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A B S T R A C T   

Photoacoustic tomography (PAT) is a newly developed medical imaging modality, which combines the advan-
tages of pure optical imaging and ultrasound imaging, owning both high optical contrast and deep penetration 
depth. Very recently, PAT is studied in human brain imaging. Nevertheless, while ultrasound waves are passing 
through the human skull tissues, the strong acoustic attenuation and aberration will happen, which causes 
photoacoustic signals’ distortion. In this work, we use 180 T1 weighted magnetic resonance imaging (MRI) 
human brain volumes along with the corresponding magnetic resonance angiography (MRA) brain volumes, and 
segment them to generate the 2D human brain numerical phantoms for PAT. The numerical phantoms contain six 
kinds of tissues, which are scalp, skull, white matter, gray matter, blood vessel and cerebrospinal fluid. For every 
numerical phantom, Monte-Carlo based optical simulation is deployed to obtain the photoacoustic initial pres-
sure based on optical properties of human brain. Then, two different k-wave models are used for the skull- 
involved acoustic simulation, which are fluid media model and viscoelastic media model. The former one 
only considers longitudinal wave propagation, and the latter model takes shear wave into consideration. Then, 
the PA sinograms with skull-induced aberration is taken as the input of U-net, and the skull-stripped ones are 
regarded as the supervision of U-net to train the network. Experimental result shows that the skull’s acoustic 
aberration can be effectively alleviated after U-net correction, achieving conspicuous improvement in quality of 
PAT human brain images reconstructed from the corrected PA signals, which can clearly show the cerebral artery 
distribution inside the human skull.   

1. Introduction 

Cerebral vascular diseases have become one of the most dangerous 
killers in the world. Especially, stroke has ranked among the top ten 
pathogenies of death [1]. Effective and timely detection of the cerebral 
vascular stenosis/broken position or oxygen supply can greatly reduce 
the mortality of patients. Clinically, there are three major diagnosis 
methods to detect cerebral vascular disease. They are magnetic reso-
nance angiography (MRA) [2], computed tomography angiography 
(CTA) [3] and digital subtraction angiography (DSA) [4]. Though the 

above three methods can reveal the clear vascular structure, they have 
their own drawbacks and limitations. The biggest drawback of MRA is its 
low imaging speed, which makes it less useful in diagnosis of acute 
patients. Although CTA saves much more scanning time, frequent 
exposing to radiation environment is still a big concern for many people. 
DSA is the golden standard of cerebral vascular diagnosis in real life. 
However, it needs high-dose radiography operation to show the perfu-
sion process. The cost of DSA is also much more expensive than the other 
two, requiring hospitalization for 1–2 days. These limitations intrigue us 
to find new non-invasive and real-time imaging technologies. 
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As a hybrid imaging modality, photoacoustic (PA) imaging combines 
the advantages of both pure optical imaging (high optical contrast) and 
ultrasound imaging (deep penetration depth) [5]. Benefited from its 
vascular detection sensitivity and blood oxygen saturation quantifica-
tion, PA imaging has become a promising non-invasive medical imaging 
modality in both preclinical and clinical application in recent decades. 
From now on, PA imaging has shown great potential in breast tumor 
classification, PA guided needle tip tracking, skin cancer detection and 
so on. 

Considering that PA imaging plays an outstanding role in revealing 
vasculature, it seems that PA imaging can be competent in the cerebral 
vascular diagnosis task. Liming Nie et al. proved the feasibility that 
using a photon recycler can enable light to pass through the whole adult 
human skulls for the first time [6]. It starts the new era in human brain 
PA imaging. However, the aberration from wave reflection and refrac-
tion caused by skull tissue makes PA image reconstruction much diffi-
cult. In transcranial PA imaging, the targeted objects are cerebral 
vessels. The acoustic wavelength of the PA signals generated by micro 
vessels are at the same order as the size of skull pore, so the scattering 
mode is Mie scattering rather than Rayleigh scattering. In this scattering 
mode, some side-lobe signals are generated. The superimposition of 
main lobe and side lobes makes the reconstruction process more 
complicated [7]. In this regard, more works appear to correct aberration 
and make a big step towards the clinical PA human brain imaging. Chao 
Huang et al. proposed to combine PAT with the skull composition and 
morphology from adjunct X-ray CT modality to correct aberration [8]. 
This work performs well in both phantoms and monkey head 
skull-induced distortions. Leila Mohammadi et al. proposed a deter-
ministic ray-tracing simulation framework [9]. Their model contains the 
attenuation and dispersion effects from wave reflection and refraction. 
They implement their work on the large 3D phantoms and get pretty 
good results with high computation speed. Shuai Na et al. proposed to 
take skull heterogeneity into account to build a three-layer human brain 
model [10]. With wave reflection and refraction coefficients modified, 
the proposed layered universal back-projection can correct the acoustic 
aberration. Then they prove the effectiveness on real ex vivo adult 
human skull with 64-element PAT system. Another way to solve the 
problem is model-based image reconstruction methods [11]. The wave 
propagation in heterogeneous and lossy medium is modeled and dis-
cretized to form a forward operator. Mitsuhashi et al. proposed a 
discrete forward operator and the corresponding adjoint operator for 
transcranial PACT image reconstruction based on elastic wave equations 
[12]. Poudel et al. proposed an optimization-based image reconstruction 
method [13]. The forward-adjoint operator pair is used to compute the 
regularizing penalty term, which is the least square estimates of the 
initial pressure distribution. However, this study didn’t consider the 
acoustic heterogeneities within the skull. Poudel et al. further developed 
the joint reconstruction method that recovers both the initial pressure 
distribution and the spatial distribution of skull acoustic parameters 
[14]. With a more accurate estimate of the acoustic properties, the initial 
pressure distribution with higher quality could be achieved. 

All abovementioned works focus on building a mathematical model 
as accurate as possible to correct the influence caused by skull- 
distortion. However, to the best of our knowledge, applying data- 
driven approach to correct the acoustic aberration of human brain is 
still an untapped area to be explored. In this paper, we propose to build 
high-quality PA digital brain phantom, and use deep learning network 
(e.g. U-net [15]) to correct distorted PA signals. We list the contributions 
of this paper as follows:  

• We generate a realistic 2D human brain PA numerical phantom 
dataset for imaging and vascular disease diagnosis research based on 
MRA and T1 weighted images in IXI-dataset (https://brain-deve 
lopment.org/ixi-dataset/).  

• We propose to use simulated PA sinograms obtained from realistic 
numerical human brain phantoms to train deep learning model to 

correct the skull-induced acoustic aberration. With recovered PA 
signals, the distortion is effectively alleviated in realistic recon-
structed PA human brain images.  

• We use the generated numerical phantoms to prove the effectiveness 
of proposed method with good imaging quality. 

The remainder of this paper is organized as follow: First, we will 
introduce some related work in Section 2. Next, details of our work are 
presented in Section 3. In Section 4, we show the experiment results. 
Finally, we draw conclusion in Section 5. 

2. Related work 

2.1. Photoacoustic numerical phantoms 

The well-designed PA numerical phantoms are important for per-
forming a simulation study, when lacking of enough experimental data, 
especially for PA imaging of human. Here we will summarize some PA 
numerical phantoms generation work and list parts of their database 
website links.  

(1) Human breast numerical phantoms: Lou et al. proposed to extract 
four parts (vessel, skin, fat and fibro glandular tissue) from 
contrast-enhanced magnetic resonance images (MRI) modality 
with threshold segmentation method [16]. But they only generate 
a few 2D numerical phantoms from 50 patients. Based on this 
work, Dantuma et al. proposed to add breast tumor tissue from 
mice additionally [17]. They also extend the 2D breast numerical 
phantoms to 3D, which makes simulation more realistic. Then Ma 
et al. proposed to extract four parts of breast (skin, fat, tumor and 
fibro glandular tissue) from mammography [18]. The first three 
tissues are manually segmented and the fibro glandular is 
segmented by deep neural network. This work can quickly 
generate large amounts of 2D breast numerical phantoms. But, 
lacking breast vessels greatly limits the usefulness of the dataset. 
Later, Han et al. proposed to extract four parts (skin, adipose, 
tumor and fibro glandular tissue) from a series of 2D US B-scan 
slices with manual segmentation [19]. The reconstructed 3D 
breast numerical phantoms are generated, but lacking vessel 
tissue either. After analyzing all the work above, Bao et al. pro-
posed to generate a more realistic breast numerical phantoms 
including various kinds of breast types [20]. They use a software 
(VICTRE breast phantom) to generate a comprehensive breast 
model including skin, nipple, lactiferous duct, terminal duct 
lobular unit, interlobular gland tissue, fat, suspensory ligament, 
muscle, artery, and vein.  

(2) Human skin numerical phantoms: Lu et al. proposed to build two- 
layer skin model volumes (epidermis and underlying dermis) 
with random generation [21]. The structure is relatively simple 
but useful to optical properties analysis. Based on this, Lyu et al. 
proposed to extract vessel tissue from 3D lung CT scans with 
Frangi filter segmentation [22]. Then by embedding the vessel 
tissue to a three-layer cube (epidermis, dermis and hypodermis), 
they generate 3890 3D skin tissue numerical phantoms, which is 
available on the website: https://ieee-dataport.org/documents/ 
3d-skin-tissue-vessel-models-medical-image-analysis.  

(3) Human brain numerical phantoms: Firouzi et al. proposed to 
generate a numerical brain phantom from MRI and MRA [23]. 
They segmented six kinds of biological tissue (skull, white matter, 
gray matter, cerebrospinal fluid, edema, tumor) with 3DSlicer 
software package from MRI and segmented vascular tissue with 
level-set algorithm from MRA. It is suitable to investigate the 
human brain tumor diseases instead of cerebral vascular diseases. 
Later, Na et al. proposed to generate 2D human brain numerical 
phantoms by embedding a small piece of vessel model to oval 
skull models, which are both manually designed [10]. These 
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phantoms are relatively simple and discard lots of other brain 
tissue, like white matter. 

2.2. Deep learning-based signal processing 

Deep learning has achieved great success in signal processing (e.g. 
enhancement, denoising and recovery). Gutta et al. proposed to use a 
standard five layer fully connection neural network to enhance the 
bandwidth of PA signals [24]. The proposed deep neural network (DNN) 
can compensate the bandwidth loss caused by ultrasound transducers. 
With the bandwidth enhanced PA signals, they get the improved 
reconstructed PA images without significant computation burden. Based 
on this work, Awasthi et al. proposed to use convolutional neural 
network (CNN) to enhance the PA signals [25]. Combined with U-net (a 
well-known CNN structure) and proposed Elu activation function, the 
method can compensate both PA signal bandwidth and limited-view 
information loss. The results show that the method works well in PAT 
system with less root mean square error (RMSE) and higher 
signal-to-noise ratio (SNR) value. Ben Luijten et al. proposed to use DNN 
to learn an optimal set of apodization weights, which can adaptively 
enhance the ultrasound signals [26]. With back projection methods, the 
proposed deep learning-based adaptive signal processing framework 
achieves data-efficiency and robustness in ultrasound signal enhance-
ment and image reconstruction. Allman et al. proposed to use CNN to 
distinguish PA source from reflection artifacts with the sampled PA 
signals [27]. This work greatly decreases the artifact influence in PA 
images with high accuracy. 

3. Method 

In this section, we will make detailed description about the proposed 
method. It includes five parts: human brain numerical phantoms gen-
eration, optical simulation, acoustic simulation, acoustic aberration 
correction using U-net, and PA image reconstruction. As illustrated in 
Fig. 1, detailed description of the proposed method will be introduced in 
following sections. 

3.1. PA human brain numerical phantom generation 

We propose to generate the human brain numerical phantoms from 
other medical image modalities. Considering MRA can provide high 
contrast with rich vessel information, we choose 3D MRA images with 
T1 weighted MRI volume in IXI dataset to generate the 2D human brain 
numerical phantoms. 

To better simulate realistic human brain, our PA numerical phantom 
consists of six parts, which are scalp, skull, vessel, gray matter, white 
matter and cerebrospinal fluid. However, segmenting human brain 
volumes without labels is a challenging task. In additional, segmentation 
via deep learning is barely impossible since the amount of data is 
limited. Consequently, we choose to combine traditional image pro-
cessing methods with manual segmentation. In MRA, vessels show 
higher intensity compared with other tissues caused by contrast agent, 
which makes vessels can be easily segmented with thresholding or 
filtering methods. After comparing the segmentation results, we choose 
3D Frangi filter to segment vessel part [28]. Because the segmentation 
process of the 3D volume (150 × 256 × 256) is time consuming, we only 
choose an upper slice (256 × 256) with the largest brain area to 
generate 2D numerical phantoms. Thus, we take a proper axial slice of 
each T1 weighted MRI volumes and use multiplicative intrinsic 
component optimization (MICO) algorithm [29] for rough segmenta-
tion. Simultaneously, some manual adjustments are implemented on the 
result obtained from MICO to acquire a more precise segmentation of T1 
weighted human brain MRI image. Assuming that the PA signal propa-
gation is also affected by scalp according to the tissues’ optical and 
acoustic properties, we manually add an additional layer of scalp outside 
the skull. Then we combine the 2D projection of 3D vessel information 
with other tissue parts to generate the final human brain numerical 
phantoms. The whole human brain numerical phantom generation 
process is illustrated in Fig. 2. 

Considering light will pass through several layers of different types of 
tissues from top of the brain, we build pseudo-3D human brain numer-
ical phantoms to make the optical simulation more realistic. Pseudo-3D 
means the numerical phantom is not generated from the real 3D MRA 
source. It is spliced with several 2D numerical phantom slices. As shown 
in Fig. 3, the light will go through the scalp layer (Layer 1: only with 
scalp), the skull layer (Layer 2: with scalp and skull), the medium layer 
(Layer 3: with scalp, skull and cerebrospinal fluid) to reach the final 
layer (Layer 4: complete 2D numerical human brain phantom that in-
volves all 6 kinds of tissues). Layer 4 is the generated human brain nu-
merical phantom illustrated in Fig. 2. Because different tissue has 
different size, we build the pseudo-3D human brain numerical phantom 
sizes 256 × 256 × 12 (Two Layer 1 on the top, five Layer 2 under Layer 
1, four Layer 3 under Layer 2 and a single Layer 4 at the bottom). Vessel 
is within the human brain phantom in the layer 4 at the bottom which 
has 11 layers above it. 

3.2. Optical simulation 

The optical fluence simulation is deployed using the 3D Monte Carlo 

Fig. 1. The whole process of proposed method.  

Fig. 2. 2D human brain numerical phantom generation process.  
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method [30]. The optical properties of the six kinds of tissues are shown 
in Table 1 including optical absorption coefficients (μa), reduced scat-
tering coefficients (μs), anisotropy (g) and refractive index (n). To more 
realistically simulate the variation of tissue’s optical properties among 
different human individuals, the value of optical absorption coefficients 
(μa) and reduced scattering coefficients (μs) assigned to tissues of 
different phantoms varies within a certain range. We use the MATLAB 
package MCXLAB to simulate the photons’ propagation inside the 
human brain numerical phantoms illuminated by the pulsed laser. 

Without loss of generality, our optical simulation setup based on 3D 
Monte Carlo method is as follows: 1) the shape of the light source is set to 

Fig. 3. Four kinds of layers and their positions from the pseudo-3D human brain numerical phantoms.  

Table 1 
Optical properties of the tissues in human brain numerical phantom [31].   

μa (mm− 1) μs (mm− 1) g n 

White matter 0.014 ± 0.002 91.00 ± 13.65  0.90  1.37 
Gray matter 0.036 ± 0.005 22.00 ± 3.30  0.90  1.37 
Cerebrospinal fluid 0.004 ± 0.001 2.40 ± 0.36  0.90  1.33 
Scalp 0.018 ± 0.003 19.00 ± 2.85  0.90  1.37 
Skull 0.016 ± 0.002 16.00 ± 2.40  0.90  1.43 
Vessel 0.238 ± 0.036 52.20 ± 7.80  0.99  1.40  

Fig. 4. Three examples of 2D human brain numerical phantoms along with their optical and acoustic simulation results. (a) 2D human brain numerical phantoms 
generated from different samples. (b) Normalized initial pressure distribution from 3D Monte Carlo optical simulation on phantoms in (a). (c) Normalized DAS Image 
reconstructions of skull-distorted PA signals obtained from fluid acoustic model using k-wave simulation. 
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be planar; 2) the total number of photons to be simulated is 1 billion; 3) 
the position and incident vector of the source is set properly to make 
sure that light will cover all the regions of interest; 4) the starting time 
and the ending time of the simulation is set to 0 and 1 nanoseconds, 
respectively, and the time-gate width of the simulation is set to 0.01 
nanoseconds. According to Table 1, the optical fluence through the six 
kinds of human brain tissues is computed and obtained given the pulsed 
laser excitation. In the Monte Carlo optical simulation, the vertical 
thickness of each layer in the generated pseudo-3D human brain nu-
merical phantoms is 1 mm, which means the total vertical thickness of a 
single pseudo-3D numerical phantom is 12 mm. 

This optical simulation is run on a Linux server with 4 GTX 1080Ti 
GPUs. For each human brain numerical phantom, the photon 

Table 2 
Part of acoustic properties of the tissues involved in human brain numerical 
phantom [34].   

Cmin (m/s) Cmax (m/s) dmin (kg/m3) dmax (kg/m3) 

White matter  1532  1573  1040  1043 
Gray matter  1500  1500  1039  1050 
Cerebrospinal fluid  1502  1507  1007  1007 
Scalp  1537  1720  1100  1125 
Skull  2190  3360  1800  2100 
Vessel  1559  1575  1056  1147  

Fig. 5. The structure of U-net used in this paper.  

Fig. 6. Three examples of normalized PA sinogram in acoustic aberration correction process. The top row shows the PA sinograms which are used as supervision 
during U-net training. The second row are the inputs of U-net that are PA sinograms with acoustic aberration from skull. The U-net corrected PA sonograms are at the 
bottom row. 
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propagation simulation process takes about 5 min to obtain an optical 
fluence volume. Only the optical fluence map of obtained optical fluence 
volumes’ 12th slice is needed for the acoustic simulation, since our 
human brain numerical phantoms are built to be pseudo 3D. Through 
multiplying the obtained optical fluence maps by the corresponding 
optical absorption coefficients (μa), we can get the initial acoustic 
pressure distribution which is used for the following acoustic simulation. 
Fig. 4(b) shows three images of normalized initial pressure distribution 

of the corresponding 2D numerical phantoms in Fig. 4(a). 

3.3. Acoustic simulation 

The acoustic simulation is conducted through the k-Wave toolbox 
developed by Treeby et al. [32]. Both fluid media acoustic model and 
viscoelastic media acoustic model are considered in this simulation. It 
deserves noting that shear waves is involved in viscoelastic acoustic 
simulation with Kelvin-Voigt model of viscoelasticity [33]. The param-
eters of k-Wave computational grid is set as follows: 1) the PML size is 
17; 2) the number of grid points in the x direction (Nx) and the y di-
rection (Ny) is 256 and 256 respectively; 3) the total grid size in the x 
direction (x) and y direction (y) is both 256 mm; 4) the grid point 
spacing in the x direction (dx) and y direction (dy) are both 1 mm. 

The maximum and minimum speed of longitudinal acoustic waves 
(c), as well as the maximum and minimum medium density (d) of the 
different tissues in human brain numerical phantom, are presented in 
Table 2. Similar to the optical simulation, we let the speed of sound and 
density of tissues in different human brain numerical phantoms be the 
random values, which are between the maximum and minimum values 
for simulating the inter-individual variation of tissues in acoustic 
properties. In viscoelastic media acoustic model, speed of shear waves in 
skull is set to be between 1360 m/s and 1640 m/s [35], compressional 
and shear acoustic attenuation coefficients of skull are set to be 
7.75 dB/(MHz2 cm) and 16.70 dB/(MHz2 cm) [36]. We use point-like 
ultrasound transducers with infinite bandwidth that minimize the 
measurement errors in the simulation, which help us to focus on the 
de-aberration of skull’s acoustic heterogeneity. The 256-elements ring 
array has a radius of 125 mm, and the brain phantom is placed in the 
center of the ring array. 

With 4 GTX 1080Ti GPUs, it takes about 0.3 s for fluid media 
acoustic simulation of each PA human brain numerical phantom, while 
viscoelastic media acoustic simulation will take about 1 min for each 
phantom. After obtaining the sensor data, we use the delay-and-sum 

Fig. 7. Corresponding normalized human brain images reconstructed from PA sinograms with delay-and-sum (DAS) algorithms.  

Table 3 
Quantitative comparison of results from fluid media acoustic model with three 
different evaluation indices.   

SSIM PSNR MAE 

Original 
(Normalized PA sinogram)  

0.526  19.871  0.083 

U-net corrected 
(Normalized PA sinogram)  

0.832  25.638  0.044 

Original 
(Normalized PA image)  

0.718  24.099  0.052 

U-net corrected 
(Normalized PA image)  

0.939  33.424  0.012  

Table 4 
Quantitative comparison of results from viscoelastic media acoustic model with 
three different evaluation indices.   

SSIM PSNR MAE 

Original 
(Normalized PA sinogram)  

0.499  21.058  0.066 

U-net corrected 
(Normalized PA sinogram)  

0.805  25.015  0.045 

Original 
(Normalized PA image)  

0.732  25.315  0.042 

U-net corrected 
(Normalized PA image)  

0.921  31.950  0.014  
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(DAS) algorithm to reconstruct the original image. Fig. 4(c) shows the 
normalized images reconstructed from acoustic simulation results of 
fluid media model, in which we could clearly see that the reconstructed 
image is distorted due to the acoustic aberration of the skull tissue. To 
acquire the ideal distortion free PA sinograms as supervision term for 
deep learning-based algorithm, we manually remove the skull and scalp 
of the numerical human brain phantoms through setting the acoustic 
properties of these two tissues to be the same as the background, and 
then repeat the acoustic simulation process with fluid media model. 
Then, we can obtain the pseudo-ideal sensor data as the reference PA 
sinograms in which PA signals are free of acoustic aberration caused by 
skull and scalp. The skull-aberrated signals of two different acoustic 
simulation models are regarded as the raw data, which are used along 
with the reference PA sinograms for the following acoustic aberration 
correction study. 

3.4. Acoustic aberration correction using U-Net 

With the obtained PA sinogram from the acoustic simulation, we 
propose to use deep neural networks to correct the skull acoustic 

aberration, which is illustrated in Fig. 1 (step 5). 
First, we have to pre-process the data and build training and testing 

datasets. With the acoustic simulation, we can get the paired data (PA 
sinogram with acoustic aberration and PA sinogram without acoustic 
aberration). To keep the consistency of dimension after each pooling 
operation, we manually extend the PA sinogram in training set to 
256 × 3072 by adding zeros at the end of each channel signal. 

In this work, we choose U-net for this task for three reasons. First, the 
input sinogram is similar in the first half of the data with outputs, and 
the end of the input sinogram is unwanted reflection aberration signals. 
So, residual structure is suitable to this work. Interestingly, U-net can be 
regarded as a big residual structure in some way. Second, the special 
skip-connection can extract multi-scale features to improve correction 
outputs. Third, compared with other CNN structures, such as AlexNet, U- 
net needs less training samples and can process images with less training 
time and computation cost. U-net structure used in this work is illus-
trated in Fig. 5. 

Fig. 8. Normalized PA sinograms and normalized DAS reconstructed human brain PAT images from viscoelastic media acoustic model.  
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3.5. PA image reconstruction 

The PA sonograms (with acoustic aberration correction) are used to 
reconstruct PA images. Because the U-net has eliminated the skull 
impact, we can regard the sensor data is generated from homogeneous 
medium. Then we can apply a lot of classical reconstruction algorithms, 
such as delay-and-sum, time reversal, model-based reconstruction and 
so on. In order to guarantee the reconstruction speed, we choose DAS as 
the PA image reconstruction algorithm in this work. 

4. Experiment and results 

We choose a subset of IXI dataset for experiment that is from Ham-
mersmith Hospital (HH), which are used to generate 180 sets of human 

brain PA sonograms with size of 256 × 3000. The obtained sonograms 
are randomly divided into 120 training sets and 60 testing sets. Since the 
sensors in acoustic simulation is set to be circular and data in each 
channel of the obtained PA sonograms is from the corresponding sensor, 
we uniformly separate each extended PA sinogram in the training set 
into 8 segments with 32 channels each based on sensor positions. Then 
we sequentially choose 16 channels from each segment and concatenate 
the chosen data together to get a 128 × 3000 sub-sinogram. By over-
lapping channels in each segment, we can have 16 combinations of sub- 
sinogram from an original extended PA sinogram. The data augmenta-
tion eventually gives 1920 PA sinograms (128 × 3072) as training set. 
PA signals obtained from fluid media acoustic model and viscoelastic 
media acoustic model are trained separately but with the same U-net 
structure and settings. The iteration is set to 400 epochs and batch size is 

Fig. 9. Normalized PA signals taken from the first channel of the right-column sample shown in Fig. 4(a). (a) Reference PA signal. (b) PA signal with skull aberration 
obtained from fluid media acoustic model. (c) PA signal with skull aberration obtained from viscoelastic media acoustic model. (d) PA signal in (b) after U-net 
correction. (e) PA signal in (c) after U-net correction. 
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set to 16. We choose ADAM optimizer and set the learning rate to 0.001. 
Mean square error is used as the loss in U-net training process. The 
training process takes 5 min per epoch and is conducted on 4 NVIDIA 
TITAN RTX GPU with 24 GB of RAM each. Testing process is conducted 
on a single NVIDIA TITAN RTX GPU and takes about 0.3 s for correcting 
one PA sinogram. 

The normalized fluid media acoustic model’s testing results of three 
samples shown in Fig. 4(a) are presented in Fig. 6. We could see that the 
corrected sensor data is much more similar to the reference PA signals. 
Since we want to make the corrections that are based on the physical 
features of the PA signals rather than the texture feature of images, the 
U-net used in this paper is trained with PA sinograms instead of the 
reconstructed PA images. In order to figure out whether the imaging 
quality is also improved with U-net correction, we use DAS to recon-
struct the image from the PA sonograms presented in Fig. 6. Fig. 7 shows 
the reconstructed gray-scale human brain PA images with normaliza-
tion. Compared with the reconstructed images without correction, we 
can clearly see the main cerebral vessels’ shape and the cerebrovascular 
distribution from the reconstructed images of the U-net corrected 
results. 

To better demonstrate the improvement on signal and image quality, 
we use structural similarity (SSIM), peak signal-to-noise ratio (PSNR) 
and mean absolute error (MAE) of the normalized PA sinograms and 
normalized grayscale DAS reconstructed PA images for quantitative 
evaluation. As shown in Table 3, three indices are greatly improved in 
comparison of both PA sinogram and reconstructed image. Furthermore, 
the largest improvement is on the structural similarity, which means U- 
net can effectively help identify the anatomical structure of main cere-
bral vessel without removing the skull. 

For results of viscoelastic media model, the quantitative evaluation is 
presented in Table 4. Similar to the results of fluid media model, indices 
of both PA sinograms and PAT reconstruction images are conspicuously 
improved after the correction with U-net. The corresponding normalized 
PA sinograms and normalized PAT images reconstructed with DAS are 
illustrated in Fig. 8. Five normalized PA signals taken from the first 
channel of PA sinograms acquired from the rightest object in Fig. 4(a) in 
different status are shown in Fig. 9, in which we can see that U-net filters 
out the redundant part of the PA signals and corrects the signal wave-
form, while the remained PA signals are still slightly distorted compared 
with the reference PA signal. 

5. Discussion and conclusion 

Previously reported model-based inversion can iteratively recover 
the optical absorption distribution by overcoming the acoustic aberra-
tion, which however is time-consuming and sometimes suffers conver-
gence issue. Deep learning based method can be quite fast when it is well 
trained, which is more suitable for real-time imaging applications. 

In this paper, we built PA digital brain dataset, and proposed to 
correct the human skull acoustic aberration through deep learning 
method for human brain PAT imaging. We designed and made 180 
human brain numerical phantoms generated from MRA and T1 
weighted MRI modality. Optical and acoustic simulations were per-
formed on our human brain numerical phantoms to simulate the PA 
signal generation process. Based on pseudo-3D human brain numerical 
phantoms manually generated from 2D numerical phantoms, 3D Monte 
Carlo optical simulation was used to acquire the optical fluence maps for 
calculating the initial pressure distribution used in the acoustic simu-
lation. In the acoustic simulation part, we designed two experiments to 
simulate the PA signals propagation process in human brain with and 
without distortion of skull. During the simulation with skull, we use 
heterogeneous acoustic properties of tissues for obtaining the sensor 
data with skull aberration. Moreover, both fluid media model and 
viscoelastic media model are taken into consideration. Then, the 
augmented PA sinograms with skull aberration were used as input for 
training the U-net model that is supervised with reference PA data 

acquired in the skull-free acoustic simulation. The result shows that the 
deep learning assisted method can effectively improve the quality of 
reconstructed PAT images and correct the acoustic aberration caused by 
human skull with and without taking the propagation of shear waves 
into consideration. 

Compared with methods based on physical model, deep learning 
assisted methods are with high-efficiency. However, there still exist 
some limitations when facing the clinical situation such as lack of high 
quality data, poor interpretability and so on. In the future work, we will 
continue exploring deep learning assisted methods that are used to 
improve the PAT image quality and optimize the experiment designs to 
make it better mimic realistic circumstances. In addition, our further 
works may be also validated by ex vivo experiments using a monkey 
(Macaca fascicularis)’s skull, and in vivo experiment in monkey and 
human brain in the long term. 
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