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EDITORIAL

Going Deep With ECG and Aortic Stenosis: 
Touchdown or Incomplete Pass?
Patrick A. Gladding, MBChB, PhD; Will Hewitt; Todd T. Schlegel , MD

A little learning is a dangerous thing; Drink deep, or 
taste not the Pierian spring.

� Alexander Pope

Aortic stenosis (AS) is a growing problem in aging 
Western populations.1 Many patients with AS are un-
aware of it and present late, often after irreversible left 
ventricular hypertrophy/fibrosis and/or diastolic or sys-
tolic dysfunction.2 Whereas surgical guidelines currently 
dictate that either open heart surgery or transaortic valve 
replacement are reserved for those with clear symp-
toms, emerging evidence suggests that intervention may 
be preferred in some populations with severe asymp-
tomatic AS.3 With expanding indications and thresholds 
for transaortic valve replacement, screening and access 
to evidence-based therapies are increasingly important. 
Furthermore, with limited access to echocardiography, 
the main imaging modality for AS, there is a need to 
identify alternative diagnostic modalities that are portable 
and community focused.

See Article by Kwon et al.

In this issue of the Journal of the American Heart 
Association (JAHA), Kwon et al. took a first step in eval-
uating a deep learning (DL) algorithm with a view to-
ward detecting moderate-to-severe AS via ECG.4 Their 
optimized DL approach employed both a multilayer 

perceptron and a convolutional neural network as an 
ensemble to interrogate patterns within 12-lead and 
single-lead ECGs from 43 051 patients, of whom 1413 
(3.3%) had > moderate AS. Patients in the derivation 
data set were all-comers to a cardiovascular teach-
ing hospital. Those with AS were more often female, 
with notably low mean body mass index (24 kg/m2) in 
a Korean population, and often with other structural 
and functional heart abnormalities such as altered sys-
tolic and diastolic function, left ventricular (LV) mass, 
and pulmonary pressure. While high-quality (500 Hz) 
ECG data were used, just 7 basic measures of strictly 
conventional ECG were employed, along with demo-
graphic factors, to build and test the multilayer percep-
tron as well as statistical pattern recognition models 
including logistic regression. At the same time, state-
of-the-art signal processing was used to generate the 
convolutional neural network. Standard statistics (area 
under the receiver operating characteristic curve) were 
then used to evaluate and internally validate the trained 
models in the same hospital and in 10  865 patients 
from a second, community-based hospital. Results 
were impressive with an AUC of 0.86 (sensitivity 80% 
and specificity 78%) in the external validation group. In 
fact, even a single ECG lead had an AUC of 0.82.

It is worth noting that despite much recent excite-
ment regarding artificial intelligence applications to 
ECG, there are still very few studies of this kind, es-
pecially performed at this scale and across 2 sites 
with true external validation. Difficulties in securing 
high-quality, well-annotated data, as well as sufficiently 
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sophisticated data curation and handling skills to en-
sure proper predictions from large sets of often biased 
data, likely contribute to the paucity of such studies. 
Nonetheless, Kwon et al. have shown that with a ro-
bust DL pipeline, it seems possible to use digital ECG 
to reasonably accurately predict AS in ways that few if 
any individual clinicians could.

Utilizing a variety of techniques, several research-
ers have also recently shown that other cardiac pa-
thologies such as LV systolic dysfunction,5–7 prior 
atrial fibrillation,8 LV hypertrophy9 (ideally better re-
defined electrically as “LV electrical remodeling”),10 
and hypertrophic cardiomyopathy11,12 can also be 
predicted from 12-lead ECGs. So with some high-
quality studies of this kind showing promising re-
sults, 1 question to be asked is “why have these 
techniques, especially the DL techniques that have 
elicited the most excitement, not yet entered clinical 
practice”? One potential reason is that there are even 
fewer prospective, randomized studies of DL-derived 
tools that demonstrate improved healthcare resource 
utilization, cost, or patient outcomes.13 Furthermore, 
while Kwon et  al. and others have made attempts 
to demonstrate specific predictive features of DL 
algorithms (eg, via sensitivity [saliency] mapping or 
“attention heatmaps”), such secondary procedures 
do not rid the DL techniques of their obscure, “black 
box”-type features.14 The multiple abstractions and 
convolutions within the types of DL applied by Kwon 
et al. and others often defy full transparency or ex-
plainability, 2 elements considered essential by some 
for the ethical use of artificial intelligence.15,16 So with-
out these elements, the potential for bias, including 
ethnic bias or the entrenched bias present within any 
data set used for training, is quite real. For example, 
it has been shown that ECG features vary by both 
race and sex.17 Also, although DL models for some 
conditions such as LV systolic dysfunction have thus 
far translated fairly well to other ethnicities, the model 
used by Kwon et  al. for AS must be validated not 
only in other ethnic groups, but also in other clini-
cal groups who will undoubtedly have different types 
and/or degrees of cardiac comorbidities, as well as 
different types and levels of ECG background noise, 
ECG sampling rates, etc.

Moreover, although DL has increasingly “come of 
age,” it must also be understood that more trusted 
and fully transparent tools such as logistic regression 
demonstrate AUC results that are not inferior to, and 
sometimes superior to, those of the DL techniques,18 
something that we suspect might have also occurred 
in the study of Kwon et  al. had more powerful ad-
vanced ECG parameters been derived and carefully 
“feature selected” into their logistic regression pro-
cedures.7 Moreover, other statistical pattern recog-
nition techniques such as advanced ECG-related 

discriminant analysis can also often add critical dis-
criminatory power for separating 1 cardiac pathology 
from another, something that until proven otherwise, 
DL techniques such as that of Kwon et al. might have 
comparative difficulty accomplishing. With rigorous 
derivation and careful study of multiple discrete ad-
vanced and conventional ECG measures together, it 
is usually possible to readily identify the key features 
that serve as the main predictors within one’s logis-
tic regression, discriminant analysis, or other forms 
of ECG-based statistical pattern recognition. These 
other techniques can therefore allow one to “discard 
the black box,” or, at a minimum, to open up one’s 
black box for appropriate scrutiny and transparency. 
Also, the careful use, even alone, of powerful ad-
vanced ECG features now easily derived from any 
12-lead ECG (eg, the spatial QRST angle),19 is also 
more practical and potentially universally applicable 
for the arguably most important task of predicting 
clinical outcomes. Moreover, discrete features of 
advanced ECG have also recently demonstrated ge-
netic associations in genomewide association stud-
ies, with potential pharmacogenomic implications.20

A final issue worth noting before clinical imple-
mentation of DL-type techniques is what the implica-
tions of the delivery of distributable systems would be 
when magnified to scale. Here basic epidemiological 
statistics and modeling might help. For a condition 
with prevalence of 3.3%, and a diagnostic tool with 
sensitivity 80% and specificity 78%, the likelihood of 
any test being positive is 23%. For any positive result, 
the likelihood that it is a true positive is only 11%, with 
the vast majority of positive calls being false. Thus, 
blindly following such an artificial intelligence result 
with a referral to echocardiography would rapidly 
swamp any system’s ability to cope. However, care-
ful use within a population with a high prevalence of 
the disease would be a different story. For example, 
use in a murmur clinic, or in conjunction with point of 
care ultrasound or phonocardiography or biomark-
ers, could also provide a means of further improving 
diagnostic performance.

In conclusion, the study by Kwon et  al. provides a 
noteworthy advance within the ECG field. At the same 
time, however, excitement about the potential for clini-
cal use of ECG-based DL algorithms must tempered by 
the recognition of their limitations, obscuration, and need 
for further validation, as well as the existence of equally 
accurate techniques that are possibly more trustworthy, 
understandable, and ethical.
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