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Genetic circuit characterization and debugging
using RNA-seq
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Abstract

Genetic circuits implement computational operations within a cell.
Debugging them is difficult because their function is defined by
multiple states (e.g., combinations of inputs) that vary in time.
Here, we develop RNA-seq methods that enable the simultaneous
measurement of: (i) the states of internal gates, (ii) part perfor-
mance (promoters, insulators, terminators), and (iii) impact on
host gene expression. This is applied to a three-input one-output
circuit consisting of three sensors, five NOR/NOT gates, and 46
genetic parts. Transcription profiles are obtained for all eight
combinations of inputs, from which biophysical models can extract
part activities and the response functions of sensors and gates.
Various unexpected failure modes are identified, including cryptic
antisense promoters, terminator failure, and a sensor malfunction
due to media-induced changes in host gene expression. This can
guide the selection of new parts to fix these problems, which we
demonstrate by using a bidirectional terminator to disrupt
observed antisense transcription. This work introduces RNA-seq as
a powerful method for circuit characterization and debugging that
overcomes the limitations of fluorescent reporters and scales to
large systems composed of many parts.
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Introduction

Natural regulatory networks control the timing and conditions for

gene expression. An ability to construct synthetic networks would

enable the spatiotemporal control of biological processes (Basu

et al, 2004). These could be used to react to environmental condi-

tions (e.g., different phases of growth in a bioreactor; Anderson

et al, 2006; Gupta et al, 2017) or implement a dynamic response

(e.g., avoiding the accumulation of toxic intermediates; Zhang et al,

2012). However, there are many challenges when building synthetic

regulatory networks. Obtaining a desired response requires

numerous interacting genes and precise control over their expres-

sion. This results in large systems that contain many genetic parts,

all of which must function correctly in concert. While fluorescent

reporters have been critical for quantifying the response of such

systems to date (Kelly et al, 2009), they are only capable of probing

a single gene at a time (usually the output) and require repetition of

the assay for each state or time point of interest. Mapping the fluo-

rescence data of the output back to the specific internal failure can

be difficult or impossible.

Analogies to electronic circuits are often made when describing

the computational operations performed by a regulatory network.

Such “genetic circuits” have been built that function as logic gates

(Anderson et al, 2006; Moon et al, 2012; Qi et al, 2012; Siuti et al,

2013; Nielsen & Voigt, 2014) as well as dynamic (Elowitz & Leibler,

2000; Zhang et al, 2012) and analog (Daniel et al, 2013) circuits.

Larger circuits can be built by connecting simpler gates (Moon et al,

2012; Kiani et al, 2014; Nielsen & Voigt, 2014). This process is facili-

tated by defining the signal between gates as the RNA polymerase

(RNAP) flux (Canton et al, 2008). In practice, this is achieved by

designing gates such that their inputs and outputs are both promot-

ers. The response function can then be defined as how the output

promoter activity changes as a function of the input promoter activ-

ity at steady-state (Weiss, 2001; Nielsen et al, 2016). Gate response

functions can be used to computationally predict how to build a

circuit (Hooshangi et al, 2005; Nielsen et al, 2016). However, the

genetic context of the gates in the circuit differs from that used to

measure them in isolation and this can impact their function and, in

turn, lead to circuit failures (Brophy & Voigt, 2014). Therefore, it is

valuable to be able to directly measure the performance of individ-

ual gates in the final context of a circuit.

Systems biology has led to new –omics tools that offer the poten-

tial to take a snapshot of the entire internal workings of a circuit

with a single experiment. Transcriptomic methods, such as RNA

sequencing (RNA-seq), enable the measurement of genomewide

mRNA levels with nucleotide resolution (Zhong et al, 2009). This
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can be used to calculate promoter and terminator strengths

(Smanski et al, 2014; Li et al, 2015; Srikumar et al, 2015), which

are closely related to the RNAP fluxes used to connect transcrip-

tional gates. RNA-seq takes advantage of next-generation sequenc-

ing to quantify genomewide RNA levels at a moment in time. It has

been used to address problems in strain and metabolic engineering

(Yuan et al, 2011; Kim et al, 2012; Zhang et al, 2012; Woodruff

et al, 2013), but has not been applied to the characterization of

genetic circuits. This stems in part from the cost of RNA-seq and the

large numbers of states and time points required to fully character-

ize a circuit. Another problem is that sequencing generates a deluge

of data and a lack of software tools for synthetic biology, and

especially genetic circuit design, hinders its processing and

interpretation.

Several advances have been made that reduce the cost of RNA-

seq and enable multiple circuit states to be assayed in a single

sequencing run. RNAtag-seq uses nucleotide barcodes to tag total

fragmented RNA before depletion of ribosomal RNA (rRNA) to

allow for many samples to be efficiently pooled and sequenced

together (Shishkin et al, 2015). The tags denote which sample a

fragment originates and allows for data from each sample to be

separated post-sequencing. This leads to significant reductions in

the cost of reagents, accelerates preparation time, and decreases

biases due to the amplification of individual sample libraries. Here,

we apply this method to barcode samples associated with different

states of a genetic circuit. Specifically, we characterize the eight

states of a three-input one-output combinatorial logic circuit. This

approach can be scaled-up: a single flow cell on an Illumina HiSeq

2500 machine generates ~4 billion paired-end reads and is thus

capable of characterizing up to 1,000 samples (Haas et al, 2012),

which could be used to simultaneously assay many different circuits

and states.

Another advantage of RNA-seq is that data is captured for the

entire host genome. This enables the direct observation of how dif-

fering circuit states impact host gene expression and the burden

imposed by the circuit (Ceroni et al, 2015). It has been shown that

availability and sequestering of shared cellular resources can signifi-

cantly impact circuit function (Cardinale et al, 2013; Jayanthi et al,

2013; Gorochowski et al, 2016). Therefore, as circuits become

larger, accounting for these effects will become increasingly

important.

In this manuscript, we present methodologies for the application

of RNA-seq to characterize genetic circuits (Fig 1). A combinatorial

logic circuit is chosen as a demonstration, and data are collected for

all permutations of the inputs. Cells with circuits in these different

states are sequenced using RNAtag-seq and new algorithms and

software are used to automate data processing. Biophysical models

are developed that connect the functions of promoters, terminators,

and insulators to the expected transcriptional profiles. This is used

to algorithmically quantify the performance of genetic parts.

Furthermore, the data are used to quantify the response functions of

the three sensors and five NOT/NOR gates in the context of the

circuit. This analysis reveals several mechanistic causes of circuit

failures. The ability to observe the internal workings of genetic

circuits will lead to a better understanding of the mechanisms that

lead to part failure, how this propagates to impact system function,

and ultimately will support the construction of larger genetic

systems.

Results

Data collection

The first step in characterizing a genetic circuit is to gather data

covering the range of states (Fig 1A). This differs depending on the

type of circuit; for logic, this corresponds to steady-state measure-

ments for each combination of inputs, whereas for a dynamic

circuit, it would involve sampling time points. Once reaching either

steady-state or a specific time point, aliquots of cells harboring the

circuit are taken and flash-frozen in liquid nitrogen to minimize

RNA degradation (Materials and Methods). The total RNA is then

harvested, purified, and concentrated.

Samples are next converted to a pooled sequencing library using

RNAtag-seq (Shishkin et al, 2015). First, they are separately frag-

mented before short DNA adaptors containing unique barcode

sequences are ligated to the 30-end of the RNAs. These barcodes

uniquely “tag” every molecule such that the originating sample is

known. Due to end specificity of ligation, they also capture strand-

specific information. To ensure later sequencing is not affected by

barcode choice, we use a set where minimal sequencing bias has

been observed (Shishkin et al, 2015). Tagged samples are pooled to

simplify the remaining preparatory steps. Unwanted rRNA is

depleted, and cDNA generated by reverse transcription. Then, any

remaining RNA is degraded and 30 DNA adaptors are ligated such

that a final library can be produced by amplification with indexed

sequencing primers. Finally, the library is sequenced to generate

strand-specific reads and the barcodes are used to associate each

read to its original sample. Files containing these data are then used

as inputs for circuit characterization.

Conversion of raw RNA-seq reads to transcription profiles

We developed a suite of algorithms to process RNA-seq data and

characterize part performance, sensor/gate function and host

response (Fig 1A). This requires the conversion of the raw sequenc-

ing data into a transcription profile for each input state or time point

(Box 1). The profiles capture the observed number of transcripts at

every position along the DNA encoding the circuit. To perform this

conversion, the second step in our pipeline takes as input the raw

reads generated from sequencing and maps these to user-provided

reference sequences containing both the host genome and synthetic

circuit in a multi-FASTA format using BWA (Li & Durbin, 2009;

Fig 1A). Strand-specific transcription profiles are then generated by

separately extracting reads mapping to the sense and antisense

strand and their start and end position using SAMtools (Li et al,

2009). A mathematical model is then applied to correct the tran-

scription profiles for the localized drops in sequencing depth at the

ends of transcripts, using the mapped fragment length distribution

as an input variable (Box 1). This correction is required to be able

to characterize parts that occur near transcript start and end sites

(e.g., promoters and terminators). To provide further gene-level

expression estimates for the host and circuit, a user-provided

sequence annotation in GFF format containing the region of each

gene is used by HTSeq (Anders et al, 2015) to count the reads

mapping to each gene.

Because RNA-seq provides relative measurements of transcript

abundance (Robinson & Oshlack, 2010; i.e., fractional abundance of
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the total sequenced fragments), potential differences introduced

during sample preparation or sequencing require correction to allow

for comparison between samples. This is performed by calculating

between-sample normalization factors using a trimmed mean of

M-values (TMM) approach (Robinson & Oshlack, 2010). These

factors are applied to produce normalized gene expression levels in

A B

C

D

Figure 1. Overview of RNA-seq circuit characterization.

A Circuit characterization pipeline. Square boxes are the major steps in the process, and rounded boxes are input/output files. Light gray boxes denote experimental
protocols or computational tools used during that process. Dark gray boxes correspond to the algorithms developed in this work and the major outputs from the
pipeline. Details regarding the software to process sequencing data are provided in the Materials and Methods.

B Quantification of the performance of promoters and terminators from transcription profiles. Transcription profiles are shown in dark gray, with the location and
extent of the promoter and terminator shown by a box. Parameters correspond to equations 2 and 3.

C Characterization of sensors. The activity of the output promoter is measured in the absence and presence of the associated signal.
D Characterization of gates. Measurements of the total input RNAP flux and the change due to the promoter are measured for each state, and these data are used to

parameterize the response function. Parameters correspond to equation 4.
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fragments per kilobase of exon per million fragments mapped

(FPKM) units (Trapnell et al, 2010) and to the transcription profiles

to enable comparisons between samples (Appendix Text S1).

Genetic part characterization from transcription profiles

Genetic parts, including promoters and terminators, impact the

shape of the transcription profile by altering the flux of RNAP and

mRNA transcripts produced. Techniques have been developed in

bioinformatics and systems biology to naively scan transcription

profiles for natural regulatory features, such as promoters (Conway

et al, 2014). Analyzing a synthetic system has different objectives

that require a different computational approach. First, the parts are

modular and defined with clear start and end points. Second, the

function of a part needs to be quantified (even if it is non-

functional) and doing so requires a biophysical model that can

process RNA-seq data. Here, we develop models to characterize

those parts that are the most critical in the design of transcrip-

tional genetic circuits. Regions of the transcription profiles corre-

sponding to each part are extracted, and measurements of

localized changes in the profile depth are taken. These are inter-

preted in the context of biophysical models of each part type to

infer their performance.

Promoters cause sharp increases in the transcription profile

(Fig 1B). The activity of a promoter can be quantified as the

increase in the flux of RNAPs that occurs between the beginning x0
and end x1 of a part. The RNAP flux J(x) is the number of RNAPs

passing nucleotide position x per second. Here, we assume that all

RNAPs that pass a nucleotide lead to an mRNA transcript and that

all transcripts within the circuit degrade at the same rate. With these

assumptions, the flux at a position x is given by the steady-state

number of transcripts M(x) at that position (in effect, counting the

Box 1: Generation of transcription profiles for part character-
ization

A widely used approach to generate transcription profiles from RNA-seq
data is to count the number of mapped fragments that cover each
nucleotide position along the DNA sequence (Nagalakshmi et al, 2008;
Zhong et al, 2009). The resulting profiles often exhibit a gradual but
significant increase and decrease at the start and end of transcription
units, respectively. These non-uniformities (shown by red circles) are
problematic for characterizing the performance of genetic parts such as
promoters and terminators, where their function is defined by the
regions near the transcription start and end points.

To address this problem, a probabilistic method was developed to
correct for curvature at the ends of each transcription unit, which
utilizes the fragment length distribution as the only input variable.
We begin by generating a fragment length distribution by directly
analyzing the sequenced fragments. Using a Monte Carlo approach,
large numbers of fragment lengths are drawn from this distribution.
Fragments of these lengths are randomly mapped to positions falling
within the boundaries of a hypothetical transcription unit 2,000 nt
long. By counting the number of mapped fragments covering each
nucleotide x, a hypothetical profile T(x) is produced that defines the
expected curvature at each end of a transcription unit. Because
the curvature is localized and fully captured by the first 500 nt of
the hypothetical profile, this region is extracted and normalized by
its maximum value to generate a correction factor profile C(x).

Next, the RNA-seq data are used to generate the transcription
profile for each transcription unit within the circuit. Fragments
mapping exclusively within transcription unit boundaries are selected
and a transcription profile P(x) generated by counting the number of
mapped fragments covering each nucleotide. Unwanted curvature is
corrected for by dividing the value of P(x) for the first and last 500 nt
of each transcription unit by C(xn), where xn is the distance in nucleo-
tides to the nearest end of the transcript. Specifically, the corrected
transcription profile is given by

PcðxÞ ¼
PðxÞ
CðxnÞ ; 0\xn � 500;

PðxÞ; otherwise

(

Because the correction factor is only based on the length of the frag-
ments and does not consider their sequence, the same correction
factor profile is used for both the 50- and 30-end, while the middle of a transcription unit, where no curvature is present, remains unmodified. The correc-
tion factor is only applied to known transcripts internal to the genetic circuit. It is not applied to other regions where part function does not have to be
calculated; for example, read-through between transcriptional units, transcripts from internal promoters, antisense transcription, and genomic transcrip-
tion. Further details regarding the correction method are provided in Appendix Text S1.
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number of RNAPs passing that position that occur on the timescale

of degradation).

The transcription profile provides the steady-state number of

transcripts M(x) at each position x. However, the profiles cannot be

quantified in units of transcripts and are thus presented in arbitrary

units (au) and the fluxes are in au/s. The change in the number of

transcripts at position x is given by

dMðxÞ
dt

¼ JðxÞ � cMðxÞ; (1)

where ɣ = 0.0067 s�1 is the degradation rate of mRNA (Chen et al,

2015). At steady state, dM(x)/dt = 0 and the flux of RNAP

J(x) = ɣM(x). The activity of a promoter can be quantified as the

change in flux dJ that occurs over the length of the part (note that

a promoter part could have multiple transcription start sites, xTSS).

To reduce the effect of fluctuations in the profile, an averaging

window is applied immediately before and after the part bound-

aries (Fig 1B). The promoter strength is then given by

dJ ¼ c
n

Xx1þn

i¼x1þ1
MðiÞ �

Xx0�n

i¼x0�1
MðiÞ

h i
; (2)

where n = 10 is the window length (Fig 1B). The background

RNAP flux originating upstream of the promoter is subtracted to

ensure that only flux originating from the promoter is measured.

Terminators cause drops in the transcription profile at the 30-end
of the poly-A region (Fig 1B). The terminator strength TS has been

previously defined as the fold decrease in gene expression before

and after the terminator (Chen et al, 2013). Based on the profile, it

can be calculated as

Ts ¼
Px1þn

i¼x1þ1 MðiÞPx0�n
i¼x0�1 MðiÞ ; (3)

where x0 and x1 are the beginning and end positions of the

terminator part. Following the approach for promoters described

above, the activity of a terminator can also be calculated as a change

in flux dJ as RNAPs either dissociate from the DNA or read-through.

Characterization of genetic devices from transcription profiles

Sensors and gates are examples of genetic devices, where a set of

parts collectively performs a function. RNA-seq is particularly suit-

able for characterizing transcriptional devices, where the inputs

and/or outputs are defined as RNAP fluxes. For example, the input

to a sensor is a stimulus (e.g., inducer or environmental signal) and

the output is the control of a promoter (turning RNAP flux on or

off). For gates, the inputs and outputs are both promoters and the

response function captures how the output changes as a function of

the input at steady-state. Unlike genetic parts, whose function can

be extracted from a single profile, characterizing a sensor or circuit

requires sampling the device in different states, extracting the activi-

ties of the input/output promoters, and then fitting these data to a

mathematical model of device performance.

The response of a sensor is given by the activity of the output

promoter in the presence and absence of signal, dJon and dJoff,
respectively (Fig 1C). This can be calculated by performing RNA-seq

experiments under these conditions and then calculating the

promoter activity according to equation 2. More states with interme-

diate levels of inducer are required to calculate the full

dose-dependent response function. In this manuscript, the circuit

is characterized in multiple states, a subset of which may have

the sensor in the on or off state. In these cases, we simply average

the promoter activities across those states where the sensor is on and

those where the sensor is off and this is presented as the response.

A transcriptional gate has one or more input promoters and a

single output promoter. The response function captures how the

activity of the output promoter changes as a function of the input

flux (the input promoters and upstream transcriptional read-

through) at steady-state. For example, a NOT gate has one input

promoter that drives the expression of a repressor that turns off an

output promoter. The response function of this gate is

dJout ¼ dJmin
out þ dJmax

out � dJmin
out

� � Kn

Kn þ Jnin

� �
(4)

where Jin is total input flux, dJmin
out and dJmax

out are the minimal and

maximal output promoter activities, K is threshold, and n is the

cooperativity. When there is no transcriptional read-through from

upstream of the input promoters, then Jin = dJin. NOR gates have a

similar structure as a NOT gate, but include multiple input promot-

ers. For two-input NOR gates, Jin = dJin,1 + dJin,2 + J0, where the 1

and 2 subscripts indicate the activity of the two input promoters and

J0 is the read-through from upstream of these promoters.

RNA-seq experiments could be designed to characterize the

response function of individual gates by taking samples where the

inputs are varied, calculating the promoter activities from the pro-

files and then fitting them to a mathematical form of a response

function. Here, we wanted to be able to quantify multiple gates

within the context of a circuit. For example, when characterizing

combinatorial logic, the sensors are induced in all combinations

(e.g., a three-input logic gate has eight combinations of inputs).

Under these different conditions, the magnitude of the input

promoter activity to the gate varies because of changes to the

remainder of the circuit. We utilize those changes to plot data points

for Jin and dJout (Fig 1D) and this can be fitted to a response func-

tion (equation 4) to extract the parameters dJmin
out , dJ

max
out , K, and n.

Characterization of a combinatorial logic circuit

We applied our characterization method to a three-input one-output

combinatorial logic circuit (Fig 2A). Three sensors respond to IPTG,

aTc, and arabinose, and their activities are processed by five layered

NOR/NOT gates. The complete circuit consists of 46 genetic parts

(Fig 2B), including promoters, genes, terminators, and ribozyme

insulators (Lou et al, 2012). The output of the circuit is yellow fluo-

rescent protein (YFP), which allows for the use of flow cytometry to

measure the response in single cells. Cello was used to simulate

circuit performance based on the sensor and gate functions

measured in isolation (Materials and Methods) (Nielsen et al, 2016).

This circuit was selected because overall it functioned as predicted in

terms of producing the correct pattern of on and off outputs, but

several of the responses (+/�/+, �/+/+, +/+/+) had wide distribu-

tions indicating that some of the cells were responding improperly

(Fig 2C).
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The states of a combinatorial logic circuit are defined as the

steady-state responses to all combinations of inputs. Cells contain-

ing the circuit were grown for 5 h in media supplemented with the

eight combinations of inducers, and RNA samples were collected

and processed (Materials and Methods). Sequencing of these

samples generated between 2.0 × 105 and 1.8 × 107 mapped

A

D

C E F

B

Figure 2. Characterization of a genetic circuit.

A The sensors and wiring diagram for the three-input combinatorial logic circuit are shown. Colors correspond to the repressors used for each gate.
B Genetic implementation of the logic circuit with annotated part names. Genetic parts are shown using SBOLv notation.
C Flow cytometry data of the YFP output for all inducer input combinations (filled gray distributions) and the predicted distributions from Cello (blue are on; red are

off). Arrows highlight cells responding improperly.
D Transcription profiles for the circuit are shown for all combinations of inducers (0.5 mM IPTG/22 nM aTc/5 mM arabinose). The transcription profiles are calculated as

the average of three biological replicates measured on different days. Predicted transcription profiles are shown by red and blue lines corresponding to when the gate
should be off and on, respectively, as calculated using Cello (Materials and Methods). To the left of the profiles, the genes that are expressed in each state are
highlighted.

E Determination of the conversion factor between RPU measured via cytometry and the expression of the yfp gene measured by RNA-seq. The black line shows the
linear fit. The averages and standard deviations were calculated from three replicates measured on different days.

F Comparison of the expression of circuit genes predicted by Cello and measured experimentally from the transcription profile (Materials and Methods). Black line
shows x = y. The averages and standard deviations were calculated from three replicates measured on different days.
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fragments (Dataset EV1). These were pre-processed to generate

transcription profiles and normalized gene expression levels. The

resultant transcription profiles displayed punctuated forms with

expression of the transcriptional units for each gene clearly sepa-

rated in most cases (Fig 2D). Two additional replicates were

performed for all input states on different days and processed in the

same way, and the resulting profiles are consistent (Appendix Fig

S2).

Comparing simulation predictions to the measured transcrip-

tion profiles is complicated by the fact that Cello reports relative

promoter units (RPUs). To convert RPUs to arbitrary units that

are compatible with the transcription profiles, the activity of the

YFP output was measured in RPUs and compared to the average

transcription profile across the yfp gene. These were linearly

correlated (Fig 2E) with a conversion factor of 1 RPU = 2,895 au.

Cello predictions for all promoter activities were converted using

this factor. These were then used to trace a predicted profile

along the length of the construct (Fig 2D; Materials and Meth-

ods). A correlation was found between the predicted and experi-

mental transcription profiles for each gene (Fig 2F). Note that this

is the first time we have been able to compare the levels of the

repressors to that predicted; previously, the correlation could only

be quantified for the output (YFP).

Next, every promoter and terminator in the circuit was character-

ized across each of the eight states. An idiosyncrasy in our gate

designs required a modification to the approach to characterize

promoters. Normally, the rise in the transcription profile would be

observed just after the promoter part. However, we use ribozymes as

part of our gate design to insulate against contextual effects caused

by changing the upstream promoters (Lou et al, 2012). The ribo-

zymes cleave the 50-UTR sequences, releasing a small RNA that is fil-

tered during sequencing preparation (Appendix Text S2;

Appendix Fig S3). This causes the increase in the transcription profile

to occur at the cleavage site of the ribozyme (Fig 3A; Appendix Fig

S4). To calculate the promoter activities when there is a ribozyme,

equation 2 is changed so that the fluxes are calculated down-

stream of the cleavage site. A mathematical model of ribozyme effi-

ciency was also constructed that can be used to quantify imperfect

cleavage efficiencies (Appendix Text S2; Appendix Fig S4;

Appendix Table S1).

The use of ribozymes also makes it impossible to resolve the

individual activities of multiple promoters in series (because the

cleaved 50-RNA from transcripts from either promoter are lost

during processing). Due to the use of multiple NOR gates, there are

many examples of this in the circuit (e.g., PTac�PTet1). Therefore,

we calculate the dual promoter as a single promoter part using

equation 2. If sufficient data are generated across states, the contri-

butions of the individual promoters to the total can be deduced (see

next section).

The transcriptional profiles for all of the promoters in the circuit

are shown in Fig 3A, and the activities are provided in Table 1. The

activities of the promoters for all eight input states are shown,

which includes cases where the promoters should be off and on.

The values calculated from the profiles are compared to the activi-

ties measured in isolation using fluorescent proteins (Table 1).

Terminator strengths were calculated from the drops in the profile

at the end of transcripts (Fig 3B) and compared to strengths

measured in isolation using fluorescent reporters (Table 1).

Characterization of devices internal to the circuit

The circuit contains eight genetic devices: three sensors, four NOR

gates, and a NOT gate. Each was characterized in isolation by

empirically measuring the response function using a fluorescent

reporter (Nielsen et al, 2016). This information was then used by

Cello to predict how to connect them to build the larger circuit.

A

B

Figure 3. Quantifying part function.

A, B Alignment of transcription profiles for promoters (A) and terminators (B). Lines show the transcription profile for each of the eight combinations of inducers. Shaded
regions denote the boundaries of the part. The lines are black for states where the promoter should be on and red when it should be off. The data are shown for
the profiles derived from a single experiment (part parameterization from three replicates is provided in Table 1).
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Here, we calculated the performance of the devices in the context of

the circuit using RNA-seq and compare the values to their measure-

ment in isolation using a fluorescent protein and cytometry.

The sensor response function is specified by the activity of the

output promoter in response to the presence and absence of an

inducer. When a sensor occurs alone (e.g., PBAD2), we used the

measured promoter strengths (Table 1) to calculate dJoff and dJon
directly. When the output promoters appear in pairs (e.g., PTac�PTet1
and PBAD1�PTet2), the promoters cannot be individually resolved

directly from the RNA-seq data. To separate the activities of the two

promoters, the individual outputs of the first and second promoters are

defined as dJ1,on and dJ2,on, or dJ1,off and dJ2,off, where on and off refers

to the presence or absence of the inducer. Then, for each state, the

measured combined activity of the promoter pair dJ1+2 is equated to

the expected activities for different combinations of inducers. For

example, when the inducers that activate both sensors are present,

dJ1+2 = dJ1,on + dJ2,on. This yields a set of algebraic equations to which

dJ1,on, dJ1,off, dJ2,on, and dJ2,off can be fitted (Materials and Methods).

Sensor responses in the context of the circuit can then be compared

to the values measured for the sensor in isolation (Fig 4A; Table 2).

Strong context effects were observed for PBAD (Table 2). In one loca-

tion in the circuit, it performs as expected (PBAD1). However, PBAD2
produces a lower than expected on state, which manifests as a nearly

flat transcription profile (Fig 3A). This coincided with read-through

from the highly expressed LitR gene upstream (Fig 2D).

The internal gates were characterized by calculating the full

response functions from the transcription profiles for all eight

states. NOR gates are characterized as NOT gates by having the

multiple upstream input promoters serve as the combined input

to the gate. The promoter activities were calculated from the pro-

files and fit to equation 4. The total flux into the gate serves as

the input Jin (either one or two promoters and upstream read-

through), and the output is the activity of the output promoter

dJout. It is simple to calculate when this appears as a single

promoter. If it is part of two promoters in series, the individual

promoter activities are calculated as described for sensors, above

(Materials and Methods).

The calculated Jin and dJout values for the eight states are fit to

equation 4 to obtain the response functions for each gate in the

circuit (Fig 4B). The response functions (solid lines, Fig 4B) and

parameter values (Table 2) are compared to those obtained from

the gate measurements performed in isolation using fluorescent

reporters (dashed lines, Fig 4B). The performance of the five gates

is similar with several notable exceptions. The LitR gate displayed

lower output flux for both on and off states, while the PhlF gate saw

elevated output flux and a > 2-fold shift in the input flux required to

switch the gate into an off output state.

Part substitution to correct antisense transcription

All genes in the circuit are organized on the sense strand (Fig 2B),

but the RNA-seq data also report transcription in the antisense direc-

tion (Fig 5A; Appendix Fig S5). There are several mechanisms by

which antisense transcription can interfere with the function of the

circuit (Shearwin et al, 2005; Brantl, 2007; Brophy & Voigt, 2015).

Most reads corresponding to antisense transcription cluster within

the AmtR, LitR, and BM3R1 genes, implying the existence of reverse

promoters internal to these genes. The PBAD promoters we used

have known antisense transcription start sites (Schleif, 2003), from

which antisense transcription could be observed (Fig 5A).

A part substitution was made to correct for the observed anti-

sense transcription. In the original circuit design, the terminators

only stop RNAP coming from the sense direction. One mechanism

to stop antisense termination is to use a bidirectional terminator

(Chen et al, 2013) or to follow a terminator with a terminator

oriented in the opposite direction. To this end, we replaced the

terminator after the LitR gene with two terminators, each of which

blocks transcription in opposite directions. This completely blocked

antisense transcription (Fig 5B), demonstrating the use of RNA-seq

to rationally correct an observed error in a circuit.

Impact of circuit state on host gene expression

Different combinations of inputs will cause different genes in the

circuit to be expressed (Fig 2D), and this can change the burden on

the host cell (Ceroni et al, 2015). For the three-input logic circuit, an

increase in cell doubling times is observed for input states where

four genes (including repressors and yfp) were expressed (gray bars,

Fig 6A). For the input states expressing only two and three repres-

sors (�/�/� and +/�/�), the growth rates were similar. Input

states with the slowest growth rates (+/�/+,�/+/+, +/+/+) also

corresponded to those with the broadest flow cytometry distribu-

tions, deviating from the Cello predictions (Fig 2C).

Table 1. Promoter and terminator part characterization.

Genetic context

Isolation
(Cytometry)b Circuit (RNA-seq)c

Promotersa 1st 2nd 1st 2nd

PTac-PTet1 54 85 8 � 2 17 � 5

PBAD1-PTet2 49 85 242 � 118 283 � 237

PBAD2 49 26 � 29

PBM3R1-PAmtR 10 75 9 � 4 55 � 32

PSrpR-PLitR 41 85 37 � 20 14 � 4

PPhlF 80 323 � 25

Terminators

L3S2P55 418 24 � 6

L3S2P24 212 295 � 176

L3S2P11 384 110 � 89

ECK120029600 374 380 � 98

ECK120033737 391 870 � 344

L3S2P21 505 187 � 127

aThe strength of the left promoter is 1st; right is 2nd.
bPreviously reported promoter strengths (in au/s) based on a fluorescent
reporter (Nielsen et al, 2016), converted to au/s as described in text.
Previously reported termination strengths (Chen et al, 2013).
cAverage and standard deviations are calculated from three replicates
performed on different days. For promoters, all states where the promoter is
predicted to be on are included and the units are au/s. For double promoters,
separate strengths for each promoter are calculated as described in the text.
Median terminator strengths are calculated for states where the upstream
gene is on. For terminators L3S2P24 and L3S2P11 in one replicate, the data for
input state �/�/+ were excluded due to a mapping bias (Appendix Fig S1).
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The impact on the host of carrying a circuit can be observed as

changes in the expression of native genes. To generate a baseline

for comparison, we preformed duplicate RNA-seq experiments

using cells harboring the circuit backbone (pAN1201), but without

the remainder of the circuit. These data were used for differential

gene analysis to search for potential differences in host gene

expression. Expression of endogenous genes in cells containing the

circuit for input states expressing only two or three genes (�/�/�
and +/�/�) was highly correlated with the baseline (R2 = 0.83;

Fig 6B). For input states expressing four genes, we found a lower

correlation to the baseline (R2 = 0.55), and 125 significantly dif-

ferentially expressed genes (P < 0.01; Dataset EV2). Most of these

were downregulated (N = 106) with enrichment for functions

broadly related to energy generation, anaerobic respiration, and

A

B

Figure 4. Extraction of sensor and gate response functions from the transcription profiles.

A The responses of the output promoters of the sensors are shown in the presence and absence of each inducer. The dashed lines show the sensor outputs measured in
isolation (Nielsen et al, 2016). The boxes show the median (gray line) and range of promoter activities measured for the four states where it is off (dJoff) and four
where it is on (dJon).

B Solid colored lines show the response functions of the gates obtained by fitting the promoter activities to the RNA-seq data (circles denote the measured values for
the eight input states). The dashed lines show the output of the gate measured in isolation (Nielsen et al, 2016). The data are shown for the profiles derived from a
single experiment (device parameterization from three replicates is provided in Table 2).

Table 2. Sensor and gate response function parameters.

Genetic context

Isolation (Cytometry)a Circuit (RNA-seq)b

Sensor dJoff dJon dJoff dJon

PTac 0.1 54 0.0 � 0.0 9 � 0.9

PTet1 0.0 85 0.0 � 0.0 16.0 � 4.8

PTet2 0.0 85 0.8 � 0.6 274 � 165

PBAD1 0.2 49 0.8 � 0.6 165 � 114

PBAD2 0.2 49 0.0 � 0.0 13.0 � 9.2

Gate dJmin
out dJmax

out K n dJmin
out dJmax

out K n

PAmtR 1.2 75 1.4 1.6 0.3 � 0.1 80 � 48 1.0 � 0.7 1.7 � 0.2

PLitR 1.4 85 1.0 1.7 1.9 � 1.2 53 � 36 2.7 � 0.5 1.4 � 0.2

PBM3R1 0.1 10 2.9 2.9 0.0 � 0.0 12 � 8 1.6 � 0.6 2.9 � 0.2

PSrpR 0.1 41 1.2 2.8 0.3 � 0.2 16 � 2 3.0 � 1.6 2.5 � 0.2

PPhlF 0.4 80 2.5 3.9 0.7 � 0.1 337 � 2 8.9 � 1.9 3.6 � 0.2

aPreviously reported values (in au/s) based on a fluorescent reporter (Nielsen et al, 2016), converted to au/s as described in the text. The units of dJoff, dJon, dJmin
out ,

dJmax
out , and K are au/s.

bThe units of dJoff, dJon, dJmin
out , dJ

max
out , and K are au/s. Average and standard deviations are calculated from three replicates measured on different days.
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fermentation (Appendix Table S2). Of those genes upregulated,

there was significant enrichment for DNA replication and repair,

iron assimilation and homeostasis, and functions linked to colanic

acid biosynthesis, the production of which occurs in response to

low temperature, osmotic shock, and desiccation (Navasa et al,

2009).

Environmental robustness

Growth conditions impact host physiology (Kram & Finkel, 2014),

and this can influence the performance of genetic parts and devices

(Moser et al, 2012; Gorochowski et al, 2014). The experiments

described so far were performed in 14-ml culture tubes. However,

we observed serendipitously that the circuit failed when cells were

grown in the same media in Erlenmeyer flasks (Materials and Meth-

ods). Under these conditions, three of the input combinations

(+/�/+,�/+/+ and +/+/+) resulted in much broader flow cytometry

distributions of the YFP output with an incorrect on output state for

most cells (Fig 6C). This coincided with increases in the doubling

times when arabinose was present (Fig 6A).

Transcription profiles were compared between cells grown in

Erlenmeyer flasks and culture tubes (Fig 6D). For the working

states, there are only minor differences, but for the three broken

states, there are major differences. Using these data, we re-quanti-

fied part and device performance (Appendix Figs S6 and S7;

Appendix Tables S3 and S4). Few changes were observed for the

gates and the IPTG (PTac) and aTc (PTet) sensors, with similar

response functions across conditions (Appendix Fig S7). However,

large changes in performance were found for both the arabinose

sensors that displayed ~2-fold increases in their induced activities.

This change propagates through the circuit and impacts the levels of

the repressors, culminating in a > 2-fold decrease in PhlF, which

increases YFP expression (Fig 6D), thus causing the average of the

cytometry populations to appear to be on for these states (Fig 6C).

The level of antisense transcription is also higher from the reverse

promoter within PBAD under these conditions (Appendix Fig S5).

We analyzed the host transcriptome under both conditions to

ascertain whether a shift in cellular physiology might be the cause

for the failure of the arabinose sensors (PBAD1 and PBAD2).

Differential expression analysis of the broken input states high-

lighted significant changes for 179 genes (P < 0.01), with enrich-

ment of transport-related functions for arabinose, xylose, and

maltose (P < 5.69 × 10�3; Fig 6E; Dataset EV2). Upregulation of

these genes coincided with the presence of arabinose, suggesting its

role in their regulation (Fig 6E). Notably, host genes involved in

arabinose transport (araEFGH) saw significant eight- to 56-fold

upregulation in culture tubes for the three broken input states

(P < 5.75 × 10�4; Dataset EV2). Such a difference would facilitate

greater intracellular accumulation of arabinose due to an increased

uptake and is consistent with the large measured increases in activ-

ity of both PBAD promoters when induced (Khlebnikov et al, 2001).

Discussion

DNA synthesis and assembly methods enable the construction of

large genetic circuits that can implement complex functions through

the layering of simple transcriptional gates. Gates can be built based

on many classes of biochemistry (e.g., DNA-binding proteins (Moon

et al, 2012; Stanton et al, 2014), recombinases (Bonnet et al, 2013;

Siuti et al, 2013; Fernandez-Rodriguez et al, 2015), and CRISPRi

(Gilbert et al, 2013; Larson et al, 2013; Qi et al, 2013; Kiani et al,

2014; Nielsen & Voigt, 2014; Gander et al, 2017)). Orthogonal

libraries of these parts enable many to be reliably used in a single

cell without fear of interference. These advances have led to circuits

that can consist of 10+ regulators and > 40 genetic parts and the size

is growing. However, the ability to debug systems of this size has

lagged, particularly when the function is defined by many states.

Here, we have developed methodologies to characterize the inner

workings of a circuit using RNA-seq data.

Circuit characterization has been limited by the use of fluores-

cent reporters to provide a single datum for the output of the circuit

as a whole. One way to measure the response of internal parts and

gates is to separate them onto characterization plasmids that can be

assayed in isolation of the remainder of the circuit (Kelly et al,

2009; Stanton et al, 2014; Nielsen et al, 2016). In contrast, RNA-seq

enables the function of multiple parts to be simultaneously

measured in situ within a circuit. Using this approach, we have

A B

Figure 5. Antisense transcription, measurement, and correction.

A Transcription profiles for both sense (gray) and antisense (red) strands for circuit grown in culture tube conditions for the �/+/� combination of inducers (22 nM
aTc). Terminators are shown by light gray-labeled regions. The antisense profiles for all combinations of inducers are shown in Appendix Fig S5. The profiles
correspond to a single experiment that is representative of three replicates.

B The change in the transcription profile that occurs due the addition of a reverse terminator is shown. Shaded regions denote terminator part boundaries. The original
terminator is L3S2P24, and this is replaced by the terminators ECK120033736 (forward) and ECK120010818 (reverse). The profile normalization (Box 1) has been
applied to the 30-end of the antisense profile in the modified part.
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revealed several failure modes and showed that some parts func-

tioned unreliably. For example, the PBAD promoter was particularly

context dependent and sensitive to shifts in culturing conditions.

One limitation of RNA-seq is that it only measures mRNA levels.

This is useful when characterizing transcriptional circuits. However,

some parts such as ribosome binding sites (RBSs) and bi-cistronic

insulators (Mutalik et al, 2013) operate at the level of translation. It

has been shown that ribosome profiling (Ingolia et al, 2009; Ingolia,

2014) can accurately estimate protein synthesis rates (Li et al, 2014)

and therefore could be used to characterize translational parts such

as ribosome binding site strengths, if they are the rate-limiting step

during protein synthesis (Li et al, 2014). This offers a powerful

complementary technique that could, along with RNA-seq, fully

characterize all of the parts in a circuit. Another limitation is that

the RNA-seq method that we use is based on population measure-

ments. Expression can differ between cells, and it is useful to have

the population data provided by cytometry or microscopy

(Rosenfeld et al, 2005). RNA-seq can be used to measure expression

in single cells, but current techniques could not be used to extract

part performance data (Tang et al, 2009; Shapiro et al, 2013; Grün

et al, 2014; Lasken & McLean, 2014).

Much of the mystery of genetic engineering comes from a lack

of being able to see what you are doing; that is, how design choices

impact the system and cell. Problems that can be seen are simple

to correct. For example, once unwanted antisense transcription was

detected, it could be blocked easily by adding a reverse terminator.

If a problem cannot be seen, then this necessitates the creation of a

large library of designs where many potential fixes are tried

randomly until one blindly solves the problem (Smanski et al,

2014). New techniques to quantify mRNA, protein, and metabolites

—driven by plummeting DNA sequencing costs—are giving a fuller

picture of the cell. Furthermore, the routine sequencing of

A

D

E

B C

Figure 6. Changes to the growth conditions break the circuit by changing host gene expression.

A Doubling times for cells carrying the circuit grown in culture tubes (gray) and Erlenmeyer flasks (white). Error bars are calculated as the standard deviation from
three biological replicates performed on different days.

B Comparison of host gene expression under culture tube conditions for sets of input states with differing numbers of expressed circuit genes (including yfp):
two = �/�/�, three = +/�/�, and four = �/+/�, +/+/�, �/�/+, +/�/+, �/+/+ and +/+/+ (0.5 mM IPTG/22 nM aTc/5 mM arabinose). The baseline is calculated from
RNA-seq data collected from cells harboring an empty circuit plasmid backbone (pAN1201). Points show the mean expression level of each gene. Red points denote
genes with statistically significantly differential expression in comparison with the baseline (P < 0.01; Dataset EV2).

C Flow cytometry data of the YFP output for the circuit grown in Erlenmeyer flasks (filled gray distributions) and the predicted output distributions from Cello (blue is
on and red is off).

D Comparison of transcription profiles for the circuit when cells are grown in culture tubes (black line; data for biological replicate 1) and Erlenmeyer flasks. If the
profile obtained from Erlenmeyer flasks is higher the difference is shown in red and if it is lower the difference is shown in blue.

E Fold-change analysis of differentially expressed sugar transport-related genes (P < 0.003) compared between Erlenmeyer flask and culture tube growth conditions
(Dataset EV2).
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laboratory strains can show how genomic mutations that emerge

can impact the system (Lamb et al, 2006; Fernandez-Rodriguez

et al, 2015; Song et al, 2017). Collectively, these are quickly clear-

ing the fog and hand-waving underlying cellular design. However,

this is also leading to a deluge of data that are increasingly perplex-

ing to the designer. Fully utilizing these datasets will require new

software that simplifies the process of collection, processing, merg-

ing data from diverse techniques, and learning. This will help

reveal the design principles that allow for robust part function and

support the effective development of increasingly complex genetic

systems.

Materials and Methods

Strain, media, and inducers

The Escherichia coli DH10B derivative NEB 10-beta D(ara-leu) 7697
araD139 fhuA DlacX74 galK16 galE15 e14-/80dlacZDM15 recA1

relA1 endA1 nupG rpsL (StrR) rph spoT1 D(mrr-hsdRMS-mcrBC)

was used for cloning and measurements (New England Biolabs,

MA, C3019). Cells were grown in LB Miller broth (Difco, MI, 90003-

350) for harvesting plasmids. Cells were grown in MOPS EZ Rich

(Teknova, M2105) defined medium with 0.2% glycerol for circuit

performance measurements. To select for the presence of plasmids,

50 lg/ml kanamycin (Gold Biotechnology, MO, K-120-5) and

50 lg/ml spectinomycin (Gold Biotechnology, MO, S-140-5) antibi-

otics were used.

Circuit induction

Chemicals used to induce input promoters were isopropyl b-D-1-
thiogalactopyranoside (IPTG; Sigma-Aldrich, MO, I6758), anhy-

drotetracycline hydrochloride (aTc; Sigma-Aldrich, MO, 37919), and

L-arabinose (Sigma-Aldrich, MO, A3256). Individual colonies were

inoculated into MOPS EZ Rich Defined Medium (Teknova, CA,

M2105) with 0.2% glycerol carbon source and 50 lg/ml kanamycin

(Gold Biotechnology, MO, K-120-5) and grown overnight for 16 h at

37°C and 1,000 rpm in V-bottom 96-well plates (Nunc, Roskilde,

Denmark, 249952) in an ELMI Digital Thermos Microplates shaker

incubator (Elmi Ltd, Riga, Latvia). The following day, cultures were

diluted 178-fold (two serial dilutions of 15 ll into 185 ll) into EZ

Rich glycerol with kanamycin and grown under the same ELMI

shaker incubator conditions for 3 h. For culture tube assays (Falcon

14 ml round-bottom polypropylene tubes; Corning, MA, 352059),

cells were diluted 658-fold (4.56 ll into 3 ml) into EZ Rich glycerol

with kanamycin and inducers. For Erlenmeyer flask assays (Pyrex

250 ml; Cole-Palmer, IL, 4980-250), cells were diluted 658-fold

(76 ll into 50 ml) into EZ Rich glycerol with kanamycin and induc-

ers. Eight inducer combinations were used that cover the presence

or absence of 0.5 mM IPTG, 10 ng/ml aTc, and 5 mM L-arabinose.

Culture tubes and Erlenmeyer flasks were then grown in an Innova

44 shaker (Eppendorf, CT) at 37°C and 250 rpm for 5 h. Finally,

40 ll of cell culture was placed into 160 ll of phosphate-buffered
saline (PBS) containing 2 mg/ml kanamycin to arrest translation

and cell growth. These growth-arrested cells were incubated in the

PBS with kanamycin for one hour before fluorescence was

measured using flow cytometry.

Flow cytometry analysis

Fluorescence of individual cells was measured using an LSRII

Fortessa flow cytometer (BD Biosciences, San Jose, CA) controlled

by the BD FACSDiva software. More than 20,000 gated events were

collected for each state, and analysis of flow cytometry data was

performed using FlowJo (TreeStar, Inc., Ashland, OR).

RNA-seq library preparation and sequencing

Total RNA was harvested from E. coli DH10B cells harboring the

genetic circuit plasmid and cultured under the circuit induction

assay condition described above. Cultures were spun down at 4°C,

15,000 g for 3 min. Supernatants were discarded after centrifuga-

tion, and cell pellets were flash-frozen in liquid nitrogen for storage

at �80°C. Cells were lysed with 1 mg of lysozyme (Sigma-Aldrich,

MO, L6871) in 10 mM Tris–HCl (pH 8.0) (USB 75825) supplemented

with 0.1 mM EDTA (USB 15694). RNA was extracted with PureLink

RNA Mini Kit (Life Technologies, CA, 12183020) and further puri-

fied and concentrated with RNA Clean & Concentrator-5 (Zymo

Research, R1015) to ensure sufficient RNA concentrations (> 280 ng

per sample). The purified RNA samples were analyzed using a

Bioanalyzer (Agilent, CA), and Ribo-Zero rRNA Removal Kit for

bacteria (Illumina, CA, MRZMB126) was used to deplete rRNA from

the samples. We also checked the quality of the RNA extracted by

calculating the RNA integrity number (RIN), which ranges from a

value of 10 if all RNA is intact to 1 if the RNA is totally degraded

(Schroeder et al, 2006). We only consider highly intact samples with

a RIN > 8.5 (Imbeaud et al, 2005). Strand-specific RNAtag-seq

(Shishkin et al, 2015) libraries were created by the Broad Technol-

ogy Labs specialized service facility (SSF). A total of 16 samples

(one for each of the eight inducer combinations under the two dif-

ferent culturing conditions) were pooled, split, and run on two sepa-

rate lanes of an Illumina HiSeq 2500 as technical replicates. Both

lanes were checked for quality and re-pooled before reads were de-

multiplexed into the original samples. Barcode sequences were

trimmed from reads before further analysis was performed.

Processing of sequencing data

Raw reads were mapped to the host genome (NCBI RefSeq:

NC_01473.1) and circuit reference sequences using BWA (Li &

Durbin, 2009) version 0.7.4 with default settings. The “view”

command of the SAMtools (Li et al, 2009) suite was then used with

default settings to convert the generated SAM files into a BAM

format for downstream analyses. Read counts for each host and

circuit gene were carried out using the “htseq-count” command of

the HTSeq toolkit (Anders et al, 2015) with user-defined GFF anno-

tations of the reference sequences and the options “-s reverse -a

10 -m union”. Transcription profiles were generated by first splitting

each BAM file into two separate BAM files that contained reads from

either the sense or antisense strands. This was achieved by filtering

the complete BAM file using the “view” command of SAMtools and

the filter codes 83 and 163 for sense reads, and 99 and 147 for anti-

sense reads. Normalized FPKM values were generated from the raw

gene counts by custom scripts that calculated and applied a trimmed

mean of M-values (TMM) factor using edgeR (Robinson et al, 2010)

version 3.8.6. The BAM files were also separately processed by
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custom Python scripts to extract the position of the mapped reads

and generate the transcription profiles. Gene expression in arbitrary

units (au) that are compatible with the transcription profiles was

calculated as the average of the transcription profile height along

the length of a gene. Differential gene expression was performed

using edgeR to calculate adjusted P-values using the built-in false

discovery rate (FDR) correction. Characterization of promoters,

ribozymes, and terminators was performed using custom Python

scripts that took a GFF reference of the circuit defining all part loca-

tions, their types, and any further information (e.g., predicted cut-

site for ribozymes). To ensure termination strength and ribozyme

cleavage were not underreported, measurements were filtered if

there was a low level of RNAP flux (< 1 au/s) entering the termina-

tor or leaving the ribozyme. Characterization of genetic parts was

performed using a window size of n = 10 bp in equations 2 and 3,

and S1. All scripts were executed using either Python version 2.7.9

or R version 3.2.1.

Genetic circuit design and simulations

Cello (Nielsen et al, 2016) version 1.0 (http://www.cellocad.org)

was used for all circuit simulations. For inputs, “low RPU” values of

PTac = 0.0034, PTet = 0.0013, and PBAD = 0.0082, and “high RPU”

values of PTac = 2.8, PTet = 4.4, and PBAD = 2.5 were used and the

Eco1C1G1T1.UCF.json UCF file describing the gate response func-

tions. Genetic circuit visualizations in SBOLv format (Myers et al,

2017) were produced using DNAplotlib (Der et al, 2017) version

1.0.

Numerical fitting

To fit the response function of a gate when the output promoter was

in isolation, we defined a least squares error function

E1 ¼ Ri2S½logðdJiÞ � logðdJout;iÞ�2: Here, S is the set of states (e.g.,

combinations of inducer), dJi is the measured activity of the output

promoter for state i, and dJout,i is the expected output promoter

activity calculated according to the gate’s response function. For

NOT gates, the response function is given by equation 4 with

parameters dJmin
out , dJ

max
out , K, and n. For each state, to calculate the

expected output promoter activity of the gate, the total input RNAP

flux Jin was extracted from the transcription profile and used as

input to equation 4 (Fig 1D). The “minimize” function of SciPy

version 0.15.0 and the built-in sequential least squares program-

ming algorithm were then used to fit the parameters such that the

error function was minimized.

Fitting of promoters in series and estimating their
individual activities

When the output promoters of two sensors or gates were found in

series, we characterized their individual behaviors by employing an

adapted error function E2 ¼ Ri2S½logðdJ1þ2;iÞ � logðdJ1;i þ dJ2;iÞ�2:
Here, dJ1+2,i is the measured combined activity of both output

promoters for state i, and dJ1,i and dJ2,i are the expected individual

output promoter activities calculated using the response functions of

the first and second sensor/gate, respectively. For sensors, the

response function was equated to either dJon or dJoff depending on

the inducers that were present for that state. For example, given all

combinations of inducers for two sensors in series: �/�, �/+, +/�,

and +/+, then the expected combined output activity dJ1 + dJ2
would be given by: dJ1,off + dJ2,off, dJ1,off + dJ2,on, dJ1,on + dJ2,off, and
dJ1,on + dJ2,on, respectively. For gates, the combined activity of two

output promoters in series dJ1 + dJ2 was calculated as dJ1,out + dJ2,out,
where the output promoter activity of each gate (dJ1,out and dJ2,out)
was given by equation 4 with parameters dJmin

out , dJ
max
out , K, and n. For

each state, to calculate the expected output promoter activity of a

gate, the total input RNAP flux Jin was extracted from the transcrip-

tion profile and used as input to equation 4 (Fig 1D). Parameters for

sensors (dJon and dJoff) and gates (dJmin
out , dJ

max
out , K and n) were then

fitted to minimize the adapted error function. To extract the individ-

ual contributions of each promoter to the combined measured activ-

ity of the output promoters dJ1+2,i (Fig 4B and Appendix Fig S7B),

we calculated the fractional contribution and split the measured

combined activity according to this. Specifically, the estimated

measured activity of output promoter 1 for state i was calculated as

dJ1+2,i × [dJ1,i/(dJ1,I + dJ2,i)], and for promoter 2 as dJ1+2,i × [dJ2,i/
(dJ1,I + dJ2,i)].

Calculation of the predicted transcription profiles

Predicted promoter activities in RPUs were calculated by Cello and

converted to arbitrary units (au) compatible with the experimentally

measured transcription profiles by using the conversion factor 1

RPU = 2,895 au. The circuit DNA is scanned from the 50- to 30-end to

trace out the predicted profile. Upon reaching a promoter, the height

of the profile is raised at the transcription start site by the predicted

promoter strength (from Cello in au) multiplied by (1�pc), where pc
is the cleavage efficiency (Nielsen et al, 2016) of the next down-

stream ribozyme. Upon reaching a ribozyme, the profile height it set

to the combined strength of upstream promoters directly driving

expression (from Cello in au) plus any read-through from the nearest

upstream terminator. This height is traced along the circuit until the

end of the next downstream terminator is reached. Then, to capture

RNAP read-through, the profile height is multiplied by 1/Ts, where

Ts is the terminator strength from Chen et al (2013).

Measurement of doubling times

Individual colonies were inoculated into MOPS EZ Rich Defined

Medium (Teknova, CA, M2105) with 0.2% glycerol carbon source

and 50 lg/ml kanamycin (Gold Biotechnology, MO, K-120-5) and

grown overnight for 16 h at 37°C and 1,000 rpm in V-bottom 96-

well plates (Nunc, Roskilde, Denmark, 249952) in an ELMI Digital

Thermos Microplates shaker incubator (Elmi Ltd, Riga, Latvia).

The following day, cultures were diluted 178-fold (16.9 ll into

3 ml) into EZ Rich glycerol with kanamycin and grown in an

Innova 44 shaker (Eppendorf, CT) at 37°C and 250 rpm for 3 h.

Next, 1 ml of culture was added to a VWR disposable cuvette

(VWR, PA, 97000-586) and the optical density at 600 nm (OD600)

was measured using a Cary 50 Bio spectrophotometer (Agilent,

CA, 10068900). For culture tube assays (Falcon 14-ml round-

bottom polypropylene tubes; Corning, MA, 352059), cells were

diluted 658-fold (4.56 ll into 3 ml) into EZ Rich glycerol with

kanamycin and inducers. For Erlenmeyer flask assays (Pyrex

250 ml; Cole-Palmer, IL, 4980-250), cells were diluted 658-fold

(76 ll into 50 ml) into EZ Rich glycerol with kanamycin and
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inducers. To calculate the initial OD600 post-dilution, the aforemen-

tioned OD600 value was divided by 658. Culture tubes and Erlen-

meyer flasks were then grown in an Innova 44 shaker at 37°C and

250 rpm for five hours. The final OD600 for each vessel/inducer

condition was measured for 1 ml of culture in the manner

described above. The doubling time was calculated as (5 h)/

log2(ODFinal/ODInitial).

Characterization of the modified circuit

New genetic parts were synthesized as gBlock gene fragments (Inte-

grated DNA Technologies, CA) and assembled into full genetic

circuit using Gibson assembly (New England Biolabs, MA, 2611L).

The modified circuit was sequence verified and transformed into

E. coli DH10-beta (New England Biolabs, MA, C3019). Cultures

were grown in culture tubes under different induction conditions,

and RNA-seq samples were prepared by following the protocols

described above.

Data availability

RNA-seq data collected in this study were deposited to Gene Expres-

sion Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under the

accession numbers GSE88835 and GSE98890. Python scripts that

implement the characterization pipeline are released as open-source

software under the MIT license (Computer Code EV1; GitHub

repository: https://github.com/VoigtLab/MIT-BroadFoundry).

Expanded View for this article is available online.
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