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Prediction of the death among COVID-19 patients can help healthcare providers manage the patients better. We aimed to develop
machine learning models to predict in-hospital death among these patients. We developed different models using different feature
sets and datasets developed using the data balancing method. We used demographic and clinical data from amulticenter COVID-
19 registry. We extracted 10,657 records for confirmed patients with PCR or CTscans, who were hospitalized at least for 24 hours
at the end of March 2021.(e death rate was 16.06%. Generally, models with 60 and 40 features performed better. Among the 240
models, the C5 models with 60 and 40 features performed well. (e C5 model with 60 features outperformed the rest based on all
evaluation metrics; however, in external validation, C5 with 32 features performed better. (is model had high accuracy (91.18%),
F-score (0.916), Area under the Curve (0.96), sensitivity (94.2%), and specificity (88%). (e model suggested in this study uses
simple and available data and can be applied to predict death among COVID-19 patients. Furthermore, we concluded that
machine learning models may perform differently in different subpopulations in terms of gender and age groups.

1. Introduction

In spite of more than 2 years since the COVID-19 pandemic
and performing vaccination in many countries, the disease’s
prevalence and mortality have not slowed down, and many
countries are still experiencing high peaks [1]. In addition,
multiple mutations in the virus have become a new challenge
to control the disease, leading to the spread of the disease
and increased mortality [2–4]. Until April 16, 2022, more
than 500million cases of the disease andmore than 6million
deaths due to COVID-19 have been reported globally, with
more than 7 million cases and 140,000 deaths in Iran [1].

Since the beginning of the COVID-19 pandemic, one of
the most critical challenges for the healthcare systems has
been to increase the number of patients with severe
symptoms and the growing demand for hospitalization. In
developing countries, which do not have sufficient health-
care infrastructure, the increase in inpatients has put a lot of
burden on the healthcare system. Moreover, numerous
studies have reported various risk factors such as old age,
male gender, and underlying medical conditions (such as
hypertension, cardiovascular disease, diabetes, COPD,
cancer, and obesity) for the deterioration of COVID-19
patients [5–9].
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(e use of modern and noninvasive methods to triage
patients into specific and known categories at the early stages
of the disease is beneficial [10]. One of these approaches is
the use of predictive models based on machine learning
[11, 12]. For example, developing predictive models based
on mortality risk factors can positively prevent mortality
through controlling acute conditions and planning in in-
tensive care units [13]. Furthermore, machine learning can
classify patients based on the deteriorating risk and predict
the likelihood of death to manage resources optimally
[14, 15].

To date, several studies have been published on the
application of machine learning to develop diagnostic
models or predict the death of patients due to COVID-19
[14–23]. For example, several deep learning models have
been reported to diagnose COVID-19 based on images [24].
In a study, researchers developed an enhanced fuzzy-based
deep learning model to differentiate between COVID-19 and
infectious pneumonia (no-COVID-19) based on portable
CXRs and achieved up to 81% accuracy. (eir fuzzy model
had only three misclassifications on the validation dataset
[24].

As for death prediction, several studies have also been
published [16, 25–28]. (e results obtained from the studies
on machine learning-based predictive methods indicated
that those methods had reliable predictability and could
identify the correlation between intervening variables in
complex and ambiguous conditions caused by COVID-19.
(erefore, they can be used to predict such situations in the
future. Although those techniques have been tested on some
regional datasets of the risk factors, the performance of the
models can be improved when they apply to different
datasets related to other countries such as Iran, where the
prevalence of the COVID-19 and related deaths is high.

Iran is one of the first countries to face a widespread
outbreak of the disease and has experienced more than four
major epidemic waves with the highest mortality rates
[29, 30]. As a result, due to the high prevalence andmortality
rate of COVID-19 in Iran and the limitation of healthcare
resources [31, 32], it is vital to have a prediction model based
on Iranian conditions and local data. (erefore, this study
aimed to fit a model for predicting the death caused by
COVID-19 based on machine learning algorithms. Many
previous models are based on laboratory, imaging, or
treatment data [16, 25–28]; however, we suggested models
based on available demographic data, symptoms, and
comorbidities that can be easily collected. We also con-
ducted a bias analysis of machine learning models based on
subgroups of patient populations to show the bias of these
models.

2. Materials and Methods

2.1. Population and Data. We extracted data from the
Khuzestan COVID-19 registry system belonging to Ahvaz
Jundishapure University of Medical Sciences (AJUMS).
From the beginning of the pandemic, this registry collects
data from suspected (based on clinical signs) and confirmed
(based on the results of PCR or CT scan) outpatients and

inpatients in Khuzestan province, Iran. (is registry collects
demographic data, signs and symptoms, patient outcomes,
PCR and CT results, and comorbidities from 38 hospitals.
(e details of data collection and data quality control were
published elsewhere [30].

We included only patients with a confirmed diagnosis of
COVID-19 based on PCR test or CT scan results for this
modeling study. Furthermore, we included only patients
who were hospitalized for more than 24 hours. Because
outpatients and hospitalized patients with a short stay (less
than 24 hours) had a lot of missing data, we excluded these
cases from the final analysis. We also included patients from
all age groups. Finally, we extracted data for 10,657 patients.
(e frequency of nonsurviving patients (until discharge) was
1711 (16.06%); 8946 patients (83.94%) were discharged alive.
Figure 1 shows the steps of this study.

2.2. Data Preprocessing

2.2.1. Imputing Missing Variables. Because of the data
quality controls in the registry, the database had a low rate of
missing data. (e 28 variables had a missing rate below 4%
(Supplement 1, Table S1). In machine learning, data im-
putation is a standard approach to improve the models’
performance. Different methods such as imputation with
mean, median, or mode are common. We imputed the
missing values with the mean for age and the highest fre-
quency of values for nonnumerical variables as well [11, 33].

2.2.2. Features and Feature Selection. (e outcome measure
of the study is in-hospital mortality until discharge which is
collected as binary (yes/no). (e dataset contains 60 input
variables. Age and the number of comorbidities are nu-
merical; oxygen saturation level (PO2) includes two values
including below and above 93%. We created three dummy
variables for the diagnosis method (only positive PCR, only
abnormal CT, positive PCR, and abnormal CT). Other
variables have two values: yes or no.

For feature selection, we applied univariate analysis
using Chi-square or Fisher exact tests for nonnumerical
variables and Mann-Whitney U test for age and number of
comorbidities (due to abnormal distribution). We created
different feature sets to build the prediction models. (e first
set included all the 60 variables. (e second set consisted of
variables that were significant in univariate analysis (P value
<0.05). (e third feature set included the marginal variables
based on univariate analysis (P value <0.2). To create the
fourth feature set, we used the feature selection node in the
IBM SPSS modeler. (is node identifies important features
based on univariate analysis as well as the frequency of
missing values and the percentage of records with the same
value. Table 1 shows the variables in each of these feature
sets.

2.2.3. Data Balancing. We first developed our models with a
variety of machine learning algorithms on the original
dataset (dataset 1). We found the inappropriate performance
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of these models, in terms of the sensitivity, because of the
small number of samples in the death class (83.94% sur-
viving vs. 16.06% nonsurviving, ratio� 5.23), so the models
did not perform well to predict death. (ere are various
methods such as oversampling the minor class or under-
sampling the major class to solve this problem [11, 12]. We
oversampled the death cases to create more balanced
datasets. Datasets 2 and 3 included 5,133 (36.5%,
ratio� 1.74) and 8,938 (49.98%, ratio� 1) nonsurviving
patients, respectively.We developed our models with all four
feature sets on these three datasets.

2.3. Model Development and Evaluation. We randomly di-
vided the data into two sets, training (70%) and testing (30%)

sets, and developed our models using common machine
learning algorithms that are usually reported to perform well
in medicine including Multiple Layer Perceptron (MLP)
neural networks [11, 12, 34], Chi-Squared Detection of
Automatic Interaction (CHAID), C5, and Random Forest
(RF) decision trees [11, 12, 33, 34], Support Vector Machine
(SVM) with Radial Basic Function (RBF) kernel [12, 35, 36],
and Bayesian network [12, 37–39].

We first developed models based on the default settings
of parameters. We developed CHAID decision trees with a
maximum depth of five and a minimum record of two in the
nodes. Moreover, we implemented the C5 tree with a
minimum of two records in nodes. RF was also implemented
with a maximum depth of 10, and aminimum of five records
in nodes using 100 models. (e SVM model was

Data extraction form the registry

Exclusion of outpatients, suspected 
patients and patients with less than 

24h hospitalization

Missing value imputation 

Developing test (30%) and train
(70%) datasets

Developing 4 different feature sets 

feature set1 (17) feature set2 (32) feature set3 (40) feature set4 (60)

Data balancing

Original dataset1 (16.06% death) Dataset 2 (36.5% death) Dataset 3 (49.98% death)

Model development and evaluation 

Train dataset

Model evaluation and comparison 
(Test data) 

Test dataset

Figure 1: Overview of the study steps.
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implemented with a regularization parameter of 10 and a
gamma of 0.1. We additionally developed MLPs using the
different number of neurons (5, 10, 15, and 20) in one and
two hidden layers and also with the number of neurons
suggested by the software. We also implemented the best
CHAID, C5, and MLP with boosting ensemble method and
10-fold cross-validation. Furthermore, we implemented
stack models (combining individual models) [40]. Our
analysis showed that models developed on dataset 3 had
generally better performance. (erefore, we developed stack
models, based on the best individual models, on this dataset
with different feature sets.

2.4. External Validation. For external validation, we
extracted 1734 records from the Khuzestan COVID-19
registry system. (ese data are from four different hospitals
in different timeframes. (erefore, these data were not used
in training or testing themodels.(is dataset contained 1425
surviving and 309 nonsurviving patients. Inclusion and
exclusion criteria were similar to the training/testing dataset,
described in Section 2.1. (e best performing models se-
lected from the previous step and also ensemble models were
validated using this dataset.

2.5. Subpopulation Bias Analysis. Previous studies show that
predictive models may have different performances against
different subpopulations, for example, in different sex or age
groups [41, 42]. To assess this effect, we adopted the method
suggested by Seyyed-Kalantari et al. (ey suggested the use
of false-positive rate (FPR) and false-negative rate (FNR) in
subpopulations to assess the underdiagnosis and over-
diagnosis of machine learning models [41]. We similarly
calculated FNR and FPR to assess the underprediction or
overprediction of death in our models. To this end, we used

the best performing models in external evaluation and the
external dataset.

2.6. Analysis. We applied IBM SPSS statistical software
version 23 for statistical analysis and IBM SPSS modeler
version 18 to develop and evaluate machine learning models.
We evaluated and compared the models using confusion
matrix, accuracy, precision, sensitivity, specificity, F-score,
and Area under the Curve (AUC). To select the best per-
forming models, we compared the models obtained from
each dataset-feature with each other based on AUC and
F-score.

2.7. Ethical Considerations. (is study received ethical ap-
provals from the Ethics Research Committee of Ahvaz
Jundishapur University of Medical Sciences (IR.AJUMS.
REC.1400.325).

3. Results

3.1. Descriptive Data. We extracted data for 10,657 patients
from the Khuzestan COVID-19 registry [30]. (e frequency
of nonsurviving patients (until discharge) was 1711
(16.06%); 8946 patients (83.94%) were discharged alive.
Table 2 shows that the death due to COVID-19 was sig-
nificantly higher among men, older patients, and those who
have been in contact with infected individuals. In addition,
respiratory distress, convulsion, altered consciousness, and
paralysis were more common among the nonsurviving
patients. Conversely, cough, headache, diarrhea, and diz-
ziness were less prevalent among them. Furthermore, ox-
ygen saturation status was better among the recovered
patients versus the dead. Moreover, the comorbidities and
risk factors (excluding pregnancy) as well as the intubation,

Table 1: Different feature sets.

Feature
set Method Number of

features Features

1 Feature selection node
(default setting) 17

Age, contact with COVID-19 patients, cough, diabetes, diagnosis only by
abnormal CT, diagnosis only by positive PCR, diagnosis by positive PCR and
abnormal CT, gender, heart diseases, HTN, and ICU. Admission, intubation,
muscle ache, number of comorbidity, oxygen therapy blood oxygen saturation

level, and respiratory distress.

2 Univariate analysis
(P value <0.05) 32

Age, cancer, chronic kidney disease, chronic liver disease, contact (with a probable
or confirmed case in the 14 days before the onset of symptoms), convulsion,
cough, diabetes, diagnosis only by abnormal CT, diagnosis only by positive PCR,
diagnosis by positive PCR and abnormal CT, dialysis, diarrhea, dizziness, drug
abuse, gender, headache, heart diseases, HIV/AIDS, HTN, and ICU. Admission,
immune diseases, intubation, nervous system diseases, number of comorbidities,
other chronic lung diseases, oxygen therapy, paralysis, blood oxygen saturation

level, pregnancy, respiratory distress, and unconsciousness.

3 Univariate analysis
(P value <0.2) 40

(e feature set 2 + asthma, chronic hematology diseases, mental disorders, muscle
ache, other diseases (comorbidities), drowsiness, gustatory dysfunction, and

weakness.

4 All features 60

(e feature set 3 + abdominal pain, autoimmune disease, chest pain, chills,
constipation, ocular manifestations, fever, GI bleeding, hemoptysis, nausea,

anorexia, other GI signs, paresis, runny nose, skin manifestations, sore throat,
olfactory dysfunction, smoking, sweating, and vomiting.

4 Journal of Healthcare Engineering



Table 2: Comparison of surviving and nonsurviving patients.

Variables Alive (n� 8946) Dead (n� 1711) Total patients (n� 10657) P value
Age
Mean (±SD), years 54± 18.3 65.7± 16.2 55.88± 18.46 <0.0001∗
Median (Q1, Q3) 56 (42, 67) 67 (57, 77) 58 (43, 69)
Sex, male 4611 (51.5) 1010 (59) 5621 (52.7) <0.0001∗
Contact with infected people (yes) 3169 (35.4) 706 (41.3) 3875 (36.4) <0.0001∗
Sign and symptoms
Cough (yes) 5296 (59.2) 899 (52.5) 6195 (58.1) <0.0001∗
Respiratory distress (yes) 5021 (56.1) 1288 (75.3) 6309 (59.2) <0.0001∗
Fever (yes) 4225 (47.2) 802 (46.9) 5027 (47.2) 0.788
Muscle aches (yes) 2417 (27) 426 (24.9) 2843 (26.7) 0.069
Chills (yes) 70 (0.8) 9 (0.5) 79 (0.7) 0.257
Vomiting (yes) 452 (5.1) 79 (4.9) 531 (5) 0.448
Headache (yes) 480 (5.4) 51 (3) 531 (5) <0.0001∗
Chest pain (yes) 304 (3.4) 61 (3.6) 365 (3.4) 0.728
Diarrhea (yes) 315 (3.5) 40 (2.3) 355 (3.3) 0.012∗

Sore throat (yes) 48 (0.2) 4 (0.2) 52 (0.5) 0.100
Gustatory dysfunction (yes) 98 (1.1) 10 (0.6) 108 (1) 0.053
Olfactory dysfunction (yes) 123 (1.4) 19 (1.1) 142 (1.3) 0.382
Abdominal pain (yes) 203 (2.3) 31 (1.8) 234 (2.2) 0.237
Runny nose (yes) 8 (0.1) 0 (0.0) 8 (0.1) 0.216
Convulsion (yes) 42 (0.5) 19 (1.1) 61 (0.6) 0.001∗
Altered consciousness (yes) 213 (2.4) 419 (24.5) 633 (5.9) <0.0001∗
GI bleeding (yes) 5 (0.1) 0 (0.0) 5 (0.0) 0.417
Skin lesion/rush (yes) 11 (0.1) 3 (0.2) 14 (0.1) 0.584
Dizziness (yes) 249 (2.8) 30 (1.8) 279 (2.6) 0.014∗
Paresis (yes) 54 (0.6) 11 (0.6) 65 (0.6) 0.848
Paralysis (yes) 22 (0.2) 13 (0.8) 35 (0.3) 0.001∗
Weakness (yes) 350 (3.9) 80 (4.7) 430 (4) 0.142
Sweating (yes) 11 (0.1) 2 (0.1) 13 (0.1) 0.947
Ocular manifestations (yes) 3 (0.0) 0 (0.0) 3 (0.0) 0.449
Hemoptysis (yes) 6 (0.1) 2 (0.1) 8 (0.1) 0.491
Drowsiness (yes) 3 (0.0) 2 (0.1) 5 (0.0) 0.185
Constipation (yes) 7 (0.1) 1 (0.1) 8 (0.1) 0.784
Nausea (yes) 478 (5.3) 89 (5.2) 567 (5.3) 0.811
Anorexia (yes) 724 (8.1) 138 (8.1) 862 (8.1) 0.969
Other GI symptoms (yes) 7 (0.1) 0 (0.0) 7 (0.1) 0.247
Blood oxygen saturation level
(i) Less than 93 2046 (22.9) 934 (54.6) 2980 (28) <0.0001∗
(ii) More than 93 6900 (77.1) 777 (45.4) 7677 (72)
Comorbidity
Any comorbidity (yes) 3314 (37) 826 (48.3) 4140 (38.8) <0.0001∗
Number of comorbidities <0.0001∗
0 5632 (63) 885 (51.7) 6517 (61.2)
1 1868 (2.9) 391 (22.9) 2259 (21.2)
2 946 (10.6) 275 (16.1) 1221 (11.5)
3 396 (4.4) 112 (6.5) 508 (4.8)
>3 104 (1.1) 48 (2.8) 152 (1.5)
Number of comorbidities (mean± SD) 0.6± 0.9 0.87± 1.1 0.65± 0.97 <0.0001∗
Hypertension (yes) 1291 (14.4) 356 (20.8) 1647 (5.5) <0.0001∗
Heart diseases (yes) 1102 (12.3) 294 (17.2) 1396 (13.11) <0.0001∗
Diabetes (yes) 1577 (17.6) 376 (22) 1953 (18.3) <0.0001∗
Immunodeficiency diseases (yes) 32 (0.4) 13 (0.8) 45 (0.4) 0.019∗
Asthma (yes) 198 (2.2) 28 (1.6) 226 (2.1) 0.129
Neurological diseases (yes) 140 (1.6) 49 (2.9) 189 (1.8) <0.0001∗
Chronic kidney diseases (yes) 289 (3.2) 114 (6.7) 403 (3.8) <0.0001∗
Dialysis (yes) 78 (0.9) 33 (1.9) 111 (1) <0.0001∗
Other chronic lung diseases (yes) 136 (1.5) 44 (2.6) 180 (1.7) 0.002∗
Chronic hematologic diseases (yes) 740 (0.8) 20 (1.2) 94 (0.9) 0.166
Cancer (yes) 172 (1.9) 80 (4.7) 252 (2.4) <0.0001∗
Autoimmune diseases (yes) 2 (0.0) 0 (0.0) 2 (0.0) 0.536
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oxygen therapy at the beginning of hospitalization, and ICU
admission were significantly higher among the dead.

3.2. 0e Machine Learning Algorithms and 0eir Evaluation.
(e results of performing various models with different
settings on three datasets and four feature groups are re-
ported as follows.

3.2.1. 0e Machine Learning Algorithms on Original Dataset
1. (e details on the performance of the models are given in
Supplement 1 (Tables S2–S5). (e result showed that the
lowest and highest accuracy of the models based on the
original dataset 1 were 84.52% (RF with 32 features) and
91.12% (Bayesian network with 32 features), respectively. In
addition, the minimum and maximum AUC were 0.757 (C5
with 32 features) and 0.914 (Bayesian network with 32
features), respectively. According to the findings, the sen-
sitivity for predicting death based on original dataset 1 was
low and between 0.484 (MLP network with 60 features) and
0.775 (RF with 32 features) which indicates that the sensi-
tivity of the models on imbalanced data is not appropriate.
Table 3 shows the results of the performance of the top 10
models based on the test data of dataset 1. According to the
table, the best twomodels were the Bayesian network and the

CHAID tree on 32 features, respectively. (e ROC curve for
the best models is presented in Supplementary Figure S1.

3.2.2. 0e Machine Learning Algorithms on Dataset 2.
(e details on the performance of the models based on
dataset 2 are given in Supplement 1, Tables S6–S9. (e
findings showed that the lowest and highest accuracy were
82.64% (MLP with 60 features) and 87.86% (RF with 60
features), respectively. Moreover, the minimum and maxi-
mum values of the AUC were 0.888 (MLP with 60 features)
and 0.942 (SVMwith 60 features), respectively. According to
the findings, the sensitivity for predicting death was between
0.658 (MLP network) and 0.861 (CHAID tree with 32
features). (e best results obtained for each algorithm based
on dataset 2 were shown in Supplementary Figure S2.
According to Table 4, SVM and C5 models had the best
performance on 60 and 40 features, respectively.

3.2.3. 0e Machine Learning Algorithms on Dataset 3.
(e details on the performance of the models based on
dataset 3 are given in Supplement 1, Tables S10–S13. (e
results showed that the lowest and highest accuracy were
81.27% (CHIAD tree with 32 features) and 92.77% (C5 with
60 features), respectively. Moreover, the minimum and

Table 3: Top 10 models developed on original dataset 1.

Setting Feature set Accuracy Sensitivity Specificity Precision F-score AUC
Bayesian network Default 2 91.12 64.7 96.2 76.4 0.701 0.914
CHIAD Default 2 90.76 54 97.8 82.6 0.653 0.909
MLP∗ 2.5.5 boosting 1 90.63 53.6 97.7 81.5 0.647 0.904
MLP Boosting 1.10 3 90.79 54 97.8 82.3 0.652 0.903
C5 Boosting 2 90.7 56.4 97.3 79.9 0.662 0.901
MLP 2.10.10 2 90.55 53.4 97.7 81.5 0.646 0.901
MLP 2.5.5 1 90.31 55.4 97 77.6 0.646 0.901
RF Default 2 84.52 77.5 85.9 51.3 0.617 0.9
MLP 2.20.20 3 90.51 53.6 97.5 80.5 0.643 0.899
Bayesian network Default 1 90.46 55.5 97.1 78.5 0.65 0.899
∗For MLPs, the numbers for MLP indicate the number of layers, the number of neurons in hidden layer 1, and the number of neurons in hidden layer 2.

Table 2: Continued.

Variables Alive (n� 8946) Dead (n� 1711) Total patients (n� 10657) P value
Chronic liver diseases (yes) 46 (0.5) 16 (0.9) 62 (0.6) 0.036∗
HIV/AIDS (yes) 7 (0.1) 5 (0.3) 12 (0.1) 0.016∗
Mental disorders (yes) 26 (0.3) 2 (0.1) 28 (0.3) 0.198
Smoking (yes) 143 (1.6) 33 (1.9) 176 (1.7) 0.326
Drug abuse (yes) 54 (0.6) 21 (1.2) 75 (0.7) 0.005∗

Other comorbidities (yes) 286 (3.2) 69 (4) 355 (0.0) 0.078
Pregnancy 63 (0.7) 2 (0.1) 65 (0.6) 0.004∗
Care and treatment
Intubation (yes) 308 (3.44) 962 (56.2) 1270 (11.9) <0.0001∗
ICU care (yes) 1323 (14.8) 1088 (63.6) 2411 (22.6) <0.0001∗
Oxygen therapy (yes) 2921 (32.7) 682 (39.9) 3603 (33.8) <0.0001∗
Diagnosis method
(i) Only abnormal CT 3197 (35.7) 583 (31.4) 3735 (35) <0.0001∗
(ii) Only positive PCR 1161 (13) 160 (9.4) 1321 (12.4) <0.0001∗
(iii) Positive PCR and abnormal CT 4588 (51.3) 1013 (59.2) 5601 (52.6) <0.0001∗
∗Significant difference.
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maximum AUC were 0.899 (CHIAD with 32 features) and
0.972 (C5 with 60 features), respectively. (e sensitivity for
predicting death was also between 0.752 (MLP with 60
features) and 0.951 (C5 tree with 60 features). (e best
results obtained for each algorithm based on dataset 3 are
shown in Supplementary Figure S3. According to Table 5,
the C5 model had the best performance with different
features, and SVM with 60 features was also one of the
optimal models.

3.3. Ensemble Models. Table 6 indicates that the best en-
semble model had 89.13% accuracy and 0.961 AUC.
However, the comparison of these models with the corre-
sponding individual models (Table 5) shows that C5 models
have better performance than these ensemble models, even
though these ensemble models are better than other indi-
vidual models.

3.4. External Validation. We evaluated all ensemble models
(Table 6) and the top 10 models developed on dataset 3

(Table 5) using an external dataset. As shown in Table 7, C5
boosting models with feature sets 1 and 2 have better scores.

3.5. Subpopulation Bias Analysis. We selected the four best
models based on external validation for subpopulation bias
analysis (Supplement 1, Table S14). Figures 2 and 3 show the
FPR and FNR of these models. As these figures indicate,
most of these models better perform on female patients than
male patients. Furthermore, the performance of these
models decreases in older patients. As for FPR, Figure 2
indicates that SVM and C5 (feature set 2) have a less biased
prediction in terms of gender and age groups. Additionally,
Figure 3 shows that C5 (feature set 2) has a less biased
prediction.

3.6. Comparison of the Models. A comparison of the models
showed that, with the balancing of the data, the sensitivity
and AUC increased. However, the accuracy based on dataset
2 decreased, but it also increased based on dataset 3. Fur-
thermore, models with 60 and 40 features performed better.
In general, the C5 model with 60 features outperformed the

Table 5: Top 10 models developed on dataset 3.

Settings Feature set Accuracy Sensitivity Specificity Precision F-score AUC
C5 Boosting 4 92.77 95.1 90.5 90.8 0.929 0.972
C5 Boosting 3 91.74 93.6 89.8 90.5 0.92 0.965
C5 Boosting 2 91.18 94.2 88 89.1 0.916 0.96
SVM RBF default 4 90.16 92.7 87.7 88.1 0.903 0.956
C5 Boosting 1 89.28 91.3 87.3 87.7 0.895 0.952
SVM RBF default 3 88.81 90.5 87.1 87.9 0.892 0.944
MLP∗ 2.15.15 boosting 3 88.59 90.2 86.9 87.7 0.889 0.94
MLP 2.12.12 boosting 4 87.61 88.5 86.8 86.8 0.876 0.938
C5 Default 3 87.4 89.8 85 86.1 0.879 0.934
SVM RBF default 2 86.34 86.6 86.1 86.6 0.866 0.932
∗For MLPs, the numbers for MLP indicate the number of layers, the number of neurons in hidden layer 1, and the number of neurons in hidden layer 2.

Table 4: Top 10 models developed on dataset 2.

Settings Feature set Accuracy Sensitivity Specificity Precision F-score AUC
SVM RBF default 4 87.83 83.4 90.3 82.9 0.832 0.942
C5 Boosting 3 87.44 81.8 90.6 82.7 0.822 0.94
SVM RBF default 3 87.59 82.7 90.3 82.4 0.826 0.938
C5 Boosting 4 87.88 79.9 92.4 85.5 0.826 0.938
RF Default 4 87.86 85.7 89.1 81.5 0.836 0.931
C5 Boosting 2 86.68 78.5 91.5 84.3 0.813 0.927
C5 Boosting 1 85.99 77.2 90.8 82.2 0.797 0.926
SVM RBF default 2 86.61 79 91.1 83.7 0.813 0.926
MLP∗ 1.10 3 85.38 77 90 80.9 0.789 0.923
RF Default 1 85.26 85.2 85.3 76.2 0.804 0.923
∗For MLPs, the numbers for MLP indicate the number of layers, the number of neurons in hidden layer 1, and the number of neurons in hidden layer 2.

Table 6: Ensemble models developed on dataset 3.

ID Included models Feature set Accuracy Sensitivity Specificity Precision F-score AUC
1 Table S10 1 86.10 0.799 0.924 0.914 0.853 0.954
2 Table S11 2 87.39 0.859 0.889 0.888 0.873 0.954
3 Table S12 3 87.26 0.831 0.915 0.908 0.867 0.954
4 Table S13 4 89.13 0.864 0.919 0.916 0.890 0.961
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rest based on all evaluation indicators; however, based on the
external validation, C5 boosting models with feature sets 1
(17 features) and 2 (32 features) have better external validity.
Subpopulation analysis suggests that the C5 boosting model
with 32 features has less bias.

3.7. Variable Importance. Figure 4 shows the importance of
each variable in the selected model (C5). As indicated, in-
tubation, number of comorbidities, age, gender, respiratory
distress, blood oxygen saturation level, ICU admission,

cough, unconsciousness, positive PCR, and abnormal CTare
considered the most important death predictors by this
model.

4. Discussion

In the first stage of the study, the risk factors for death due to
COVID-19 were discovered using univariate analysis. (en,
based on the important features, different machine learning
models were developed to predict death. (e results showed
significant differences between recovered and nonrecovered
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Figure 2: Subgroup false-positive rate (FPR) for different models. (a) C5 model on feature set 1. (b) C5 model on feature set 2. (c) SVM
model on feature set 3. (d) Ensemble model on feature set 2.

Table 7: External validation on dataset 3.

Models Settings Feature set Accuracy Sensitivity Specificity Precision F-score AUC
C5 Boosting 1 92.56 0.955 0.919 0.720 0.821 0.974
C5 Boosting 2 91.81 0.964 0.908 0.695 0.808 0.98
SVM RBF default 3 91.00 0.848 0.924 0.706 0.771 0.955
Ensemble 2 — 2 87.77 0.861 0.881 0.611 0.715 0.954
SVM RBF default 2 88.24 0.890 0.881 0.618 0.729 0.953
Ensemble 1 — 1 88.75 0.819 0.902 0.645 0.722 0.949
C5 Boosting 3 86.51 0.935 0.850 0.575 0.712 0.948
Ensemble 3 — 3 88.18 0.783 0.903 0.637 0.702 0.931
MLP∗ 2.15.15 boosting 3 87.95 0.767 0.904 0.634 0.694 0.914
MLP∗ 2.12.12 boosting 4 87.31 0.754 0.899 0.618 0.679 0.914
Ensemble 4 — 4 86.62 0.770 0.887 0.596 0.672 0.91
C5 Boosting 4 85.64 0.748 0.880 0.575 0.650 0.889
C5 Default 3 85.24 0.780 0.868 0.562 0.653 0.887
SVM RBF default 4 83.79 0.725 0.862 0.533 0.615 0.868
∗For MLPs, the numbers for MLP indicate the number of layers, the number of neurons in hidden layer 1, and the number of neurons in hidden layer 2.
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patients in terms of age, sex, contact with infected people,
respiratory distress, convulsion, altered consciousness, pa-
ralysis, blood oxygen saturation level, the number of
comorbidities, intubation, oxygen therapy, and the need for
ICU services.

We found that intubation, number of comorbidities, age,
gender, respiratory distress, blood oxygen saturation level,
ICU admission, cough, unconsciousness, positive PCR, and
abnormal CTare themost important death predictors. Other
studies showed that age [17, 18, 23, 27, 28, 43], male gender
[43], respiratorydisease [16, 17], thenumber of comorbidities

[43], and lowoxygen saturation [17, 18, 23, 43] increasedcases
of death due to COVID-19. Some researchers indicate that
high blood pressure, heart disease, cancer, kidney disease
[16, 17], diabetes [18], cerebrovascular diseases [28], smoking
[18, 23], and asthma [16] increased mortality from COVID-
19. However, our model did not consider these factors sig-
nificant. It is worth mentioning that these risk factors in-
creased the number of comorbidities in a patient and this
factor was also considered significant in the C5 model.

We developed various models with different features to
predict death from COVID-19. Based on the results, the best
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Figure 4: Variable importance of the selected model.
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Figure 3: Subgroup false-negative rate (FNR) for different models. (a) C5 model on feature set 1. (b) C5 model on feature set 2. (c) SVM
model on feature set 3. (d) Ensemble model on feature set 2.
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performance was related to the C5 decision tree with 32
features. In the same way, several studies tried to develop
machine learning models for predicting death from COVID-
19 [16–23, 25–28, 43–45]. Since a variety of variables

(demographic, laboratory, radiographic, therapeutic, signs
and symptoms, and comorbidities) and datasets are used, it
is not easy to compare the studies. For example, some re-
searchers used laboratory data to develop models in addition

Table 8: Some machine learning models suggested in the literature to predict death from COVID-19.

Author Number of patients, death rate, number of
features Models Accuracy AUC

Muhammad et al. [44] 1505, NA, 4

Decision tree (DT) 99.85 NA
LR 97.49 NA
SVM 98.85 NA

Naive Bayes 97.52 NA
RF 99.60 NA

KNN 98.06 NA

Pourhomayoun and
Shakibi [22] 307382, NA, 57

RF 87.93 0.94
ANN 89.98 0.93
SVM 89.02 0.88
KNN 89.83 0.90
LR 87.91 0.92
DT 86.87 0.93

Li et al. [20] 2924, 8.8%, different features (83, 152, 5)

Gradient boosting
decision tree, 83 features 88.9 0.939

LR, 152 features 86.8 0.928
LR, 5 features 88.7 0.915

Goncalves and Rouco
[21] 827601, 8.7%, 3

Adaboost, gradient
boosting, and RF NA 0.919

LR NA 0.917

An et al. [16] 8000, 2.2%, 10

SVM linear 91.9 0.962
LASSO 91.1 0.963

LASSO (14 days) 86.8 0.944
SVM linear (14 days) 87.7 0.941
LASSO (30 days) 89.5 0.953

SVM linear (30 days) 87.7 0.948

Yadaw et al. [18] 3841, 8.1%, 17 and 3 XGBoost (17 and 3
features) NA 0.91

Yan et al. [19] 375, 35%, 3 XGBoost 90 F1:
0.97∗

Gao et al. [43] 2160, 11%, 14

SVM 95.8 0.976
ANN 95.6 0.976

Ensemble 95.5 0.976
LR 95.4 0.974

GBDT 94.8 0.953

Chen et al. [28] (192, 26%) only critically ill patients, 47 (17
nonlaboratory, 30 laboratory) SVM linear 93 (47 features) 87.8 (17

features) 85.6 (30 features) NA

Booth et al. [45] 398, 10.8%, 5 SVM-RBF 93
Parchure et al. [17] 567, 17.8%, 55 RF 65.5 85.5
Zhao et al. [23] 641, 12.8%, 47 LR NA 0.82

Das et al. [27] 3524, 2.1%, 4

LR 96.5 0.83
SVM 97 0.825
KNN 92.4 0.759
RF 92.4 0.787

Gradient boosting 97.1 0.787
Chen et al. [25] 1002 severe and critical cases, 16.1%, 7 LR NA 0.903

Khan et al. [26] 103888, 5.7%, 15

Deep neural network 0.970 F1:
0.985∗

RF, XGBoost 0.946 0.972
LR, DT 0.945 0.972
KNN 0.944 0.971

∗(ese studies did not report the AUC.
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to other variables [17, 23, 28, 43], and a study applied only
laboratory variables [45]. In another study, vital signs and
imaging results were used to develop models [23]. However,
the variables used in our study were similar to most of the
studies. Despite this, a comparison of our study with pre-
vious studies showed that the performance of our selected
model was better than those models (Table 8). (e model
developed by Gao et al. [43] has better performance
(AUC� 0.976 vs. AUC� 0.972); however, this model was
developed with small sample size. In addition, the F-score
(F� 0.97) of the model developed by Yan et al. [19] was
higher than our selected model. However, Barish et al. [46]
showed that Yan’s model did not have a good result in the
external validation. Khan’s model [26] also has a higher
F-score than our model. Khan et al. and Gao et al. used
unbalanced data; Barish et al. [46] have shown that models
developed based on unbalanced data to predict death from
COVID-19 may not have accurate results in the real
environment.

We found that machine learning models perform
differently in subpopulations in terms of gender and age
groups. Other studies similarly show that predictive
models have different performances in different ethnic
groups, genders, and age groups of patients and patients
with different insurance [41, 42]. (erefore, researchers
and clinicians should apply these models to different
population groups cautiously. Moreover, developing
models for different patient groups may be necessary.

(e strengths of our model are the use of demographic
data, symptoms, and comorbidities that can be easily
collected. Despite some previous studies, we did not use
laboratory, treatment, and imaging data. It can be con-
sidered a limitation. However, we supposed that all pa-
tients received almost similar treatments. Moreover,
applying models which are developed based on treatment
data may be difficult because of changes in patients’
treatment. Furthermore, models that depend on labora-
tory and imaging data require a lot of time and cost to
gather these data to use the model in a real clinical en-
vironment. A comparison of our study with those that
used laboratory and imaging data (Table 8) indicates that
our selected model outperforms many of these models. A
study also indicated that imaging data did not affect the
performance of machine learning models to predict death
from COVID-19 [23]. In addition, the data used in our
study have been collected from 38 hospitals, which is the
strength of the study. A similar study indicated that up to
20% of missing data in COVID-19 studies is acceptable for
developing machine learning models [18]; however, the
missing rate in our study was under 4%.

Despite the strengths, some limitations should be
considered. Firstly, we only analyzed the subpopulation
bias based on gender and age groups. Future studies
should consider other variables in this analysis. Fur-
thermore, there are several well-established models such
as APACHE and SOFA [41, 42]. Researchers are rec-
ommended to compare the performance of machine
learning models with these models to predict deaths from
COVID-19.

5. Conclusions

Different machine learning models were developed to
predict the likelihood of death caused by COVID-19. (e
best prediction model was the C5 decision tree (accu-
racy� 91.18%, AUC� 0.96, and F� 0.916). (erefore, this
model can be used to detect high-risk patients and improve
the use of facilities, equipment, and medical practitioners for
patients with COVID-19.
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