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Abstract

Accurately describing the knowledge dissemination process is significant to enhance the

performance of personalized education. In this study, considering the effect of periodic

teaching activities on the learning process, we propose a periodic impulsive knowledge dis-

semination system to regenerate the knowledge dissemination process. Meanwhile, we put

forward learning effectiveness which is an outcome of a trade-off between the benefits and

costs raised by knowledge dissemination as objective function. Further, we investigate the

optimal teaching strategy which can maximize learning effectiveness, to obtain the optimal

effect of knowledge dissemination affected by the teaching activities. We solve this dynamic

optimization problem by optimal control theory and get the optimization system. At last we

numerically solve this system in several practical examples to make the conclusions intuitive

and specific. The optimal teaching strategy proposed in this paper can be applied widely in

the optimization problem of personal education and beneficial for enhancing the effect of

knowledge dissemination.

Introduction

Personalized education has attracted lots of attention for enhancing the performance of teach-

ing and learning, which could set specific educational objectives, teaching plans, guidance pro-

grams, and executive management system according to the performance of a learner [1–4].

The effect of knowledge dissemination in personalized education is closely related to how we

describe the knowledge dissemination process [5, 6]. So far, knowledge dissemination models

mainly focus on the learning rules [7], the memory retention [8, 9] and forgetting mechanisms

[10, 11].

Hicklin [12] proposed a theoretical model taking into account individual learning in a

given ideal learning situation. He envisaged that learning resulted from a dynamic equilibrium

between information acquisition and loss, in which the rate of information gain was affected

only by the individual’s aptitude for learning and the probability of information being
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forgotten. Anderson [13] developed an experienced mathematical model by considering stu-

dent’s intelligence, abstract stimulus information and knowledge density of a student. This

model focused on the effect of knowledge characteristics on knowledge growth, and disre-

garded individual internal and environmental factors. Benfenati [14] investigated the cellular

and molecular mechanisms that contribute to various forms of memories, including short-

and long-term memories, as well as unconscious and conscious memories. Other important

models of forgetting process are the composite holographic associative recall model proposed

by Metcalfe [15] and Chappell [16], the matrix model proposed by Humphreys [17] and the

multiple-trace simulation model proposed by Hintzman [18]. Taking into account the brain

switching process, Roy [19] built a dynamical model which given a systematic mathematical

description for both the learning and forgetting processes. This model could map the knowl-

edge dissemination process in self-regulated learning [20].

Since the growth of knowledge stock of a learner not only depends on the individual learn-

ing and forgetting abilities, but also depends on the teacher guidance, our attention naturally

focuses on seeing how knowledge grows and changes after the teaching activities. In practice,

evident and major changes of knowledge stock caused by such activities can be assumed as

subjected to impulsive perturbations in short-term. Impulsive differential equations exactly

provide the natural description for such notable changes in quantity in the short run [21].

Therefore, we can establish a impulsive knowledge dissemination system to map the knowl-

edge dissemination process with impulsive perturbations.

Generally speaking, personalized education always has a strong sense of purpose. On the

one hand, learners eagerly hope that knowledge can bring benefits, such as improving self-effi-

cacy or increasing academic and economic profits [22]. On the other hand, the teaching activi-

ties typically consume considerable manpower, material, and financial resources that require

payment. These two aspects of knowledge dissemination system exhibit a relationship of

mutual restriction. Learning effectiveness is an outcome of a trade-off between the benefits

and costs. Thus, we can propose learning effectiveness as objective function, which exactly

reflects how well a knowledge dissemination system performs [23].

In this paper, we devote to investigate the optimal teaching strategy which can maximize

learning effectiveness, to obtain the optimal effect of knowledge dissemination affected by the

teaching activities. That is to say, we need to expense minimum costs in exchange for maxi-

mum benefits. It is an optimization problem of teaching strategy in knowledge dissemination.

Inspired by the studies on the optimization problems of management objectives in the applica-

tion areas of impulsive differential equation [24, 25], we generalize the common method, such

as optimal control theory [26], to solve this extremum problem presented in our study.

Modeling

2.1 Construction of the Roy model

Considering the influences of individual internal factors on self-regulated learning, Roy [19]

established a systematical ordinary differential equation for the learning process, which is

described briefly in this section. He used X(t) to represent the amount of knowledge already

stored in the brain at a current time. From the common experiences of people, the rate of

knowledge storage (RS) can be calculated simply by subtracting the rate of knowledge loss (RL)

from the rate of knowledge entry (RE).

For the memory retention mechanisms, we know the rate of knowledge entry should be rel-

evant to the ability like grasping power, concentration, intelligence and urgency of learning

etc. It is a common experience that as the accumulated knowledge increases in the brain, the

rate of knowledge entry must decrease due to brain fatigue or some mental stress [19].

An optimal e-learning model
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Similarity, for the memory forgetting mechanisms, experience tells us that the rate of knowl-

edge loss become increasingly rapidly when storing more and more knowledge, possibly

owing to the limitation of retention ability and the stress caused by the load of already accumu-

lated knowledge [19].

Then a simple mathematical formula in the following form can be obtained: where C
denotes the maximum storage capacity of a subject; C1 and C2 denote the capability of a learner

to absorb knowledge and retain memory, respectively. Parameters α and β are positive quanti-

ties, which may be called the brain fatigue index and the stress endurance index, respectively

RS ¼
dX
dt
¼ RE � RL ¼ sðtÞC1 1 �

X
C

� �a

�
ðX=CÞb

C2

: ð1Þ

Here, s(t) is a time dependent switching function that ranges from 0 to 1. It can finely char-

acterize the states of knowledge entering into brain. The function of s(t) can be approximated

by the two tan-hyperbolic functions given below for exactly simulating the two main learning

scenarios, where Tm is the duration during which a learner maintains conscious learning

efforts without any break

sðtÞ ¼ 1 �
1

2
ðtanhkðt � TmÞ þ 1Þ; ð2Þ

sðtÞ ¼
1

2
tanhk sin

pt
Tm

� �

þ 1

� �

: ð3Þ

It is evident that, for a sufficiently large positive k value, the function of s(t) behaves similar

to the values of the alternating 0 and 1. As shown in Fig 1(a) in which s(t) adopts Eq (2), when

s(t) approximately equals 1, knowledge enters coexisting with loss in the continuous learning

process. On the opposite, when s(t) nearly equals 0 from t = Tm onwards, only the forgetting

mechanism remains. Hence, Eq (2) can be used to describe the scenario in which the learning

activities sustain throughout the entire semester and relax during the vacation. By contrast, Eq

(3) always presents the periodic variation (by a cycle of 2Tm), as shown in Fig 1(b). The influ-

ences of s(t) on the rate of knowledge stock storing in the brain are the same as aforemen-

tioned. Obviously, the Eq (3) is used to simulate a scene, where the learning activities are

scheduled periodically, and thus active learning and forgetting alternately dominate the learn-

ing process periodically.

The Model (1) can be rescaled to nondimensional form by using the substitutions x = X/C,

Z1 ¼ C1=Cmax
1

and Z2 ¼ C2=Cmax
2

. Here, η1 and η2 are the merit index and the memory index to

quantify intelligence quotient and memory retention ability of a learner relative to the best

learner, respectively. The parameters Cmax
1

and Cmax
2

are the values of C1 and C2 for the best pos-

sible learner, and generally assumed as 1 for calculation convenience. Hence, Model (1) can be

rewritten as

dx
dt
¼

sðtÞZ1

C
ð1 � xÞa �

xb

CZ2

: ð4Þ

Then the variation of knowledge stock in the two main learning scenarios over time can be

depicted through numerical simulation in Fig 2.

2.2 Construction of periodic impulsive system

Compared with self-regulated learning in long periods, teaching activity with a relatively short

term can be seen as an instantaneous process. Teacher is generally considered as a highly

An optimal e-learning model
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Fig 1. (Color online) Graphical representation of Eqs (2) and (3) for parametric variations. (a) s(t) follows Eq (2), Tm = 60; (b) s(t) follows Eq (3), Tm = 5.

https://doi.org/10.1371/journal.pone.0178024.g001

Fig 2. X-t variation in self-regulated learning. We set parameters to η1 = 0.6, η2 = 0.6, α = 0.9, β = 3, C = 10, k = 106, x(0) = 0.1 in Eq (4). (a) s(t) follows

Eq (2), Tm = 60; (b) s(t) follows Eq (3), Tm = 5.

https://doi.org/10.1371/journal.pone.0178024.g002
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learned individual who shares his or her knowledge with learners. We assume that teachers

have sufficient teaching skills and extensive subject knowledge to enable learners to master the

relevant knowledge well within a short period. Considering the influences of such environ-

mental factors (e.g., teaching activities) on self-regulated learning, an impulsive knowledge dis-

semination system can be used to describe the variation of knowledge stock in this situation as

follows

( dx
dt ¼

sðtÞZ1

C ð1 � xÞa � xb

CZ2
; t 6¼ ti;

xðtþi Þ ¼ xðtiÞ þ Eið1 � xðtiÞÞ; t ¼ ti:

ð5Þ

The second equation of System (5) quantitatively describes the significant change of knowl-

edge stock after the transitory teaching activities, x(ti) is the amount of knowledge already

stored in the brain before guidance, and 1 − x(ti) is the remaining knowledge required to be

learned or mastered at time t = ti. The teaching effort, Ei(0� Ei < 1), represents the percent-

ages of the residual knowledge that need to be taught according to the current learning perfor-

mance, which is restricted to knowledge absorptive capacity of a learner. Apparently, we can

rapidly raise knowledge stock from x(ti) to xðtþi Þ with a scale of Ei in a teaching activity at time

t = ti. For the two different learning scenarios distinguished with Eqs (2) and (3), we can simu-

late how the amount of knowledge changes on account of imposing the periodic impulsive

teaching effects. These two systems exactly behave as shown in Fig 3, with one impulse effect

(E1 = 0.1) at only one fixed moment (t1 = 3) per period (T = 10) for six periods (N = 6).

Studying the periodic system is important and reasonable since the learning process is

always subjected to evident periodic fluctuations [27]. For example, teaching activities typically

occur at fixed moments every week or in regular pulses throughout the entire semester. The

learning or memorizing abilities of a learner exhibit periodic changes because of such periodic

fluctuations as well. Without loss of generality, a common assumption for System (5) is that all

the functions are periodic with the same period. So we assume that η1(t) and η2(t) are the same

continuous T–period functions with s(t) (given that Eq (2) is non-periodic, we only consider

Eq (3) in the follow-up research). Besides, we hypothesize that q times impulse effects occur at

time {t = ti, i = 1, 2, � � �, q} per period, namely, there exists a positive integer q that satisfies ti+q

= ti + T and Ei+q = Ei for all i 2 N+. We mainly study the optimal control problem under the

periodic conditions. That is, the solutions of System (5) are also required to be periodic, i.e.

xðtÞ ¼ xðt þ TÞ: ð6Þ

Here, x(t) is required to be continuously differentiable at t 6¼ ti and left continuous at t = ti.

Moreover, xðtþi Þ ¼ lim h!0þ xðti þ hÞmust exist. Consequently, Systems (5) and (6) can con-

stitute the following T–periodic impulsive knowledge dissemination system

dx
dt ¼

sðtÞZ1ðtÞ
C ð1 � xðtÞÞa � xbðtÞ

CZ2ðtÞ
; t 6¼ ti;

xðtþi Þ ¼ xðtiÞ þ Eið1 � xðtiÞÞ; t ¼ ti;

xðtÞ ¼ xðt þ TÞ:

ð7Þ

8
>>>><

>>>>:

2.3 Construction of dynamic optimization problem

This study aims to find the optimal teaching strategy for the knowledge dissemination system.

Thus, we can select teaching efforts {Ei, i = 1, 2, � � �, q} as control variables (assuming ti, i = 1, 2,

An optimal e-learning model
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� � �, q are fixed) and learning effectiveness as objective function. And the performance index

function can be expressed as

JðEÞ ¼
Xq

i¼1

ðPð1 � xðtiÞÞEi � LEiÞ: ð8Þ

In Eq (8), we use the positive constants P and L between 0-10 as indexes to represent the

benefits and costs raised by per effort respectively. x = x(t) is the T–periodic and unique posi-

tive solution of System (7) under control variables {Ei, i = 1, 2, � � �, q}.
Pq

i¼1
Pð1 � xðtiÞÞEi and

Pq
i¼1

LEi represent the total benefits and costs per period, respectively. Then learning effective-

ness J can be obtained by the difference of the two aspects.

According to actual problem, we define the admissible set of System (7) as S = {EijEi+q = Ei,

0� Ei < 1, i = 1, 2, � � �, q}. The optimal control rule is to maximize objective function when

control variables are selected in the admissible set, which is a dynamic optimization problem

of a function. Hence, this control problem can be described as

( max JðEÞ ¼
Pq

i¼1
ðPð1 � xðtiÞÞEi � LEiÞ;

S:t: DxðiÞ ¼ xðtþi Þ � xðtiÞ ¼ Eið1 � xðtiÞÞ:
ð9Þ

If there exists an control strategy E� 2 S satisfying the above optimal problem, then fE�i ; i ¼
1; 2; � � � ; qg is an optimal control sequence (called the optimal impulsive teaching strategy),

Fig 3. (Color online) Variation of X with t in periodic impulsive system. We set parameters to η1 = 0.6, η2 = 0.6, α = 0.9, β = 3, C = 10, k = 106, x(0) =

0.1, with one impulse effect (E1 = 0.1) at only one fixed moment (t1 = 3) per period (T = 10) for six periods (N = 6) in Eq (5). (a) s(t) follows Eq (2), Tm = 60;

(b) s(t) follows Eq (3), Tm = 5. The blue dotted curves display the growth of knowledge stock in self-regulated learning over time. While the red solid lines

show the rapidly increasing amount of knowledge within a short time after the teacher guidance.

https://doi.org/10.1371/journal.pone.0178024.g003
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and {x�(ti), i = 1, 2, � � �, q} is the corresponding optimal trajectory (called the optimal knowl-

edge stock level). All of them are also the optimal solutions of System (7). We settle this extre-

mal problem by discrete time optimal control theory and generate the optimization system in

the end, from which we can obtain these numerical optimal solutions.

Methods

3.1 Existence of optimal strategy

In order to show the process of analysis and solution more intuitively and clearly, we just ana-

lyze the properties of the analytical solution of System (7) and successively illustrate the exis-

tence of the optimal impulsive teaching strategy when α = β = 1. We also can get the numerical

optimal solutions by numerical simulation in other cases.

System (7) can be rewritten in the following form Eq (10), also known as the state equations

dx
dt ¼ �

sðtÞZ1ðtÞ
C þ 1

CZ2ðtÞ

� �
xðtÞ þ sðtÞZ1ðtÞ

C ; t 6¼ ti;

xðtþi Þ ¼ ð1 � EiÞxðtiÞ þ Ei; t ¼ ti;

xðtÞ ¼ xðt þ TÞ:

ð10Þ

8
>>>><

>>>>:

We define

F1ðtÞ ¼
sðtÞZ1ðtÞ

C
þ

1

CZ2ðtÞ
; F2ðtÞ ¼

sðtÞZ1ðtÞ
C

: ð11Þ

From T–periodicity of System (10), there exists T> 0 and q 2 N+ satisfying Condition (12)

F1ðt þ TÞ ¼ F1ðtÞ; F2ðt þ TÞ ¼ F2ðtÞ; ðt 2 RÞ;

tiþq ¼ ti þ T;Eiþq ¼ Ei; 0 � Ei < 1; ði 2 NþÞ;

F1ðtÞ; F2ðtÞ 2 PCðR;RÞ; F2ðtÞ > 0; ðt 2 RÞ:

ð12Þ

8
>>><

>>>:

The unique solution of System (10) with positive initial value x0 = x(0) can be formulated

as, for all t> 0

xðtÞ ¼ xð0Þ
Y

0<ti<t

ð1 � EiÞe
�

R t

0
F1ðsÞds

þ
X

0<ti<t

Y

ti<tj<t

ð1 � EjÞe
�

R t

ti
F1ðsÞds

0

@

1

AEi

þ

Z t

0

Y

s<ti<t

ð1 � EiÞe
�

R t

s
F1ðsÞdsF2ðsÞds:

ð13Þ

In addition, we have x(0) = x(T) for T–periodic solution. Then we can obtain the following

x(0) from Eq (13)

xð0Þ ¼ 1 �
Yq

i¼1

ð1 � EiÞe
�

R T

0
F1ðsÞds

 !� 1
Xq

i¼1

ð
Y

ti<tj<t

ð1 � EjÞe
�

R T

ti
F1ðsÞds

0

@

1

AEi

þ

Z T

0

Y

s<ti<t

ð1 � EiÞe
�

R T

s
F1ðsÞdsF2ðsÞdsÞ:

ð14Þ

Substituting Eq (14) into Eq (13) can yield the explicit expressions of T–periodic solution,

denoted as xT(t).

An optimal e-learning model
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Give that F1(t)> 0, F2(t)> 0, and 0� Ei < 1, it is easy to prove that xT(t) is positive for all

t� 0, with positive initial value x(0). It is also uniformly bounded. Moreover, from Theorem

of the existence and uniqueness of the periodic solution for linear impulsive differential sys-

tem, we postulate that the Condition (15) holds

m ¼
Yq

i¼1

ð1 � EiÞ
� 1e
R T

0
F1ðtÞdt

> 1: ð15Þ

Therefore, System (10) implies that xT(t) with positive initial value, which exists uniquely, is

positive, uniformly bounded, and globally attracts all other positive solutions for all impulsive

teaching efforts Ei 2 S (i = 1, 2, � � �, q).

Because of the properties above of xT(t), we can obtain

sup
E2S

JðEÞ < þ1: ð16Þ

Besides, J(E) continuously depends on E, and S is a closed set. Thus, there must exist an

optimal control E� 2 S of System (10) that satisfies Eq (17)

JðE�Þ ¼ sup
E2S

JðEÞ: ð17Þ

3.2 Solution of optimal strategy

In the following, we investigate the extremal Problem (9) using discrete time optimal control

theory [26, 28]. To directly apply this theory, we should minimize the objective function. That

is, solving Eq (9) is equivalent to solve the following equation

ð� JÞðEÞ ¼
Pq

i¼1
ðLEi � Pð1 � xðtiÞÞEiÞ: ð18Þ

Our main task is to find the optimal control E� 2 S, which satisfies Eq (19)

� ðJÞðE�Þ ¼ inf
E2S
ð� JÞðEÞ: ð19Þ

Denote

f0 ¼ 0;

g0 ¼ LEi � Pð1 � xðtiÞÞEi;

f1 ¼
sðtÞZ1ðtÞ

C
ð1 � xðtÞÞ �

xðtÞ
CZ2ðtÞ

;

g1 ¼ Eið1 � xðtiÞÞ:

ð20Þ

We can gain the continuous Hamilton function H and the impulsive Hamilton function Hc,

respectively

H ¼ f0 þ lf1

¼ l
sðtÞZ1ðtÞ

C ð1 � xðtÞÞ � xðtÞ
CZ2ðtÞ

� �
;

Hc ¼ g0 þ lðtþi Þg1

¼ ðLEi � Pð1 � xðtiÞÞEiÞ þ lðtþi ÞEið1 � xðtiÞÞ;

ð21Þ

8
>>>>>>>><

>>>>>>>>:

where λ = λ(t) is the costate variable.

An optimal e-learning model
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If fE�i ; i ¼ 1; 2; � � � ; qg is the optimal control sequence and {x�(ti), i = 1, 2, � � �, q} is the cor-

responding optimal trajectory, then there must exist a costate variable λ = λ(t) that satisfies the

costate Eq (22)

dl

dt ¼ �
@H
@x ¼ � l �

sðtÞZ1ðtÞ
C � 1

CZ2ðtÞ

� �
¼ lF1ðtÞ; t 6¼ ti;

lðtiÞ ¼ lðtþi Þ þ
@Hc
@x ¼ lðtþi Þð1 � EiÞ þ PEi; t ¼ ti;

lðtÞ ¼ lðt þ TÞ:

ð22Þ

8
>>>><

>>>>:

Since Hc obtains its minimum value at the optimal control E�, we can know that E� satisfies

the singular condition

@Hc

@E
¼ L � Pð1 � xðtiÞÞ þ lðtþi Þð1 � xðtiÞÞ ¼ 0: ð23Þ

Using Eq (23), we get

lðtþi Þ ¼ P �
L

1 � xðtiÞ
: ð24Þ

Integrating the first equation of Eq (22) from ti to ti+1, we get

lðtiþ1Þ ¼ lðtþi Þe
R tiþ1

ti
F1ðsÞds

¼
lðtþi Þ
Diþ1

: ð25Þ

Substituting Eq (24) into Eq (25) yields

lðtiþ1Þ ¼
1

Diþ1

P �
L

1 � xðtiÞ

� �

: ð26Þ

Besides, substituting Eq (24) into the second equation of Eq (22) yields

lðtiþ1Þ ¼ ð1 � Eiþ1Þ P �
L

1 � xðtiþ1Þ

� �

þ PEiþ1: ð27Þ

Combining Eq (26) with Eq (27) gives a set of relationships between the optimal solutions

E�i and x�(ti) (i = 1, 2, � � �, q)

1

Diþ1

P �
L

1 � xðtiÞ

� �

¼ ð1 � Eiþ1Þ P �
L

1 � xðtiþ1Þ

� �

þ PEiþ1: ð28Þ

For another, the solution of the state Eq (10) with initial value xðtþ
0
Þ ¼ xð0Þ can be solved as

xðtÞ ¼ xð0Þ
Y

t0<ti<t

ð1 � EiÞe
�

R t

t0
F1ðsÞds

þ
X

t0<ti<t

Y

ti<tj<t

ð1 � EjÞe
�

R t

ti
F1ðsÞds

0

@

1

AEi

þ

Z t

t0

Y

s<ti<t

ð1 � EiÞe
�

R t

s
F1ðsÞdsF2ðsÞds:

ð29Þ
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In particular, for t = ti+1 we have

xðtiþ1Þ ¼ xðtþi Þe
�

R tiþ1

ti
F1ðsÞds

þ

Z tiþ1

ti

e�
R tiþ1

s
F1ðsÞdsF2ðsÞds: ð30Þ

For convenience, we denote

Biþ1 ¼

Z tiþ1

ti

e�
R tiþ1

s
F1ðsÞdsF2ðsÞds;

Diþ1 ¼ e
�

R tiþ1

ti
F1ðsÞds

:

ð31Þ

Then we can simplify Eq (30) as follows, called the stroboscopic map of System (10), which

provides another set of relationships between the optimal solutions E�i and x�(ti) (i = 1, 2, � � �, q)

xðtiþ1Þ ¼ ðð1 � EiÞxðtiÞ þ EiÞDiþ1 þ Biþ1: ð32Þ

Due to the periodical condition for any i, we know xi+q = xi and Ei+q = Ei. We can acquire

2q equations which comprise 2q unknown variable vectors Ei and x(ti) by setting i = 1, 2, � � �, q
in Eqs (28) and (32). These equations constitute the optimization system of the optimal control

Problem (9). Consequently, we can get the optimal teaching strategy {E�, i = 1, 2, � � �, q} and

the corresponding optimal knowledge level {x�(ti), i = 1, 2, � � �, q} through this system by

numerical methods. Further the maximum learning effectiveness in a period can be got

through the expression of J.

Results

We provide several practical examples in this section. We firstly analyze q = 1 theoretically,

namely, only one teaching activity occurring at the fixed moment per period. Under certain

conditions, the optimal control strategy can be completely determined in this case.

We denote

E ¼ E1; x ¼ xðt1Þ;

D ¼ e�
R T

0
F1ðsÞds

;

B ¼

Z T

0

e�
R T

s
F1ðsÞdsF2ðsÞds:

ð33Þ

Then

JðEÞ ¼ ðPð1 � xÞ � LÞE: ð34Þ

On the basis of Eq (33), it follows from Eq (32) that

x ¼
Bþ DE

1 � Dþ DE
: ð35Þ

Substituting Eq (35) into Eq (28), one has

ð1 � Dþ DEÞ2 ¼
P
L
ðD � 1ÞðBþ D � 1Þ :¼ A: ð36Þ
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Therefore, if B + D� 1 holds, then E can be solved from Eq (36) as

E ¼
ffiffiffiffi
A
p
þ D � 1

D
: ð37Þ

Meanwhile, substituting Eq (37) into Eq (35) yields

x ¼
ffiffiffiffi
A
p
þ Bþ D � 1

ffiffiffiffi
A
p : ð38Þ

The solutions E and x are in the interval from zero inclusive to one exclusive when (1 − D)2

� A< 1 holds. In this manner, we can conclude that the optimal solutions E� and x� are

uniquely determined and given by Eqs (37) and (38), with the conditions B + D� 1 and (1 −
D)2� A< 1 holding together.

Furthermore, the maximum learning effectiveness in a period can be obtained through

Eq (39)

J� ¼
ðPð1 � B � DÞ � L

ffiffiffiffi
A
p
Þð

ffiffiffiffi
A
p
þ D � 1Þ

ffiffiffiffi
A
p

D
: ð39Þ

Next, we numerically analyze q in other cases. We know different learners possess diverse

benefits and costs in the same knowledge dissemination process. The benefits and costs raised

by different process are also unlike toward the same learner. Hence, to begin with we can work

out the teaching plan (the times and the intervals of impulsive teaching activity per period)

and ascertain the learning style (the capability of a learner to absorb knowledge and retain

memory). Further we need to make sure the benefits and costs aimed at the particular learner

in the specific knowledge dissemination process. Then we can numerically solve the optimiza-

tion system constituted by Eqs (28) and (32) to obtain the optimal teaching strategy and the

optimal knowledge level step by step in Maple.

Specifically, we numerically solve the optimal solutions under three different teaching plans

(q = 1, q = 2 and q = 3). For functions s(t), η1(t) and η2(t), we select one as the periodic func-

tion, whereas the others are assigned as the constant functions. This setting is to make an anal-

ogy to diverse learning styles [29], as shown in Table 1, which aims to exhibit the universality

of the optimal teaching strategy.

We select the following parameters to calculate: α = 1, β = 1, C = 10, t1 = 1, t2 = 3, t3 = 5, Tm

= 5, T = 10, P = 5 and L = 1. We assume that only one impulsive teaching activity takes at the

fixed moments t1 = 1 per period T = 10 when q = 1. Similarly, we conduct two impulsive teach-

ing activities at t1 = 1, t2 = 3 when q = 2 and three activities at t1 = 1, t2 = 3, t3 = 5 when q = 3

within the same period. Ei(i = 1, 2, 3) are their corresponding impulsive teaching effort.

According to the above method, we can get the results as shown in Table 2. Each row displays

the optimal solutions in the corresponding situations.

Table 1. Diverse learning styles.

Styles Corresponding periodic functions s(t), η1(t) and η2(t)

1 sðtÞ ¼ 1

2
tanh sin pt

5

� �
þ 1

� �
; Z1ðtÞ ¼ 0:6; Z2ðtÞ ¼ 0:6

2 sðtÞ ¼ 1; Z1ðtÞ ¼
1

2
cos pt

5
þ 1

� �
; Z2ðtÞ ¼ 0:6

3 sðtÞ ¼ 1; Z1ðtÞ ¼ 0:6; Z2ðtÞ ¼
1

2
sin pt

5
þ 1

� �

https://doi.org/10.1371/journal.pone.0178024.t001
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The table depicts that, for teachers, the results provide a quantitative basis to make their

teaching strategies pertinently and designedly. Naturally, learners can gain maximum benefits

at minimum costs. Therefore, faced with the complex and complicated personal education,

our research can fulfill various teaching and learning requirements, thereby showing its

superiority.

Conclusion and discussions

In this paper, we propose the periodic impulsive knowledge dissemination system, which is

more accordant with the laws of knowledge dissemination affected by the teaching activities.

This system reflects that the learning and progress of a learner can not be separated from the

teacher guidance. Therefore, it is crucial to draw up the suitable teaching strategy that complies

with the requirements of both teachers and learners. Such teaching strategy needs to be mea-

surable and operable, and not simply ubiquitous and qualitative descriptions.

Our study through strict mathematical derivation and analysis does not only exhibit intrin-

sic stability, but also can solve this problem properly. Meanwhile, we give several practical

examples to make the conclusion intuitive and specific. Certainly, the more delicately the

learning styles of learners are portrayed, the more complicated the optimization system is

solved. We need to use some powerful mathematical tools to complete the calculation that can

not be completed manually. Clearly, this quantitative study is also applicable for open online

learning and e-learning by addressing the problem of assigning the most suitable capacity of

learning materials at specified times for learners.

In the future, we can select impulsive moments as control variables (assuming Ei, i = 1, 2,

� � �, q are fixed), and propose other management objective, such as average knowledge absorp-

tive capacity [30, 31] within a period. Investigating which sequences of impulsive moments

can maximize objective function is also a meaningful work. The findings can cope with the

problem of identifying the most appropriate series of times to send certain learning materials

to learners. Research on the above two kinds of problems can realize the functions of pushing

learning materials toward learners quantitatively and regularly in open online learning and e-

learning.

In conclusion, realizing quantitative description and solution for actual changes and thor-

ough processes of knowledge dissemination is a fundamental task crucial for precisely drawing

up the efficient teaching strategy. Such customized strategy is beneficial and practical because

it considers the development requirements of learners, provides quantitative basis for teaching

process, and highlights the advantages of personalized education. We believe that we can

Table 2. Numerical optimal solutions in corresponding situations.

Teaching Plans Styles E* = (E1, � � �, Eq) x* = (x1, � � �, xq) J*

q = 1

1 0.2309 0.5973 0.2340

2 0.2349 0.6441 0.1830

3 0.2167 0.6203 0.1947

q = 2

1 (0.2847, 0.3593) (0.6472, 0.6123) 0.5547

2 (0.2943, 0.3315) (0.6700, 0.6430) 0.4516

3 (0.1741, 0.2732) (0.6600, 0.6586) 0.3150

q = 3

1 (0.3003, 0.2110, 0.4423) (0.6828, 0.6319, 0.6329) 0.7227

2 (0.3420, 0.4730, 0.2872) (0.6394, 0.6402, 0.6094) 0.9261

3 (0.1442, 0.1483, 0.3392) (0.6953, 0.6730, 0.6909) 0.3547

https://doi.org/10.1371/journal.pone.0178024.t002
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create an improved learning environment for learners by optimizing teaching strategy to

appeal to a wide variety of learning styles.
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2. Alonso F, López G, Manrique D, Vi€nes JM. An instructional model for web-based e-learning education

with a blended learning process approach. Brit. J. Edu. Tech. 2005 Feb; 36(2):217–235. https://doi.org/

10.1111/j.1467-8535.2005.00454.x

3. Liu JG, Dang YZ, Wang ZT. Complex network properties of Chinese natural science basic research.

Physica A: Statistical Mechanics and its Applications. 2006 Jul; 366:578–586. https://doi.org/10.1016/j.

physa.2005.10.036

4. Liu JG, Xuan ZG, Dang YZ, Guo Q, Wang ZT. Weighted network properties of Chinese nature science

basic research. Physica A. 2007 Apr; 377(1):302–314. https://doi.org/10.1016/j.physa.2006.11.011

5. Liu JG, Yang GY, Hu ZL. A knowledge generation model via the hypernetwork. PloS ONE. 2014 Mar; 9

(3):e89746. https://doi.org/10.1371/journal.pone.0089746 PMID: 24626143

6. Yang GY, Hu ZL, Liu JG. Knowledge diffusion in the collaboration hypernetwork. Physica A. 2015 Feb;

419:429–436. https://doi.org/10.1016/j.physa.2014.10.012

An optimal e-learning model

PLOS ONE | https://doi.org/10.1371/journal.pone.0178024 June 30, 2017 13 / 14

https://doi.org/10.1080/03634520701400090
https://doi.org/10.1080/03634520701400090
https://doi.org/10.1111/j.1467-8535.2005.00454.x
https://doi.org/10.1111/j.1467-8535.2005.00454.x
https://doi.org/10.1016/j.physa.2005.10.036
https://doi.org/10.1016/j.physa.2005.10.036
https://doi.org/10.1016/j.physa.2006.11.011
https://doi.org/10.1371/journal.pone.0089746
http://www.ncbi.nlm.nih.gov/pubmed/24626143
https://doi.org/10.1016/j.physa.2014.10.012
https://doi.org/10.1371/journal.pone.0178024


7. Hwang WY, Chang CB, Chen GJ. The relationship of learning traits, motivation and performance-learn-

ing response dynamics. Comp. Edu. 2004 Apr; 42(3):267–287. https://doi.org/10.1016/j.compedu.

2003.08.004

8. Edin F, Klingberg T, Johansson P, McNab F, Tegnér J, Compte A. Mechanism for top-down control of

working memory capacity. Proc. Natl. Acad. Sci. USA 2009 Oct; 106(16):6802–6807. https://doi.org/10.

1073/pnas.0901894106 PMID: 19339493

9. Smolen P. A model of late long-term potentiation simulates aspects of memory maintenance. PloS

ONE. 2007 May; 2(5):e445. https://doi.org/10.1371/journal.pone.0000445 PMID: 17505541

10. Sikström S. Forgetting curves: implications for connectionist models. Cog. Psy. 2002 Aug; 45(1):95–

152. https://doi.org/10.1016/S0010-0285(02)00012-9

11. Murre JM, Dros J. Replication and analysis of Ebbinghaus forgetting curve. PloS ONE. 2015 Jul; 10(7):

e0120644. https://doi.org/10.1371/journal.pone.0120644 PMID: 26148023

12. Hicklin WJ. A model for mastery learning based on dynamic equilibrium theory. J. Math. Psy. 1976 Feb;

13(1):79–88. https://doi.org/10.1016/0022-2496(76)90035-3

13. Anderson OR. A neuromathematical model of human information processing and its application to sci-

ence content acquisition. J. Res. Sci. Teach. 1983 Oct; 20(7):603–620. https://doi.org/10.1002/tea.

3660200702

14. Benfenati F. Synaptic plasticity and the neurobiology of learning and memory. Acta Biomed. 2007; 78

(Suppl 1):58–66. PMID: 17465325

15. Metcalfe J. Recognition failure and the composite memory trace in CHARM. Psy. Rev. 1991 Oct; 98

(4):529–553. https://doi.org/10.1037/0033-295X.98.4.529

16. Chappell M, Humphreys MS. An auto-associative neural network for sparse representations: Analysis

and application to models of recognition and cued recall. Psy. Rev. 1994 Jan; 101(1):103–128. https://

doi.org/10.1037/0033-295X.101.1.103

17. Humphreys MS, Bain JD, Pike R. Different ways to cue a coherent memory system: a theory for epi-

sodic, semantic, and procedural tasks. Psy. Rev. 1989 Apr; 96(2):208–233. https://doi.org/10.1037/

0033-295X.96.2.208

18. Hintzman DL. Judgments of frequency and recognition memory in a multiple-trace memory model. Psy.

Rev. 1988 Oct; 95(4):528–551. https://doi.org/10.1037/0033-295X.95.4.528

19. Roy S, Majumdar P. A Mathematical Study of the Dynamics of Conscious Acquiring of Knowledge

through Reading and Cramming and the Process of Losing Information from the Brain by Natural For-

getting of Facts. Psychology. 2010 Oct; 1(04):252–260. https://doi.org/10.4236/psych.2010.14034

20. Dabbagh N, Kitsantas A. Personal Learning Environments, social media, and self-regulated learning: A

natural formula for connecting formal and informal learning. The Internet and higher education. 2012

Jan; 15(1):3–8. https://doi.org/10.1016/j.iheduc.2011.06.002

21. Lakshmikantham V, Bainov DD, Simeonov PS. Theory of impulsive differential equations. Singapore:

World scientific Press. 1989.

22. Haas MR, Hansen MT. Different knowledge, different benefits: toward a productivity perspective on

knowledge sharing in organizations. Strat. Manage. J. 2007 Jul; 28(11):1133–1153. https://doi.org/10.

1002/smj.631

23. Gosen J, Washbush J. A review of scholarship on assessing experiential learning effectiveness. Simu-

lation & Gaming. 2004 Jun; 35(2):270–293. https://doi.org/10.1177/1046878104263544

24. Xiao Y, Cheng D, Qin H. Optimal impulsive control in periodic ecosystem. Syst. & Contr. Lett. 2006 Jul;

55(7):558–565. https://doi.org/10.1016/j.sysconle.2005.12.003

25. Dong L, Chen L, Sun L. Optimal harvesting policies for periodic Gompertz systems. Nonlinear Anal.

Real World Appl. 2007 Apr; 8(2):572–578. https://doi.org/10.1016/j.nonrwa.2006.01.001

26. Clark CW. Mathematical Bioeconomics, the optimal control of renewable resources. New York: John

Wiley Press. 1976.

27. Bainov D, Simeonov P. Impulsive differential equations: periodic solutions and applications. Boca

Raton: CRC Press. 1993.

28. Guo HY, Dou JW. Optimal control strategy of nonautonomous Gilpin-Ayala harvesting systems. J.

Shaanxi Univ. Sci. & Tech. (Nat. Sci. Ed.) 2014 Oct; 32(5):169–173.

29. Cassidy* S. Learning styles: An overview of theories, models, and measures. Edu. Psy. 2004 Oct; 24

(4):419–444. https://doi.org/10.1080/0144341042000228834

30. Camisón C, Forés B. Knowledge absorptive capacity: New insights for its conceptualization and mea-

surement. J. Bus. Res. 2010 Jul; 63(7):707–715. https://doi.org/10.1016/j.jbusres.2009.04.022

31. Cowan R, Jonard N. Network structure and the diffusion of knowledge. J. Econ. Dyn. Contr. 2004 Jun;

28(8):1557–1575. https://doi.org/10.1016/j.jedc.2003.04.002

An optimal e-learning model

PLOS ONE | https://doi.org/10.1371/journal.pone.0178024 June 30, 2017 14 / 14

https://doi.org/10.1016/j.compedu.2003.08.004
https://doi.org/10.1016/j.compedu.2003.08.004
https://doi.org/10.1073/pnas.0901894106
https://doi.org/10.1073/pnas.0901894106
http://www.ncbi.nlm.nih.gov/pubmed/19339493
https://doi.org/10.1371/journal.pone.0000445
http://www.ncbi.nlm.nih.gov/pubmed/17505541
https://doi.org/10.1016/S0010-0285(02)00012-9
https://doi.org/10.1371/journal.pone.0120644
http://www.ncbi.nlm.nih.gov/pubmed/26148023
https://doi.org/10.1016/0022-2496(76)90035-3
https://doi.org/10.1002/tea.3660200702
https://doi.org/10.1002/tea.3660200702
http://www.ncbi.nlm.nih.gov/pubmed/17465325
https://doi.org/10.1037/0033-295X.98.4.529
https://doi.org/10.1037/0033-295X.101.1.103
https://doi.org/10.1037/0033-295X.101.1.103
https://doi.org/10.1037/0033-295X.96.2.208
https://doi.org/10.1037/0033-295X.96.2.208
https://doi.org/10.1037/0033-295X.95.4.528
https://doi.org/10.4236/psych.2010.14034
https://doi.org/10.1016/j.iheduc.2011.06.002
https://doi.org/10.1002/smj.631
https://doi.org/10.1002/smj.631
https://doi.org/10.1177/1046878104263544
https://doi.org/10.1016/j.sysconle.2005.12.003
https://doi.org/10.1016/j.nonrwa.2006.01.001
https://doi.org/10.1080/0144341042000228834
https://doi.org/10.1016/j.jbusres.2009.04.022
https://doi.org/10.1016/j.jedc.2003.04.002
https://doi.org/10.1371/journal.pone.0178024

