread use of quantum technologies is limited by the large and expensive cooling systems required for 
their implementations. The rapidly emerging field of quantum  thermodynamics1–5 paves the way for compact, 
fast, and efficient quantum refrigeration schemes for quantum  devices6,7. Pioneering studies are limited to cooling 
a single two-level system (qubit or spin-1/2 particle)8. A critical question for practical quantum machines is if 
and how such quantum refrigerators can cool down interacting multiple qubit systems. We propose a few-qubit 
quantum refrigerator with scalable advantages in its cooling efficiency and achievable minimum temperatures 
as a possible positive answer to this question.

Early quantum refrigerator studies consider utilization of quantum coherence injected by external  drives8, 
spectral bath filtering and periodically modulated  interactions9, and frequent measurement  schemes10. Intriguing 
proposals based on quantum coherence and entanglement to cool quantum  systems11,12 are proposed. Another 
recent  work13 discusses the possibility of exploiting many-body localized (MBL) states of large quantum systems 
for scalable engines and refrigerators in the quantum regime. A more conventional cooling method for spin 
systems is known as algorithmic  cooling14–16. How it can be part of a quantum algorithmic heat engine has been 
recently  presented17. Continuous variants of algorithmic cooling a single qubit or an oscillator using three-body 
interactions are  explored18–22 and experimentally demonstrated in trapped ion  systems23. A three-qubit system 
with a tunable engine or refrigerator operation using only two-qubit interactions is recently  investigated24. 
However, more progress in this field is still well desirable to generalize these refrigerators from single qubits 
or harmonic oscillators to quantum many-body systems. Doing this properly requires some caution as all of 
the aforementioned refrigerator ideas rely on different elements of non-equilibrium dynamics. Therefore, their 
generalization to the many-body thermalization needs to be scrutinized about the existence and uniqueness of 
an equilibrium state and whether it is a thermal state for an effective temperature instead of a NESS.

Recently, a scheme, closely related to the algorithmic cooling idea of entropy transfer among qubits, to 
thermalize a many-body system by repeated collisions has been  proposed25 as a generalization of earlier works 
on thermalization of single body systems, typically a quantum harmonic oscillator or a single qubit, with 
 collisions26,27. Collision models allow for microscopic surgery of a wide range of environment models, includ-
ing the non-Markovian  ones28, but we limit ourselves here to the case of Markovian  dynamics25,29. The random 
collisions are one of the oldest routes considered for describing thermalization, introduced by Lord  Rayleigh30. 
A massive particle thermalizes after many random collisions by small projectiles in thermal states. This mecha-
nism explains the micromaser in the blackbody radiator regime, where the optical cavity is heated by thermal 
pump  atoms31. More recent studies showed that pump atoms in quantum coherent states could also be used to 
heat the  micromaser32–34. A particularly intriguing scenario is the scalable heating of the micromaser with the 
number of pump atoms, using a so-called spin-star  system34. Spin-star configuration consists of a central qubit 
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surrounded by N ancilla qubits (cf. Fig. 1). The critical point is that the central qubit can be at a higher local 
temperature than the environment.

This paper shows that when the central spin model contains only the longitudinal spin components and fer-
romagnetic interactions, the central spin becomes locally colder than the environment. The longitudinal spin-star 
model defined in the next section can be treated with the usual methods of classical statistical mechanics, and 
hence possible quantum advantages in engines and  refrigerators11,12,18–23,35,36 will be out of the scope of present 
work, except a brief discussion of the Heisenberg spin-star model in the SI appendix. The (N + 1)-qubit system 
can be envisioned as a quantum refrigerator, where the central qubit can be used as a quantum refrigerant to cool 
other systems, specifically, an interacting multi-qubit system. For that aim, it is necessary to contact the quantum 
refrigerant with the many-body system. The required refrigerant-system coupling can be performed within the 
collisional route to many-body  thermalization25. Successful coupling needs matching refrigerant frequencies 
to transition frequencies of the many-body system. Therefore, our proposal can be envisioned as an all-qubit 
network with integrated quantum refrigerators (cf. Fig. 4). We offer a three-step study of this refrigeration setup: 
first, we study the energy cost and efficiency of the preparation of the refrigerant qubits; then we discuss the 
repeated interactions between the refrigerant qubits and the target many-body system and we conclude our study 
by proposing two different ways to improve the efficiency of the refrigeration cycle.

Finally, we should clarify the similarities with the algorithmic cooling. There is only a single bath (environ-
ment) where the spin-star qubit structure is held. Such quantum “molecule” has a central qubit at a local thermal 
equilibrium colder than the environment due to longitudinal ferromagnetic qubit-qubit “bonding”. While the 
initial thermal states’ preparation is relatively easy in our scheme, we still need resetting and timing control 
in the quantum cooling network. Similar to algorithmic cooling, timing and control can be achieved by using 
qubits at different thermalization rates. Another significant advantage here is to have a readily integrable few-
qubit refrigerator with a single qubit refrigerant for compact, fast, and efficient cooling of a many-qubit system.

Model system for the preparation of the refrigerant qubits
We consider a so-called “spin-star” system consisting of a single qubit surrounded by N ancilla qubits, as illus-
trated in Fig. 1. For the sake of clarity in what the word “system” refers to in the rest of the text, we will denote the 
whole spin-star system as system A, its central spin as system B and the many-body system to be cooled as system 
C. Interactions between the central qubit and the surrounding qubits are assumed to be the same, characterized 
by the coupling coefficient g. The energy gap of the qubit is denoted by h. We represent each qubit as an effective 
spin-1/2 particle and further assume that the qubit-qubit interactions are only between the z-components of 
the effective spins. The specification of interaction direction is neither for simplicity nor arbitrary. Transverse 
components cause correlations and entanglement in the eigenstates of the Hamiltonian, which is not desirable 
for our purpose of cooling the system. Further explanation of the harmful influence of transverse interactions 
on cooling is given in the SI appendix. The total Hamiltonian of system A can be written as

Figure 1.  Sketch of spin-star model (system A) consisting of a central spin-1/2 particle (blue sphere) 
surrounded by N spin-1/2 particles (red spheres). Central spin (system B) is coupled to the surrounding spins 
with the same interaction coefficient g. The whole system is in a homogeneous magnetic field h. We assume the 
interactions only contains longitudinal spin components, in the same direction with the magnetic field. The 
spin-star model is used to describe a (N + 1)-qubit quantum refrigerator, where each spin effectively represents 
a qubit with an energy gap h. When the system is in thermal equilibrium with an environment at temperature 
T, the central qubit is in a Gibbsian state with an effective a temperature smaller than T. The central qubit can be 
used as the refrigerant to cool other quantum many-body systems (cf. Fig. 4).
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where the indices n = 0 and n = 1, 2 . . .N indicate the central qubit and surrounding qubits, respectively. σ̂z,0, σ̂z,n 
are the z-component Pauli spin operators.

As the Pauli spin operators are only for the z-components, the model can be considered a longitudinal Ising 
 model37, but with a spin-star configuration instead of a spin chain. Spin-star models are special cases of Rich-
ardson–Gaudin models, which are usually studied in the context of hyperfine interactions in semiconductor 
quantum  dots38,39 and as a toy model of non-Markovianity40–42. However, the semiconductor quantum dot imple-
mentation of spin-star models will not be relevant for our purposes. It is based on Heisenberg interactions, which 
we discuss and rule out for our purposes in the SI appendix. For a superconducting qubit implementation of our 
proposal, a generalization and re-configuration of the Chimera unit cell architecture used in D-Wave quantum 
annealers seems possible. This architecture makes use of orthogonally placed qubits overlapping each other and 
allowing to set couplers between horizontal and vertical qubits, which generate a longitudinal Ising  interaction43 
while keeping undesired interactions at a level lower by 3 orders of magnitude than the controlled interactions 
with a careful engineering of mutual inductances between qubits and their  components44.

Results
In our numerical simulations, we will consider an artificial spin system, specifically a system of superconducting 
two-level systems (qubits). Efficient, compact, and fast cooling of such superconducting interacting qubits is a 
critical problem for practical quantum computations. Hence, we focus our range of parameters on this particular 
case, though our generic models, exact analytical results, and general conclusions apply a broader class of physical 
systems. We will call “effective spin,” representing a qubit as “spin” in the following discussions for brevity. We 
take � = 1 and set h = 1 GHz for all of our calculations as it is a typical order of magnitude for superconducting 
 qubits45 and we will assume that g can be in the order of h46.

Thermal state for the spin‑star model and effective temperature of the refrigerant qubit. The 
eigenstates of the Hamiltonian in Eq. (1) are not entangled. Off-diagonal elements of the total density matrix 
vanish in the tensor product of the z-basis of each effective spin. Accordingly, we can treat the Ising spin-star 
model as a classical discrete system (with up and down spin states labeled by z = +1 and z = −1 , respectively) 
and study the state probability distribution described by the diagonal elements of the total density matrix.

We consider the spin-star system immersed in a thermal environment at temperature T. The thermal environ-
ment is usually the natural environment common to all spin-star system qubits and it is reasonable to assume 
that the interaction of the spin-star system with this environment cannot be tuned or interrupted at will. We can 
define the partition function of the whole system by treating up and down states of the central spin separately. 
Assuming the central spin is in the z0 = ±1 state, the partition function of a single ancilla spin equals to that of 
a non-interacting spin with Hamiltonian eigenvalue h± g . The partition function of all ancilla spins is obtained 
simply by taking Nth power of the partition function of a single ancilla. Summing the partition functions of 
ancilla spins for up (down) states of the central spin with factors exp (−(+)βh) , we find the partition function 
of the system A to be

where β = 1/kBT with kB being the Boltzmann constant. We can find the reduced state of a subsystem by taking 
a partial trace over other subsystems. If this reduced state can be written in a canonical Gibbsian form, an effec-
tive local temperature can be assigned to the subsystem. For our spin-star system, the central spin subsystem is 
a qubit for which we can always find a Gibbsian state and a local temperature.

The first term of Eq. (2) corresponds to the up state of the central spin while the second corresponds to its 
down state. That remark allows us to give explicit expressions for the probabilities of the states of the central spin

Knowing that the coherence terms of the density matrix of the central spin vanish after partial tracing of the total 
density matrix over ancilla spins, the effective (local) inverse temperature of the central qubit (system B) βeff  as 
a function of its state populations is defined by

Taking the derivative of βeff  with respect to the interaction strength g here turns out to be insightful.

(1)Ĥ = h

N
∑

n=0

σ̂z,n + g σ̂z,0

N
∑

n=1

σ̂z,n,

(2)Ztot = 2N (e−βh coshN (β(g + h))+ eβh coshN (β(h− g))),

(3)P(z0 = ±1) =
2Ne∓βh coshN (β(h± g))

Ztot
.

(4)
βeff =

1

2h
ln

(

P(z0 = −1)

P(z0 = 1)

)

=
1

2h

(

2βh+ N ln

(

cosh(β(h− g))

cosh(β(h+ g))

))

= β +
N

2h
(ln(cosh(β(h− g)))− ln(cosh(β(h+ g)))).

(5)
∂βeff

∂g
=

−Nβ

2h
(tanh(β(h− g))+ tanh(β(h+ g)))



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12981  | https://doi.org/10.1038/s41598-021-92258-0

www.nature.com/scientificreports/

As tanh is a one-to-one odd function, setting the derivative to zero requires h− g = −(h+ g) = −h− g , which 
is not satisfied for any value of g. Thus, βeff  is a monotonic function of g and evaluating the derivative for g = 0 
further shows that βeff  is a monotonically decreasing function of g. For our purposes, this guarantees βeff > β 
when g < 0 , proving that our proposed setup manages to cool down the central qubit for ferromagnetic type 
interactions. Also, by monotonicity of βeff  as a function of g, it keeps increasing while g diverges towards −∞ , 
meaning that its limit at −∞ is also its upper bound.

Figure 2 shows the ratio of the effective temperature Teff  to the environment temperature T for different inter-
action strengths g and number of ancilla qubits N. The asymptotic theoretical limit of the Teff  in Eq. (6) is 
approached faster with increasing g in the low T regime as shown in Fig. 2a. Figure 2b suggest that, towards 

(6)βmax = lim
g→−∞

βeff = β +
N

2h
ln

(

lim
g→−∞

cosh(β(h− g))

cosh(β(h+ g))

)

= β +
N

2h
ln
(

e2βh
)

= (N + 1)β

a

b

Figure 2.  Ratio of the effective Teff temperature of the central qubit to the environment temperature T in 
a longitudinal ferromagnetic Ising spin-star model with h = 1 GHz for (a) N = 6 ancilla qubits at different 
interaction strengths g, (b) g = −h at different number of ancilla qubits N.
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g ∼ −h , reasonably large values of N can achieve an order of magnitude cooling of the central qubit relative to 
typical environment temperatures in superconducting circuits ( < 20 mK).

As a side note, we generalize the analytical results of this section to a spin-star system with different interac-
tion strengths while keeping the homogeneous longitudinal magnetic field strength on the qubits. Using the 
arguments we used to derive Eq. (2) for each environment qubit with a given interaction strength gi , we obtain 
a more general expression which covers Eq. (2) when gi = g.

Thus, for non-uniform interaction strengths, the effective temperature calculated in Eq. (4) becomes

From this expression, it is straightforward to prove that cooling is achieved if all gi are negative and βeff  is a 
monotonically decreasing function of all gi . In other words, the equilibrium state of the spin-star system with 
different interaction strengths shows similar behavior with the one with identical interactions. However, unless 
some specific implementation of the model does not allow to engineer identical interactions, there is no particular 
benefit in considering different interaction strengths in our proposal and we will stick to identical interactions 
for the rest of the paper.

In what follows, we are going to discuss the energy cost and efficiency of the preparation of the central (refrig-
erant) qubits. Then, we are going to elaborate on the relevance of preparing the central qubits (system B) at a lower 
effective temperature in the context of a refrigerator for an interacting many-qubit system (system C) by means 
of a collisional route to  thermalization25. We will describe a refrigeration cycle for the target many-qubit system 
by succesively turning on and off the coupling between refrigerant and ancilla qubits of the spin-star systems 
so that repeated interactions of the refrigerant qubit replicas with the many-qubit system describes irreversible 
dynamics for the target system in an effective cold environment according to collision model.

A simple refrigeration cycle and its efficiency. In this section, we study the energy cost and efficiency 
of preparing the refrigerant qubits (system B) by considering a cyclic transformation of the whole spin-star sys-
tem (system A) in a single thermal environment whose interactions with system A are not controllable, in other 
words, these interactions cannot be switched off or have time dependence. The cycle begins with uncoupled 
qubits ( g = 0 ) in thermal equilibrium at the environment temperature T.

In the first step, the longitudinal Ising interactions of system A is suddenly switched on so that there is no 
entropy change. At this stage, work is taken from the system, and there is no heat exchange with the environment 
as the duration of this stage is too short for the thermal environment, which is implicitly assumed to be weakly 
coupled to the system A, to have an effect on the system.

The interacting qubits (system A) are left to thermalize to T in the second step by means of its interactions 
with the environment at temperature T. While the system A is in thermal equilibrium with the environment at 
T, the system B is not. Its effective temperature is given by Eq. (4).

The third step consists of suddenly turning off the interactions within system A ( g → 0 ) such that the state of 
the central (refrigerant) qubit does not change, which is somehow similar to the idea of setting the expectation 
of the interaction Hamiltonian to zero by means of frequent measurements studied in a previous  work10. Under 
this assumption the transitions and the associated changes in Teff  are negligible. In general, preservation of the 
initial state under a sudden perturbation requires that the switching on or off the interaction must be much faster 
than any characteristic time scale of the system, which is 1/2h for the central qubit. This condition is relaxed in 
our case, as the longitudinal Ising interactions [cf. Eq. (1)] cannot cause any excitations in the initial thermal 
state before the quench. We can still introduce a bound on the perturbation time τ . In practice, the qubits may 
not be uncoupled from the environment during the switching and hence we require τ ≪ τrel where τrel is the 
relaxation (thermalization) time of the central qubit. Hence the central qubit remains cold at Teff  for a duration 
of τ . This gives us a “cooling window” in which the central qubit (system B) can be used as a refrigerant to cool 
a many-qubit system (system C) by the collisional route to  thermalization25, as described in the next section.

The fourth step makes use of the cooling window mentioned above for the interactions between the system 
C and the system B at its effective temperature Teff  to make this setup a refrigerator for system C. However, this 
interaction will not change our following results for the efficiency of the cycle. After the interactions between 
systems B and C, this step ends with the thermalization of non-interacting central and ancilla qubits by the 
environment, bringing the whole system back to the beginning of the refrigeration cycle.

The cooling of the central qubit is performed with an efficiency which is conceptually defined as the ratio of 
the energy extracted from the central qubit to the work cost of the cycle. Here, we make an application oriented 
reasoning to come up with this efficiency definition and we need to emphasize that this definition is not unique. 
First, it is easy to notice that the energy extracted from system B in this cycle increases with decreasing effective 
temperature, so our efficiency definition reflects the trade-off between cooling system B to very low temperatures 
and its increasing energy cost. An efficiency definition based on the energy extracted from the system C by means 
of collisions is also questionable as it would also depend on the parameters of the collision model and the nature 
of the system C. Another possible choice of efficiency could use the energy extracted from the whole spin-star 
system (system A) rather than only the central spin (system B). However, it would not make sense to include the 
energy extracted from the ancilla qubits of system A as they regain that energy at the end of the refrigeration 
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cycle and their cooling is not useful in the case of cooling of system C with only central spins, which is studied 
in this section. The use of ancilla spins for cooling of the system C will come up in the rest of the paper and the 
efficiency definition will be accordingly modified for that case.

We express the efficiency we define as

where Es(β) is the expectation of the Hamiltonian of the system B at inverse temperature β and Wcycle is the net 
work cost of turning on and off the Ising interactions. The interaction of the system B with the system C at the 
end of the third step of the cycle does not affect the central qubit’s cooling efficiency.

To define the efficiency of the cycle, we need to calculate Wcycle from the internal energy of the system A at 
the end of each step of the cycle. The total energy is given by

at the beginning of the cycle. After sudden quench by turning on the interaction, the state of the central qubit is 
preserved while the energy change is equal to the expectation of the interaction Hamiltonian at the initial state. 
As the state probability distribution of each qubit is independent, the total energy at the end of the first step E1 
can be calculated as

We can calculate the energy of the interacting system in thermal equilibrium at the end of the second step by 
using the partition function in Eq. (2).

Finally, we can calculate the total energy of the system, E3 after turning off the interaction at the end of the third 
step by calculating the expectation of the interaction Hamiltonian and subtracting it from E2.

As Eqs. (12) and (14) are fairly long, we are not going to write down the explicit expression for the total work in 
a cycle and restrict ourselves to express it in terms of the energies at different stages of the cycle.

The resulting efficiency with different number of ancilla qubits N and different interaction strengths g are 
plotted in Fig. 3. Figure 3a indicates that efficiency decreases with g. Comparing with Fig. 2a, we deduce that 
cooling to lower temperatures with increasing g is not efficient. Similar conclusion can be made for cooling by 
increasing N after comparing Figs. 2b and 3b. An optimum strategy would be to use lower g and N values, relative 
to highest available ones, to cool to the target temperatures within acceptable efficiencies. For example, about an 
order of magnitude cooling can be achieved in typical superconducting qubit environment temperatures with 
∼ 10% efficiency for g ∼ −h/2 and N = 6 . In the last section before the discussion, we will discuss exploiting 
the ancilla qubits to further increase the efficiency of the cooling cycle. It is also worth mentioning that there is 
some room to optimize our cycle even without using the ancilla qubits by merging the last and first steps of the 
cycle with a time-dependent protocol for turning on the Ising interaction under the influence of the environment 
instead of separate thermalization and quenching steps. The effects of fast driving under non-Markovian open 
system dynamics has recently been studied in a quantum Stirling heat engine and an increase of efficiency is 
numerically  demonstrated47. We could expect a similar efficiency improvement in our setup by extracting more 
work while turning on the interaction, however, we do not explore this path further in this paper as it requires 
knowledge about the nature of the interactions of the spin-star system with its thermal environment and the fine 
tuning of this protocol would intensively rely on numerical optimization based on the environment parameters.

Cooling of a many‑body system with spin‑star quantum refrigerators. We start the discussion 
of quantum many-body system cooling by summarizing how a previous work on quantum many-body ther-
malization by a collision  model25 allows the use of central qubits as refrigerants for a many-body system and we 
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Es(β)− Es(βeff)
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h(tanh(βeffh)− tanh(βh))
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outline its findings in the SI appendix. The system qubits make repeated collisions with a set of “bath” qubits. The 
number of bath qubits depends on the number of transition frequencies of the many-body system. The scheme 
is suitable for cooling a small many-body system with a finite set of discrete eigenfrequencies in practice while 
being flexible for the cooling arbitrary sized qubit systems as the number of available qubits in a quantum system 
and the maximum possible number of simultaneous couplings to a single qubit increase with future technologi-
cal improvements. As a reliable benchmark for the current limitations on simultaneous qubit couplings, we can 
take the Chimera unit cell architecture of D-Wave annealers where a qubit can simultaneously be coupled to 
four different  qubits43.

Figure 4 shows a case where a two-qubit system is thermalized with the collision model. Our idea is to use the 
central qubits of spin-star systems as refrigerants (cooling fluid) in a refrigerator. Therefore, these central qubits 
are further coupled to another many-body system, again in the relatively hotter, same, joint environment. The 

a

b

Figure 3.  Efficiency ε of the refrigeration cycle defined in Eq. (9) as a function of (a) interaction strength g with 
N = 6 and (b) number of ancilla qubits N with g = −h at different environment temperatures T and for h = 1 
GHz.
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refrigerator consists of the central qubit refrigerants (system B) and a target many-qubit system (system C) to be 
cooled while the ancilla qubits surrounding the central qubits cannot be considered as a part of the refrigerator 
in the cycle studied in the previous section because their mere purpose is the preparation of cold central qubits 
to be used in the refrigerator and the central qubits do not interact with the ancilla qubits during the collisions 
with the system C. For the case of collective cooling where all spins of system A interact with system C to cool it 
down, which will be studied in the next section, the refrigant would be the system A in its entirety. Also, we need 
to emphasize that, although the spin-star model can be implemented either as a classical or quantum system, the 
refrigerator needs quantum descriptions of the constituent refrigerants and target systems with discrete energy 
levels to generate the dynamics of a many-body quantum open  system25 in a cold bath leading to its refrigeration. 
For this reason, we call our proposal a quantum refrigerator.

The system Hamiltonian in Fig. 4 is taken to be a longitudinal Ising model

which gives four transition frequencies ωi
25. Here hi with i = 1, 2 are the resonant frequencies of the system qubits, 

and J is the Ising coupling coefficients. It is then sufficient to collide each system qubit with two-bath qubits at 
different ωi . Most choices for the refrigerant qubit-system interaction Hamiltonian in the collisions lead to the 
master equation we derive in the SI appendix with the following condition: If we write the interaction Hamilto-
nian in the form 

∑

i Âi ⊗ B̂i where the operators act on a system qubit and the ancilla qubit respectively, there 
must be at least one operator Âi which does not commute with the many-body system Hamiltonian so that it can 
generate energy transitions with a corresponding Lindblad dissipator in the master equation.

In the present case, where our purpose is to cool down the system, the bath qubits are the central qubits com-
ing out of the spin-star refrigerators at the third stage of the refrigeration cycle described in the previous section. 
Different spin-star refrigerators at different hi ≡ ωi/2 should be adjusted to cool down their central qubits to 
the same Teff  by using different gi [cf. Eq. (4)]. We outline the derivation of a Lindblad master equation for the 
collision model depicted in Fig. 4 in the SI appendix as an example of how the master equation corresponding 
to the open system dynamics generated by the collision model is derived for an arbitrary many-body system and 
we proceed to explain two different ways to increase the efficiency of the refrigeration cycle for the remainder 
of the main text.

Final state of ancilla qubits and using them to enhance cooling efficiency. So far, we were only 
interested in the central qubit (system B) and traced out the ancilla qubits of system A in all of our calculations. 
We also defined the efficiency in Eq. (9) by excluding the energy change in the ancilla qubits. This may be a 

(16)Ĥsystem =

2
∑

i=1

hiσ̂z,i + J σ̂z,1σ̂z,2,

Figure 4.  Sketch of a Markovian collision model cooling a two-spin longitudinal Ising model described by 
the Hamilonian in Eq. (16), with coupling strength J, using four spin-star quantum refrigerators labeled with 
i = 1 . . . 4 . Central qubits of the refrigerators are the refrigerants at effective inverse temperature βeff . Central 
qubits are not resonant with the Ising model qubits, whose energy gaps are denoted by h1 and h2 , instead, they 
are resonant with the transition frequencies ωi ( i = 1 . . . 4 ) of the Ising model. Spin-star model has longitudinal 
and homogeneous couplings gi.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12981  | https://doi.org/10.1038/s41598-021-92258-0

www.nature.com/scientificreports/

drawback for our proposal for large numbers of ancilla qubits and cooling to very cold temperatures because 
the work cost of the cycle in Eq. (15) is roughly proportional to the number of ancilla qubits while the energy 
extracted from the central qubit gets more or less saturated in very cold temperatures. As a workaround to this 
problem, we propose two possible uses of the ancilla qubits to increase the cooling efficiency. The first one is to 
use them in collisions with the many-qubit system for a cooperative effect and the second one is to use them in 
a heat engine cycle to help with the work required for running the spin-star refrigerators.

Cooperative cooling with ancilla qubits. Let’s consider using the ancilla qubits together with the central qubit 
as the refrigerant of the spin-star refrigerator. The cooling dynamics of our scheme is described by a Markovian 
master equation with additive Lindblad dissipators for simultaneous collisions. When all the uncoupled qubits 
of the spin-star system in the third stage of the refrigerator cycle collide with a qubit of the target system simul-
taneously, the resulting the master equation would be a straightforward generalization of the master equation 
derived for the case of only the central qubit used as refrigerant. The coefficients of two Lindblad dissipators in 
the master equation derived in the SI appendix responsible for heating and cooling become the sum of excited 
and ground state populations of the spin-star qubits, respectively. Accordingly, the multi-qubit system relaxes to 
a thermal state at temperature Teff,whole which now depends on N.

We can calculate Ne and Ng for a given set of spin-star qubits by using Ne + Ng = N + 1 and Ne − Ng = �Ŝz� 
where Ŝz =

∑N
n=0 σ̂z,n and

Teff,whole is then given by

Cooling of the many-qubit system with transition frequencies ωi requires collisions with sets of spin-star 
refrigerant qubits with 2hi = ωi . Each spin-star cluster, associated with a different ωi , must be at the same 
Teff,whole = 1/kBβeff,whole , which can be satisfied by using gi . Under this condition, Teff,whole will be the tempera-
ture of the multi-qubit system in a steady state due to the repeated simultaneous collisions with the sets of the 
spin-star qubits. Figure 5 shows Teff  for an example, where ωi = 2 GHz so that hi ≡ h = 1 GHz for a particular 
set of spin-star qubits. For a target Teff  one can determine the required gi ≡ g from Fig. 5. Comparison of Fig. 2 
with Fig. 5 indicates that using only central qubits as the refrigerants of the spin-star quantum refrigerators yields 
colder Teff  for the many-body system.

As a concrete example of how limited this proposal is in terms of cooling the target many-body system, we 
observe from Fig. 5 that the ratio does not get significantly lower than 0.5 for reasonable coupling strengths and 
unrealistically large numbers of ancilla qubits. We expect the relative advantage of using the whole spin star qubits 
should lie in the cooling efficiency. We define the efficiency of the cycle for cooperative cooling as

where the numerator is the total energy loss of the spin-star system instead of the energy loss of the central qubit 
only as in Eq. (9) and the quantities E0 and E3 take the values calculated in Eqs. (10) and (14). The resulting 
efficiency with all the spin-star qubits for different g and N is plotted in Fig. 6a and b respectively, showing an 
anticipated increase in efficiency for all N and g compared to Eq. (9). By a comparison with Fig. 3, the efficiency 
εwhole is several times higher than its counterpart ε without the contribution of the ancilla qubits for most of 
the parameter choices. The increase of efficiency with the use of ancilla qubits is found to be particularly high 
in Fig. 6b, up to an order of magnitude for T = 10 mK which corresponds to the regime h kBT/� and high 
numbers of ancilla qubits.

Based on our numerical results, we can conclude that the cooperative cooling with ancilla qubits always 
increases the efficiency but it significantly increases the minimum achievable effective temperature especially for 
high numbers of ancilla qubits compared to the case where only the central qubit is used for cooling of the target 
many-body system. However, this trade-off between achieving cooling to very cold temperatures and efficiency, 
which manifests itself as the dynamical third law of both  classical48 and  quantum49 thermodynamics, is the main 
challenge of all refrigeration schemes and it persists with our proposal. Also, cooperative cooling allows makes 
the thermalization of the target many-body system at the temperature Teff,whole faster and more robust against 
the inevitable effects of the environment on the many-body system.

To address the trade-off between reaching very low temperatures and refrigeration with high efficiency, we 
also consider discarding some of the ancilla qubits. For this purpose, we calculate the expectation of the operator 
defined as Ŝ′z =

∑N
n=1 σ̂z,n by expressing the total spin-star Hamiltonian and its partition function as

(17)

< Ŝz >=
−1

β

∂ lnZtot

∂h
=
−2N

Ztot
(eβh coshN (β(h− g))− e−βh coshN (β(h+ g))

+ N(e−βh sinh(β(h+ g)) coshN−1(β(h+ g))+ eβh sinh(β(h− g)) coshN−1(β(h− g)))).

(18)βeff,whole =
1

kBTeff,whole
=

1

2h
ln

(

N + 1− < Ŝz >

N + 1+ < Ŝz >

)

.

(19)εwhole =
E0 − E3

Wcycle

(20)ĤIsing =h0 σ̂z,0 + h1

N
∑

n=1

σ̂z,n + g σ̂z,0

N
∑

n=1

σ̂z,n,
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We take h0 = h1 = h , which gives

(21)Ztot =2N (e−βh0 coshN (β(g + h1))+ eβh0 coshN (β(h1 − g))).

(22)

< Ŝ′z > =
−1

β

∂ lnZtot

∂h1

=
−2NN

Ztot
(e−βh sinh(β(h+ g)) coshN−1(β(h+ g))+ eβh sinh(β(h− g)) coshN−1(β(h− g))).

a

b

Figure 5.  Ratio of the effective temperature Teff = 1/kBβeff,whole of the whole spin-star system after turning 
off its Ising interactions defined in Eq. (18) to the environment temperature T as a function of (a) interaction 
strength g with N = 6 and (b) number of ancilla N qubits with g = −h . We take h = 1 GHz.
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As the spin-star Hamiltonian is symmetric with respect to permutations of ancilla qubits, all of the ancilla qubits 
have the same ground and excited populations, so that we can calculate the effective temperature of ancilla spins 
similarly to Eq. (18) as

The resulting effective ancilla temperature is plotted in Fig. 7. It is always higher than the center qubit effective 
temperature in Fig. 2 except for the trivial case of N = 1 ancilla qubits. Therefore, the excited population of the 
ancilla qubits is always greater or equal to the excited population of the central qubit.

Now, we can define an effective temperature of collective cooling when a number n ≤ N of the ancilla qubits 
are used as

(23)βeff,ancilla =
1

kBTeff,ancilla
=

1

2h
ln





1−
<Ŝ′z>
N

1+
<Ŝ′z>
N



.

a

b

Figure 6.  Efficiency εwhole defined in Eq. (19) as a function of (a) interaction strength g with N = 6 and (b) 
number of ancilla qubits N with g = −h at different environment temperatures T. We take h = 1 GHz.
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As we are able to see | < Ŝ′z > /N | < tanh(βeffh) by comparing Figs. 2 and 7, we also have βeff > βeff,n > βeff,ancilla . 
We can define the efficiency of the refrigeration cycle for the case of discarding some ancillae by ignoring the 
energy taken from these qubits, but the result is obvious: This efficiency would be between Eqs. (9) and (19).

(24)βeff,n =
1

kBTeff,n
=

1

2h
ln





n+ 1−
n<Ŝ′z>

N + tanh(βeffh)

n+ 1+
n<Ŝ′z>

N − tanh(βeffh)



.

a

b

Figure 7.  Ratio of the effective temperature of the ancilla qubits Teff = 1/kBβeq,ancilla after turning off Ising 
interactions defined in Eq. (23) to the environment temperature T as a function of (a) interaction strength g with 
N = 6 and (b) number of ancilla qubits N with g = −h . We take h = 1 GHz.
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Ancilla qubits used as a cold bath for a quantum heat engine. Although using all qubits allows reasonable effi-
ciency values for a specific temperature range, we propose another way of using the ancilla qubits of system A to 
increase efficiency. As the center qubit’s effective temperature gets lower with the increasing number of ancilla 
qubits while the effective temperature of ancilla qubits do not, we suggest that the center qubit can be used to 
cool down a many-body system to a very cold temperature. Remarkably, ancilla qubits are also in a thermal 
state colder than the environment. Hence, instead of sitting idle while the system B interacts with the system C, 
ancilla qubits can be utilized as cold bath for an Otto engine which provides the work to the refrigerator (see 
Fig. 8). Such an Otto engine with the the ancilla qubits as cold bath would “recycle” some of the work spent in 
the refrigeration cycle after the Ising interaction of the spin-star system is turned off in a thermalized state, which 
corresponds to the interval between the third and fourth steps of the refrigeration cycle.

Similar to the many-body cooling discussed in the previous section, the interaction of the ancilla qubits with 
this engine must take place in a timescale much smaller than the relaxation time of the qubits to the environment 
temperature. For this proposal, the efficiency would depend on the type of engine in question, but we can give 
a reasonable definition of efficiency

based on the efficiency definition in Eq. (9) without the contribution of the engine.
To gain insight into how large Wengine can get, it is useful to calculate the effective temperature of the environ-

ment qubits after tracing out the center qubit by finding the ratio of the total ground and excited populations of 
the ancilla qubits. As all ancilla qubits are at the same effective temperature βeff,ancilla , their collective effective tem-
perature is also the same. This argument also applies to cases where some of the ancilla qubits are discarded. Fig. 7 
shows the equilibrium temperature when all of the ancilla qubits in the spin-star system is used for collisions 
with the engine as its artificial cold reservoir. The plot is somehow similar to Fig. 5 with center qubit included.

Now that we have some qualitative results on the effective temperature of ancilla spins, we can make a more 
detailed comment on a possible engine working with the ancilla spins and its work production. As an analytically 
 tractable50 and experimentally realizable  model51, we propose to use a quantum Otto engine using a harmonic 
oscillator as its working medium. For this engine, the environment would be the hot bath at the inverse tem-
perature β and the ancilla spins would be the cold bath at the inverse temperature βeq,ancilla using our previously 
proposed collision  model25.

As the thermalization of a system happens asymptotically with the number of collisions diverging to infinity, 
we assume that the number of ancilla spins N is sufficiently large so that they are able to bring the harmonic 
oscillator to their effective temperature with negligible deviation. To summarize the quantum Otto cycle, the 

(25)εre =
h(tanh(βeff,centerh)− tanh(βh))

Wcycle −Wengine

Figure 8.  Simplified sketch of an improved quantum many-body refrigerator which uses the cold ancilla qubits 
in a quantum Otto cycle to mimic a cold reservoir and harvest work from the environment, which is the hot 
reservoir of the cycle. The central qubit is used to cool down the system C along with other refrigerant qubits 
from other spin-star systems (omitted in the figure for simplicity) with its effective temperature βeff from Eq. 
(4) while the ancilla qubits at effective temperature βeff,ancilla from Eq. (23) are used to mimic a cold reservoir 
for a quantum Otto cycle in which the working medium is a separate quantum harmonic oscillator as shown on 
the left side of the figure. The spheres in light blue and the sphere in dark blue represent the system C and the 
system B respectively while the spheres in red are the ancilla qubits of the system A. The arrows in blue represent 
the collisions which cool down the target system pointed by the arrow. The dashed arrows in orange represent 
the evolution of a single harmonic oscillator throughout its Otto cycle.
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harmonic oscillator thermalized at the inverse temperature β and the frequency ωh is adiabatically driven to 
a lower frequency ωc , leading to a work extraction. Then, the harmonic oscillator is brought to the inverse 
temperature βeq,ancilla by collisions with ancilla spins, and it is driven back to the frequency ωh , taking some 
work from outside and completing the cycle. However, we cannot suppress the effects of the environment at the 
inverse temperature β during the adiabatic strokes in an experimental realization of this engine, and we need to 
implement adiabatic strokes in short times so that the effect of the environment on these steps can be neglected, 
making these strokes strongly non-adiabatic and reducing the  efficiency52. Another widely studied modification 
of this cycle is to introduce squeezing in the hot  reservoir53, which is shown to exceed the Carnot  efficiency54 
and even reach a unity efficiency for some choices of engine  parameters55.

Discussion
In summary, we proposed a scheme for cooling a multi-qubit system using a set of refrigerant qubits prepared 
by spin-star systems. We found that the central qubits of the spin-star systems we introduce are in a canonical 
Gibbs state if they are coupled to the ancilla qubits of the spin-star system longitudinally. Moreover, this Gibbs 
state is characterized by an effective temperature colder than the environment if the spin-star system consists 
only of longitudinal spins and ferromagnetic interactions. Analytical calculations showed that the central spin 
temperature monotonically decreases with the strength of Ising interactions. For asymptotically strong interac-
tions, the central spin temperature scales by a factor of 1/(N + 1) . We determined that bringing the effective 
temperature of the central spin by an order of magnitude with respect to its environment is possible using the 
typical range of parameters from superconducting circuit systems. We analyzed the efficiency of a simple refrig-
eration cycle, discussed how the refrigerant qubits prepared in each cycle can cool a many-body system to their 
effective temperature; besides, we suggested two different uses of ancilla spins in the refrigeration cycle to further 
increase the efficiency. Our results for a scalable and efficient cooling of a many-body system using few qubit 
artificial environments can be significant for compact implementations of quantum computation, metrology, 
or simulator  technologies56,57.

Methods
We do not have any experimental results in our work. All of the plots are based on our analytical results and they 
are reproducible from the relevant equations. We produced the plots using Matplotlib library of Python. The 
numerical results plotted in the main text are obtained using NumPy library of Python and the results in the SI 
appendix are obtained using QLib  library58 for Matlab.
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