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SUMMARY

Biomechanical signals from remodeled extracellular matrix (ECM) promote tumor
progression. Here, we show that cell-matrix and cell-cell communication may be
inherently linked and tuned throughmechanisms of mechanosensitive biogenesis
of trafficking vesicles. Pan-cancer analysis of cancer cells’ mechanical properties
(focusing primarily on cell stiffness) on substrates of varied stiffness and compo-
sition elucidated a heterogeneous cellular response to mechanical stimuli.
Through machine learning, we identified a fingerprint of cytoskeleton-related
proteins that accurately characterize cell stiffness in different ECM conditions.
Expression of their respective genes correlates with patient prognosis across
different tumor types. The levels of selected cytoskeleton proteins indicated
that cortical tension mirrors the increase (or decrease) in cell stiffness with a
change in ECM stiffness. A mechanistic biophysical model shows that the ten-
dency for curvature generation by curvature-inducing proteins has an ultrasensi-
tive dependence on cortical tension. This study thus highlights the effect of ECM
stiffness, mediated by cortical tension, in modulating vesicle biogenesis.

INTRODUCTION

Cellular functioning, normal or pathological, is orchestrated by interactions with other cells, extracellular matrix

(ECM), and other components such as extracellular vesicles in the microenvironment (Bissell and Hines, 2011).

Besides providing structural support to tissues andorgans, the ECM influences basic cellular processes ranging

from differentiation and apoptosis to migration and proliferation (Hynes, 2009). A microenvironment more

conducive to tumorigenesis and metastasis is created by tumors leveraging dysregulated ECM remodeling

mechanisms (Bonnans et al., 2014; Winkler et al., 2020). One of the critical mechanical alterations is the stiff-

ening of ECM in tumors (Masuzaki et al., 2007; Levental et al., 2009; Laklai et al., 2016). Cellular mechanosensing

via transmembrane receptors (such as integrins) of a stiff matrix enhances oncogenic signaling pathways pro-

moting growth, survival, and invasion leading to tumor progression (Kai et al., 2016; Miroshnikova et al., 2017;

Northey et al., 2017). A stiff ECM also promotes myeloid cell polarization and alters T cell function, broadening

its effects to regulate tumor immunity (Springer and Fischbach, 2016; Meli et al., 2019; Chirivı̀ et al., 2021).

Cells respond to mechanical stimuli (such as a change in substrate stiffness) by altering their mechanics

such as cell stiffness, motility, adhesion, and contractility (Janmey et al., 2020). The mechanical properties

of cells have been shown to be modulated by the organization of the cytoskeleton (Fletcher and Mullins,

2010). Studies have also demonstrated mechanosensing-based remodeling of the cytoskeleton (Solon

et al., 2007; Trichet et al., 2012; Gupta et al., 2015). Although dynamic reorganization of the cytoskeleton

is essential in the cell cycle, morphogenesis, and cell motility, these processes often go awry in cancer. De-

regulated cytoskeleton dynamics have been implicated in tumor cell migration, invasion, and metastasis

(Yamaguchi and Condeelis, 2007; Hall, 2009; Sun et al., 2015).

Communication between a cell and its surroundings is mediated through biochemical and physical

interactions of the plasma membrane with the microenvironment constituents. Endocytosis, involving

the internalization of the plasma membrane (lipids and proteins), extracellular material, and subsequent

cargo trafficking, contributes to several cellular processes such as cell adhesion andmigration, signal trans-

duction, and cell polarity (Grant and Donaldson, 2009; Doherty andMcMahon, 2009). Endosomal cargo can

either be recycled to the membrane or culminate in lysosomes for degradation or secreted extracellularly

through the release of exosomes. Studies have reported aberrations in endocytic pathways of cancer cells

(Mellman and Yarden, 2013). For instance, enhanced integrin recycling promotes invasive migration of
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cancer cells (Caswell and Norman, 2008; Muller et al., 2009), mechanisms that undermine growth factor re-

ceptors (such as EGFR and MET) degradation via lysosomes enhance proliferation (Mosesson et al., 2008),

and deregulated E-cadherin trafficking disrupts cell polarity and induces epithelial-to-mesenchymal tran-

sition (Paredes et al., 2012). The regulatory machinery of endocytic trafficking being ‘‘hijacked’’ in tumors is

further highlighted by the expression of chemokine receptors on tumor cells being crucial in metastasis

(Zlotnik et al., 2011; Marchese, 2014; Chow and Luster, 2014).

Among various extracellular vesicles in the microenvironment, exosomes are nano-sized lipid vesicles

produced through the endocytic pathway and secreted via exocytosis (Edgar, 2016; Gurung et al., 2021).

Exosomes are efficient mediators of cell-to-cell communication, with the exosomal cargo of parent cell-

specific bioactive molecules affecting the function and behavior of recipient cells (Gurung et al., 2021).

Tumor-derived exosomes (TEXs) have been implicated in cancer progression and metastasis (Whiteside,

2016), with studies showing their role in promoting tumor cell invasion (Hoshino et al., 2013) and migration

(Sung et al., 2015) as well as helping establish pre-metastatic niches at distant tissue sites (Peinado et al.,

2017). TEXs are also a vital component of the ability of cancer cells to evade the immune system (Shinohara

et al., 2017; Chen et al., 2018; Kurywchak et al., 2018).

From clathrin-mediated endocytosis at the plasma membrane to the biogenesis of exosomes as intralumi-

nal vesicles through inwards budding in late endosomes, membrane curvature remodeling involving highly

curved structures (such as vesicles and tubules) is an essential component of trafficking pathways. Among

several mechanisms postulated for membrane remodeling (McMahon and Boucrot, 2015), a class of pe-

ripheral membrane proteins capable of generating curvature plays a central role. The importance of epsin

N-terminal homology (ENTH) domain in inducing curvature in clathrin-coated pits during endocytosis has

been well established (Ford et al., 2002; Agrawal et al., 2010). Bin-Amphiphysin-Rvs (BAR) domains have

also been reported to play a primary role in high membrane curvature generation and stabilization in en-

docytic machinery (Dawson et al., 2006). Endosomal Sorting Complex Required for Transport (ESCRT) III

protein complexes are considered to be primary inducers of curvature necessary for vesiculation in ILV

formation (Henne et al., 2013). Curvature generation by these proteins will depend on the membrane’s

mechanical properties (such as tension and bending rigidity). Forces from the cytoskeleton also strongly

influence membrane deformability by modulating the effective tension in the membrane through

membrane-to-cortex attachments (Diz-Muñoz et al., 2013; Sens and Plastino, 2015). Cytoskeleton-related

tension will, therefore, affect the curvature-generating capabilities of the curvature-inducing proteins.

The abnormally altered ECM stiffness observed in tumorigenesis and the dependence of cytoskeletal

dynamics on matrix elasticity suggest a mechanosensitive mechanism employed by tumors for regulating

trafficking pathways. We thus asked whether stiff ECM affects the membrane curvature generation needed

in trafficking pathways through its effect on cortical tension. To answer this question, in this study, we

analyzed a pan-cancer mechanobiology dataset to elucidate the dependence of cell mechanics of different

cancer cells on ECM stiffness and composition. Next, we used information-theoretic andmachine learning-

based approaches to identify key cytoskeletal proteins mediating the effect of ECM stiffness on cell me-

chanics. Survival analysis was performed to ascertain the importance of selected proteins from a clinical

perspective. We then employed a continuum mesoscale membrane model to delineate how membrane

deformations (such as vesiculation and tubulation) orchestrated by curvature-inducing proteins depend

on tension owing to cytoskeleton. This connection between cortical tension and vesicle biogenesis confers

an intriguing paradigm of mechanosensitivity to cellular functions and further underscores the need for

considering biophysical effects on signaling pathways, to gain a holistic understanding of how mechanical

stimuli such as ECM stiffening aid in tumor initiation and progression.
RESULTS

Characterization of cell stiffness in different cancer cells across various substrates

The effects of changes in the mechanical properties of tissues are increasingly implicated in the normal devel-

opment of tissues and the neoplastic functions of cells in various disease states (Discher et al., 2005). One classic

example of this process is the stiffening of liver tissue in the early stages of fibrotic disease, which is caused by

increasing stiffness of the extracellularmatrix (ECM) well before changes in cell morphology or ECMdeposition

is observed (Georges et al., 2007). The effect of substrate stiffness and composition, therefore, might be ex-

pected to affect many aspects of both normal and cancer cell function. The National Cancer Institute (NCI) Lei-

dos mechanobiology dataset is compiled from high-throughput studies on the mechanical properties of
2 iScience 25, 104721, August 19, 2022
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Figure 1. Cell stiffness characterization for cancer cell lines grown on different ECM substrates

(A) 20 cancer cell lines grown on seven different matrix conditions explored in cell stiffness measurements. (HA: Hyaluronic Acid).

(B) Cell stiffness (Pa) for each cell line averaged over respective cells grown on different ECM substrates (left). Ratio of cell counts in high vs. low stiffness

categories where cutoff used for demarcation is the median of KDEall (right).

(C and D) COL: Collagen, FN: Fibronectin, HACOL: Collagen coated HA, and HAFN: Fibronectin coated HA.

(C) Average cell stiffness (Pa) for each cell line on each of the seven ECM substrates.

(D) Ratio of cell counts in high vs. low stiffness categories where cutoff used for demarcation is the median of the cell type-specific KDE of cell stiffness over all

substrates.

(E) For each cell line, the average value of the ratio of the Young’s Moduli of the cells in moving from one substrate to another as a measure of the cell stiffness

sensitivity to substrate change. (COL fold: 30kPa COL/500Pa COL, FN fold: 30kPa FN/500Pa FN, HYAL fold: HACOL/HAFN, Glass fold: Glass/500Pa COL,

HAFN fold: HAFN/500Pa FN, HACOL fold: HACOL/500Pa COL).
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cancer cells in various substrates mimicking the ECM. The dataset has cell mechanics-related data (such as cell

stiffness and motility) for 20 cancer cell lines grown on seven different ECM substrates. Based on the cell stiff-

ness (Young’s modulus, E) data in the Leidos dataset (Figure 1A), we characterize how cancer cell stiffness

changes in different ECM substrates of varying stiffness for different cell types. For our analysis, we computed

the kernel density estimates (KDE) for summarizing the distribution of Young’s modulus: across all cell types

and all substrates (KDEall) and for each cell type across all substrates (Figures S1 and S2).

First, we examined how cell stiffness varies across different cell types. For each cell type, the average value of

E across the seven different substrates was computed (Figure 1B). Although skin-derived cells did not show

significant variation in stiffness across different cell lines, other tissue types had significant variation in cell

stiffness among their respective cell lines, with breast cancer cell lines showing the most variation

(3.5 kPa–11 kPa). We then set out to quantify the relative counts of low and high stiffness cells within each

cell type using the median of KDEall to split the cells into low and high E categories (Figure 1B). Some inter-

esting results can be seen. A375, WM266-4 (skin cancer cell lines), SW480 (colon cancer cell line), and MCF-

10A-JSB (breast cancer cell line) have a very high proportion of their cells with high cell stiffness across all

ECM substrate conditions. The remaining skin, colon, and breast cell types (except SW620 and T-47D)

also show a higher proportion of high stiffness cells. On the other hand, pancreatic, prostate, and lung can-

cer cell lines have a more significant proportion of low stiffness cells. Overall, the results suggest a variation

in the distribution of low stiffness and high stiffness cancer cells within tissue types and across tissue types.

In order to gain amore granular understanding of how cell stiffness varies within a cell type on a particular ECM

substrate, we computed the mean of the cell stiffness for a cell line on each of the seven ECM substrates (Fig-

ure 1C). An interesting picture emerges from Figure 1C, which shows a variation in cell stiffness within tissue-

specific cell types in different substrate conditions and across tissue types. The count distribution of the cell

type and substrate-specific ratio of high stiffness to low stiffness cells is shown in Figure 1D. Unlikebefore, split-

ting cells of a cell type on a particular ECM substrate into low and high E categories is based on themedian of

that cell-type-specific KDE of cell stiffness over all substrates. This bucketing was conducted because we were

interested in comparing the behavior of a cell line on a specific substrate with the average behavior of that cell

line over all substrates. Some interesting observations stand out. Breast, colon, and skin cancer cell lines have a

higher proportion of high stiffness cells to low stiffness cells in 30 kPa collagen as compared to 500 Pa collagen

(a softer ECM). However, not all of the breast, colon, and skin cell lines show a similar trend on fibronectin sub-

strates. Lung and pancreatic tissue cell types show significantly greater proportions of high stiffness cells on

500 Pa fibronectin as compared to 30 kPa fibronectin. This analysis highlights that different cell types have vary-

ing dependence of cell stiffness on ECM stiffness and composition.

The cell stiffness sensitivity to ECM substrate (which is essential in cell mechanosensing) was further

explored by analyzing the relative change in cell stiffness when moving from one substrate to another.

Six different substrate sensitivity metrics were considered, namely COL : 30kPa COL/500Pa COL, FN

fold: 30kPa Fn/500Pa Fn, HYAL fold: HACOL/HAFN, Glass fold: Glass/500Pa COL, HAFN fold: HAFN/

500PA FN, HACOL fold: HACOL/500PA COL. The average ratio of cell stiffness for each cell line was calcu-

lated in each of the six substrate sensitivity regimes (Figure 1E).

We see a wide variation in the relative change in cell stiffness as a function of substrate sensitivity. For instance,

Panc-1 (pancreatic cancer cell line) and lung cancer cell lines show a decrease in cell stiffness with increasing

ECM stiffness in both collagen and fibronectin matrices. This is in contrast to the breast and colon tissue cell

types which primarily have higher cell stiffness when grown on more stiff substrate. However, for an increase
4 iScience 25, 104721, August 19, 2022
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in fibronectin matrix stiffness (FN fold) HCT116 (colon cancer cell line) andMCF10A-JSB (breast cancer cell line)

show a decrease in cell stiffness. Overall, the results show the heterogeneity in how cells within and across tis-

sue-specific cancer cell lines respond to mechanical cues such as increasing ECM stiffness.
Essential cytoskeleton proteins mediating effects of extracellular matrix stiffness on cell

stiffness

Having characterized the cell stiffness of various cancer cells in various ECM substrates of varying stiffness

and composition, we next asked two questions. (1) Which proteins seem to be implicated in the ability of

cells to respond to mechanical cues in the context of modulating their cell stiffness? Moreover, (2) is there a

defined expression signature of proteins that can capture the cell stiffness variations in response to

changes in ECM mechanics? To gain critical insights related to these questions, we used the genomics

and proteomics data available in the NCI Leidos mechanobiology dataset (in addition to cell mechanics-

related data) for nine cell lines (A375, RWPE-1, 22RV1, SW620, SW480, T-47D, MDA-MB-231, U-87, and

T98G) grown on seven different ECM substrates. The richness of the multi-omics data at single-cell reso-

lution provides unique new opportunities to construct predictive data-driven models to relate genotype

to cell states to phenotype across different microenvironment mechanics and chemistry.

In order to understand which proteins could be implicated in cell response to mechanosensing, mRNA

diff-seq analysis of the Leidos genomics dataset to analyze gene expression profiles of cancer cells mecha-

nosensing of different substrate microenvironments was performed, which yielded �800 genes, of which

�180 were reflected in the proteomics dataset. Gene ontology (GO) analysis of these 180 genes showed

a preponderance of several gene categories: signaling, extracellular region, ECM organization, actin-bind-

ing, cell adhesion, and cell junction. We focused on the role of cytoskeletal-related proteins in modulating

cell stiffness in response to ECM mechanics.

The cytoskeleton comprises hundreds of diverse signaling and scaffolding proteins that modulate cell shape,

migration, and cellular mechanosensing (Fletcher and Mullins, 2010). A manually curated list of cytoskeletal-

related proteins was compiled. These proteins include the major components of the cytoskeleton itself: micro-

filaments (actin), intermediate filaments (vimentin, keratin, and lamin), andmicrotubules (tubulin). We surmised

that changes to the quantities of these proteins should correlate strongly with significant morphological

changes to the cell and its stiffness. Accessory proteins, including the actin cross-linkers filamin alpha-actinin,

nesprin, andplectin, were included in the list. Finally, the list includedproteins responsible for cell adhesion and

force transduction, namely, integrin adhesion receptors, components talin and vinculin, andmyosinmotor pro-

tein. In order to couple the protein expression levels of these proteins to cell stiffness, we applied an informa-

tion-theoretic measure of mutual information (I normalized to lie between 0 and 1). Proteins from the curated

list whose I with cell stiffness R0.8 were selected, producing a resultant list of 18 proteins (Figure 2A).

Cells were split into low andhigh cell stiffness regimeswith demarcation basedon themedian of the KDEof cell

stiffness across all nine cell types and all substrates in order to streamline further analysis. We applied principal

component analysis (PCA) to the protein count of the selected 18proteins in the lowandhigh cell stiffness data-

sets and focused on the first five principal components (PC1-5), which accounted for approximately 90% of the

variation in the data (Figure 2B). There is a clear distinction between low stiffness and high stiffness regime cells,

as observed from the heatmaps.We computed the pairwise angles between PC1-5 of the low stiffness and high

stiffness cells to quantify their difference, which clearly showed that the protein expression signature signifi-

cantly differed (Figure 2B). Based on these insights, we explored the predictive power of these 18 proteins

in predicting cell stiffness (low/high stiffness). A neural network predicted with balanced accuracy (BACC) of

98% on a test dataset if a cell was likely to be belonging to the low stiffness or high stiffness category.

A model explainability metric based on treating the features (protein counts of the proteins in Figure 2A) as

players in a cooperative game and applying a game-theoretic measure called the Shapley value (Lundberg

and Lee, 2017) was applied to the neural network (Figure 2C). This gives a measure of how much each

feature contributes to the prediction. The top five contributors to the prediction of cell stiffness in our

neural network are alpha-actinin-4 (ACTN4), myosin-9 (MYH9), plectin (PLEC), talin-1 (TLN1), and vinculin

(VCL). The histogram of protein counts of these proteins shows that their protein expression signatures

are generally higher in high stiffness cells than in low stiffness cells (Figure 2C). We also trained a neural

network having the same architecture as before but input features consisting only of Shapley-based top

five proteins which gave a high balanced accuracy of 85% on the test set.
iScience 25, 104721, August 19, 2022 5



Figure 2. Cytoskeleton proteins correlated with and predictive of cell stiffness for cancer cell lines grown on different ECM substrates

(A) 18 cytoskeletal-related proteins whose mutual information with cell stiffness R0.8.

(B) PCA heatmap of first five principal components (PC1-5) of protein expression levels in low stiffness and high stiffness cells. Pairwise angles between the

respective PC1-5 of low and high stiffness cells.

(C) Shapley values of the selected 18 cytoskeletal-related proteins used as features in neural network to predict cell stiffness category (with balanced

accuracy of 98% on the test set). Histogram showing the distribution of protein expressions of the top five proteins in low and high cell stiffness categories.
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This section gives an intriguing insight into how the highly diverse behavior among different cancer cell lines

in terms of their cell stiffness on varied ECM substrates (Figure 1) can be captured through a low-dimensional

fingerprint involving certain essential cytoskeletal proteins. Altogether, the results suggest that the 18 selected

cytoskeleton-related proteins are implicated in modulating cell stiffness in response to ECMmechanical cues.

Furthermore, considering that the selected proteins contain several actin cross-linking proteins (alpha-actinin

and filamins), cytoskeletal linker protein (plectin) and myosin-II subunit (myosin-9) that have good correlative

and predictive power with respect to cell stiffness of different cell types on different ECM substrates, the

analysis indicates that the underlying cortical stiffness and tension significantly modulate the cell stiffness.
Clinical significance of the selected cytoskeleton genes

To further clarify the significance of the selected cytoskeleton genes, we performed a survival analysis using

the clinical patient data for different cancer types from the TGCA PanCancer Atlas dataset on the

cBioPortal platform (http://cbioportal.org) (Cerami et al., 2012; Gao et al., 2013). The patient dataset for
6 iScience 25, 104721, August 19, 2022
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Table 1. Medianmonths (for overall and progression-free survival) from survival analysis performed using cBioPortal on patient-derived clinical data

from TCGA PanCancer Atlas dataset

Tissue Type Ovary Skin Brain Lung

Low Unaltered High Low Unaltered High Low Unaltered High Low Unaltered High

ACTN4 44.84a,c 29.03a,c

MYH9 37.38a,d 19.50a,d

PLEC 12.49a,c 18.90a,c 14.73a,c 10.82a,c 53.33b,c 29.75b,c

42.51b,c 23.80b,c

TLN1 94.98a,c 58.52a,c

VCL 46.72a,c 37.71a,c

ACTN1 16.83a,c 18.51a,c

LMNA 34.03a,c 45.01a,c 94.98a,c 61.28a,c 19.82a,c 13.61a,c

FLNB 44.32a,c 41.06a,c 93.01b,d 53.19b,d

14.43a,d 18.90a,c,d 16.83a,c

LMNB2 40.47b,c 22.32b,c

ACTN3 44.84a,c 33.67a,c 44.61a,c 53.65a,c

FLNC 54.34b,c 21.57b,c

KRT18 53.33b,c 29.46b,c

ACTG1 94.98a,c 55.59a,c

GSN 14.73a,c 7.36a,c

7.59a,c 5.79a,c

FLNA 94.98a,c 55.59a,c

Low and high correspond to samples having normalized mRNA expression (z �scoreÞ % � ðthreshold) and R threshold, respectively. Unaltered refers to the

profiled tumor samples having gene expression within ‘‘threshold’’ standard deviations of themean expression of all profiled tumor samples of a particular cancer

type.Median months for progression-free survival are shown in italic. See also Figures S5–S11 for the KM plots. Ovary: ovarian serous cystadenocarcinoma, Skin:

skin cutaneous melanoma, Brain: glioblastomamultiforma, Lung: lung adenocarcinoma. See Table S1 for details about the TCGA cancer datasets. Note that only

cases that had logrank test p-value < 0.05, and also had sufficient events to establish a 95% confidence interval for median months have been reported in

the table.
alogrank test p-value < 0.05.
blogrank test p-value < 0.01 for statistically significant difference between survival curves of unaltered and low/high samples.
cz-score threshold = 1.0.
dz-score threshold = 1.5.
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each tumor type was divided into three categories based on the normalized mRNA expression (z � score)

of a gene. In brief, the z-score of a gene refers to how many standard deviations away is the gene

expression for a patient as compared to the mean gene expression in the reference population. The

reference population used was all profiled tumor samples of a particular cancer type. For each gene, the

three categories are then defined as (i) samples having low expression (z-score % � ðthreshold)), (ii) unal-
tered samples (� ðthresholdÞ< z-score< threshold), and (iii) samples having high expression

(z�scoreR threshold). Following this, the clinical data of the patients in each of the three groups were

used for Kaplan-Meier (KM) analysis, wherein we considered the overall survival and the progression-

free survival curves and compared unaltered and low/high categories.

Table 1 summarizes the results from the survival analysis for different cancer types in terms of median

months of overall survival and progression-free survival. Note that, for both overall and progression-free

survival, the difference between the KM curves of unaltered and low/high samples was considered statis-

tically significant for logrank test p-value of less than 0.05. Additionally, only those KM plots that had

enough samples (and events) for computing the 95% confidence interval for median months were taken

into account. An interesting spread of median months of overall survival and progression-free survival

was observed. Skin cutaneous melanoma patients with higher expression of some of the selected cytoskel-

eton genes had lower median survival. For ovarian serous cystadenocarcinoma and lung adenocarcinoma,

there are also cases where low expression of a particular gene leads to lowermedian survival. The effect of a

particular gene varied across tissue types. For instance, low LMNA expression patients had lower and
iScience 25, 104721, August 19, 2022 7
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higher median overall survival for ovary and brain cancers, respectively. Overall, the survival analysis sug-

gests that the expression of the essential cytoskeletal-related genes identified in this study could have a

significant effect on the clinical outcome of a patient across different tumor types.
Ultrasensitive response of membrane deformation by curvature-inducing proteins to

changes in cortical tension

Curvature-inducing proteins are part of a specialized class of cytosolic proteins that can sense, induce and

stabilize high curvature local morphologies (like tubes and buds) of membranes (Shibata et al., 2009; Kozlov

et al., 2014). One of the key features in the curvature generation mechanism observed for these proteins is

the spatial localization of functional units via oligomerization and via membrane-mediated forces for

inducing sufficient curvature followed by self-assembly of these functional units on the membrane to

generate macroscopic high curvature morphologies such as vesiculation and tubulation (Yu and Schulten,

2013; Simunovic et al., 2013; Zhao et al., 2013; Tourdot et al., 2014; Daum et al., 2016). A previous study

(Tourdot et al., 2015) proposed a micellization-like model for membrane tubulation, wherein tubes formed

by self-assembly of curvature-inducing proteins are analogous to micelle aggregates formed by self-as-

sembly of surfactant molecules. Here, we show that this self-assembly mechanism is crucial to explain

the tension dependence of vesiculation.

In cells, the deformation of a patch of membrane is also dependent on the cortical actin tension owing to

the associated cortex (Diz-Muñoz et al., 2013; Granger et al., 2014). To address how the curvature-gener-

ating capabilities of curvature-inducing proteins is affected by cortical tension, we used dynamically

triangulated Monte Carlo (DTMC) simulations to explore the morphological conformational space of

planar to highly curved membranes (Ramakrishnan et al., 2014; Tourdot et al., 2014, 2015). We utilized

the DTMC framework to simulate a membrane patch and model the surface deformations induced by

curvature-inducing proteins, which are represented as curvature fields (each field represents 10 protein

units). The dependence of cortical tension is incorporated by simulating membrane patches with different

excess areas (A/Ap, A is the curvilinear area of the membrane patch, and Ap is the projected area) where

increasing excess area corresponds to decreasing cortical tension (Ramakrishnan et al., 2018).

As our focus in this study is highly curved structures produced by morphological transitions (such as

observed in endocytic events), we use the universality that both vesiculation and tubulation can be

described in terms of the self-assembly of curvature-inducing proteins to generate a morphological

change in the membrane (Tourdot et al., 2014, 2015). Using the DTMC framework, we analyzed how the

membrane morphology changes with increasing excess area for a given total number of protein-induced

curvature fields (np) (Figure 3A). The extent of curvature change can be seen in terms of how many protein

fields are in the tubular region (nt) for the equilibrium membrane morphologies. The equation for

describing the simulation data (nt vs A/Ap) was obtained by generalizing the micelle model proposed by

Tourdot et al. (2015) as described in STAR Methods (also see Figure S3) and is given by:

nt = a+
b

c +
�

A
AP

� 1
�n (Equation 1)

where a, b, and c are constants for a given np. The parameter n can be viewed as a Hill-type coefficient indi-

cating cooperativity between protein fields to induce tubulation. For a fixed value of n, Equation 1 was

fitted to the data (nt vs A/Ap) obtained from simulations for different np values. The heatmap in Figure 3B

summarizes themean square errors (MSE) for different values of n across various nₚ used in simulations. The

MSE values for n> 7 were much higher than those for n% 7. Among the values of 2–7, n = 4 had lower MSE

values compared to n = {2,3} for np% 16 and n = {5,6,7} for np > 16. Furthermore, n = 4 is consistent with the

number of protein fields per tube being approximately four post onset of tubulation in (Tourdot et al.,

2015). Therefore, Equation 1 with n = 4 was chosen as the representative of nt as a function of A/Ap. Fig-

ure 3C shows the ultrasensitive dependence of nt on excess area (A/Ap) for different values of np.

The number of proteins on tubular region (nt) plateaus with increasing excess area indicating that the

extent of morphological change in amembrane patch induced by curvature-generating proteins eventually

saturates with lowering of cortical tension. Parameter a0 in Equation 1 defines the saturation value of nt and

was found to increased linearly with np (Figure S4). Parameters 0b0 and 0c0 in Equation 1 characterize how fast

the saturation is achieved, and their values monotonically increased and decreased, respectively, as a
8 iScience 25, 104721, August 19, 2022



Figure 3. Effect of cortical tension on curvature generation by curvature-inducing proteins

(A) Snapshot illustrating the change in membrane curvature owing to curvature-inducing proteins (here, modeled as

curvature fields).

(B) Mean square errors (MSE) between analytical (non-linear fit of Equation 1) and simulation data for different values of

degree n in Equation 1 across various values of the total number of protein fields (np) on the simulated membrane patch.

(C) Number of protein fields in the tubular region (nt) as a function of excess area (A/Ap, proxy for cortical tension) for

different values of np on the simulated membrane patch (Eqn: non-linear fits of Equation 1 with n = 4, Sim: simulation

data).
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function of np (Figure S4). This highlights the observation that with more curvature-inducing proteins on the

membrane (higher np), protrusion formation can happen at higher cortical tension (Figure 3C).

It is important to note the micellization-basedmodel used as the basis for Equation 1 which underscores an

interesting proposition wherein the ability of curvature-inducing proteins to self-assemble for the forma-

tion of membrane protrusions is modulated by cortical tension. Hence, the Hill function-like dependence

of curvature generation on the excess area (proxy for cortical tension) suggests that lower cortical tension

increases the tendency for curvature-inducing proteins to congregate and thereby, promotes morpholog-

ical changes such as tubulation and vesiculation.

DISCUSSION

The roleof a stiff ECM inpromoting tumorprogressionhasbeenwell established (Levental et al., 2009; Kai et al.,

2016; Miroshnikova et al., 2017). To investigate the response of cancer cells to mechanical cues such as ECM

stiffening, we used the cell stiffness data from the pan-cancer NCI Leidos Mechanobiology Dataset. Our

analysis suggests that cancer cells of the same cell type respond to mechanical stimuli (as quantified by

ECM substrate stiffness) in varied ways and that while mechanosensing mechanisms are functions of cell

types, even within a given cell type, there is a clear distribution of emergent behavior. This spread is consistent

with reported heterogeneity in the stiffness of cells bothwithin andbetweenbreast cancer cell lines (Shenet al.,

2020) and substrate-dependent sensitivity of cell stiffness for melanoma cell lines (Lekka et al., 2012).

Using information theory and machine learning-based analysis of the Leidos proteomics dataset, we iden-

tified a list of 18 cytoskeletal-related proteins which might be critical potentiators of the regulation of cell
iScience 25, 104721, August 19, 2022 9
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stiffness in response to mechano-stimuli such as ECM stiffness. The survival analysis further highlighted

how the expression of respective genes of the selected cytoskeleton proteins correlates with the prognosis

of patients across different tumor types. Additionally, there are numerous independent measurements that

support the importance of the proteins identified here. For example, a specific C-terminal actin-binding

site of talin is required for coupling the membrane to the cytoskeleton to regulate membrane tension

(Schulte et al., 2016), and a separate site on talin mediates integrin-dependent regulation of membrane

trafficking (Margadant et al., 2012). Mechanical unfolding of filamin is important in the tension-induced

autophagy pathway of myocytes and immune cells (Ulbricht et al., 2013), and filamin is required for cyto-

skeletal responses to tension applied at the cell membrane that leads to altered Ca2+ influx (Glogauer

et al., 1998). Recruitment of alpha actinin by myosin one- generated tension at the cell membrane is impor-

tant for strengthening cell-cell cohesion in epithelial cell monolayers (Kannan and Tang, 2018). Vinculin is

required for the membrane tension dependence of the dynamin-independent CLIC/GEEC (CG) endocytic

pathway (Thottacherry et al., 2018).

Among the top three proteins based on Shapley analysis, the higher expression of the crucial actin-actin and

actin-integrin cross-linkingprotein (ACTN4) and the versatile cytoskeletal linker protein (PLEC) point toward

an increased cortical stiffness (Wiche, 1998; Ehrlicher et al., 2015), while higher expression of the myosin-II

subunit (MYH9) is indicative of increased cortical actin tension (Clark et al., 2007). This finding suggests that

an increase (or decrease) in cell stiffness with increasing ECM stiffness could be seen as an increase (or

decrease) in cortical stiffness and tension. In our analysis of cell stiffness data, the increase in cell stiffness

observed for several cancer cell lines with increasing ECM stiffness can, therefore, be explained by the up-

regulation of RhoA/ROCK pathway leading to increased actomyosin tension (Paszek et al., 2005; Rath and

Olson, 2012). In contrast, some cancer cell lines showed a reduction in cell stiffness with increasing ECMstiff-

ness, which could be potentiated by MYC (a proto-oncogene (Venkateswaran and Conacci-Sorrell, 2017))

through a feedback loop that negatively regulates specific RhoA downstream signaling branches con-

nected to the induction of stress fibers, focal adhesions and actomyosin contractility (Sauzeau et al., 2010).

Altered components of trafficking pathways (Grant and Donaldson, 2009) have been implicated in promot-

ing tumor invasion and proliferation of cancer cells (Mellman and Yarden, 2013). We asked if membrane

curvature generation (critical in endocytic pathways) is regulated by ECM stiffness through its effect on

cortical tension. Based on purely biophysical considerations, our results suggest an ultrasensitive response

with respect to cortical tension in membrane deformation induced by curvature-inducing proteins (Fig-

ure 4). The Hill-type ultrasensitivity suggests that the effect of cortical tension on membrane deformation

is captured by the change in the propensity of curvature-inducing proteins to self-assemble on the mem-

brane for generating high curvature structures.

Our model predicts that a decrease in cortical tension could lead to a higher propensity for curvature gen-

eration. However, increasing cortical tension does not necessarily mean a decrease in curvature induced by

proteins, as the cortical tension increase could be within the saturation region of hill-type dependence

(Figure 4). This dependency suggests that the influence of ECM stiffness on membrane deformation

depends on which region (saturated or sensitive) of the Hill-type function and by howmuch the cortical ten-

sion changes, which would be dependent on the cell type. For instance, an increase in cortical tension with

stiffening ECM could be within the saturation region and thereby, not significantly affect the generation of

highly curved structures.

Recent evidence indicates that tension experienced by membranes also modulates the recruitment

dynamics of curvature-inducing proteins with upregulation in binding to membranes at low tension (Kai

et al., 2021; Mercier et al., 2020; Tsujita et al., 2021). This tension-dependent recruitment of curvature-

inducing proteins combined with our model’s prediction of curvature generation by recruited proteins

being sensitive to cortical tension suggests an interesting mechanosensitive regulatory axis that could

be exploited to alter/hijack intracellular trafficking mechanisms by cancer cells to gain fitness advantage.

The plasticity of cancer cells along the epithelial-to-mesenchymal transition (EMT) axis has been shown to

be regulated by biomechanical properties of the microenvironment such as matrix stiffness. Nuclear local-

ization of EMT transcription factor TWIST1 is promoted by the mechanosensitive EPHA2/LYN protein com-

plex, wherein EPHA2 signaling promoted by high matrix stiffness activates LYN kinase which then phos-

phorylates cytoplasmic TWIST1 (Wei et al., 2015; Fattet et al., 2020). Using a computational framework,

Deng and co-workers demonstrated a positive feedback loop involving EMT transcription factor ZEB1,
10 iScience 25, 104721, August 19, 2022



Figure 4. Schematic of how ECM stiffness affects the formation of curved structures, essential in endocytic

pathways, by curvature-inducing proteins

Here, the generation of highly curved structures (such as vesicles and tubules) as a function of excess area A/Ap (proxy for

cortical tension) has been quantified using the results from our biophysical model (Figure 3C) as the number of protein

fields in membrane protrusions nt) normalized by the total number of protein fields (np). Fold change in the curvature

generation (i.e. ratio of the normalized metric) with increase (or decrease) of cortical tension when going from low ECM

stiffness to high ECM stiffness is shown for different amounts of curvature-inducing proteins on the membrane. MVE:

multivesicular endosomes, ECM: Extracellular Matrix. Created with Biorender.com.
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collagen cross-linking enzyme LOXL2 and ECM stiffness (Deng et al., 2021). EMT-induced morphology has

been reported to have lower plasma membrane tension as compared to parental cells, leading to

increased assembly of BAR proteins on the membrane for cell motility (Tsujita et al., 2021). Cells can

also exploit endocytic machinery for advancing changes (such as cell polarity) to gain mesenchymal pheno-

type, and/or carry out EMT signaling (Corallino et al., 2015). Based on these studies, coupled with our in-

sights about the effect of ECM stiffness on cell stiffness and vesicle trafficking, it is tempting to speculate

about the intricate dual role of ECM stiffness in EMT-based invasive phenotype, involving biophysical and

biochemical axes.

While we have focused on how ECM stiffness might regulate membrane curvature deformation through

cortical tension, it is essential to consider the signaling pathways involved in cargo trafficking being altered

in cancer. The importance of mechano-based mechanisms being employed by tumors in the deregulation

of trafficking is emphasized by the recent study by Patwardhan and coworkers (Patwardhan et al., 2021) who
iScience 25, 104721, August 19, 2022 11
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Table 2. Genomic analysis performed using cBioPortal on patient-derived cancer genomic data from TGCA PanCancer Atlas

Tissue

Type

Samples

Profiled

Rab SNX EXOC ATG

max R4% max R4% max R4% max R4%

Skin 440 Mut% 5 Rab27B 5.7 SNX29, 13,

19, 31, 9

5 EXOC1,

7, 4, 6B

10 ATG2A, 2B,

ULK1, 2

367 CNA% 3.8 2.7 4.6 EXOC3 3

Prostate 494 Mut% 0.6 0.8 0.6 0.8

489 CNA% 4.3 Rab2A, 3C 8.6 SNX14, 31,

3, 16

2.2 8.6 ATG5

Ovary 523 Mut% 0.6 1 1 0.8

572 CNA% 10.8 Rab8A, 19, 3D, 6A,

30, 25, 2A, 4A, 38,

3A, 13, 22A, 39B, 44

12.4 SNX31, 27 9.1 EXOC3,

4, 2, 8

7.9 ATG4D, 9B,

16L2, 3

Lung 566 Mut% 1.2 2.5 3 3.7

511 CNA% 9.4 Rab13, 25, 22A, 29 10 SNX27, 6,

16, 31

12.9 EXOC3 2

Colon 534 Mut% 2.6 4.9 SNX13 3.7 6.2 ATGA2A,

2B, 9B

592 CNA% 7.6 Rab22A 7.6 SNX21 0.8 1.5

Breast 1066 Mut% 0.7 0.7 1 1

1070 CNA% 9.2 Rab4A, 29, 13, 25,

2A, 22A, 37, 26, 34

11.1 SNX31,

27, 16

9.4 EXOC8 4 ATG16L2

Brain 397 Mut% 0.5 1.3 1.3 2

575 CNA% 1.4 1.7 5.2 EXOC1 1.6

Mut% and CNA% correspond to the percentage of samples with one or more mutations and copy number alterations respectively. Samples profiled is the num-

ber of patient samples having the genomic data needed for that particular analysis. Here, max is the maximum value of Mut% (CNA%) for a protein family and

R 4% refers to the proteins havingMut% (CNA%) greater than 4%. See Table S1 for details about the TCGA datasets used for each of the tissue types. Rab: Rab

GTPases, SNX: sorting nexins, EXOC: exocyst complex components, and ATG: autophagy-related proteins.
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showed ECM stiffness-dependent regulation of exosome secretion through the YAP-TAZ pathway in breast

cancer for MDA-MB-231 and MCF-7 cell lines with higher exosome release on stiff matrix.

The Rab family of small GTPases is pivotal in several signaling steps, ranging from transport to fusion of

membrane-bound organelles and vesicles, of trafficking pathways (Grant and Donaldson, 2009). Numerous

studies have reported the dysregulation of Rab-mediated vesicle trafficking associated with tumor

progression (Tzeng and Wang, 2016; Lanzetti and Fiore, 2017). A vital signaling component of trafficking

involves the sorting of various cargo. Although in normal cellular behavior endosomal sorting is tightly

regulated, growing evidence suggests that the altered sorting pathways could be key contributors to

cancerous behavior. Case in point, aberrant functioning of prominent protein families involved in sorting,

such as sorting nexins (SNXs; orchestrates endosomal sorting (Cullen, 2008)) and Cbl (mediates targeting of

receptor tyrosine kinases for lysosomal degradation (Swaminathan and Tsygankov, 2006)), has been noted

to have oncogenic roles (Liyasova et al., 2015; Hanley and Cooper, 2021). For tethering of secretory vesicles

to the cellular membrane in order to fuse and subsequently release their content into the extracellular

milieu, cells employ the evolutionary conserved exocyst complex consisting of 8 (EXOC) subunits (Heider

and Munson, 2012). Components of the exocyst complex also have roles in a diverse range of cellular func-

tions (such as cell migration, nanotube formation, EMT, and ciliogenesis), and they have been implicated in

the carcinogenesis of different types of tumors (Tanaka et al., 2017; Zago et al., 2019; Zaman et al., 2021;

Saha et al., 2022). An important class of trafficking vesicles is autophagosomes, involved in autophagy

that plays a critical role in cancer cell survival under conditions of stress such as nutrient limitation

(Amaravadi et al., 2016). Autophagy-related (ATG) proteins, regulatory protein family that controls the

dynamic membrane events in autophagosome biogenesis (Mizushima et al., 2011), have emerged as

promising targets for cancer therapy with several inhibitory drugs in clinical and preclinical trials (Chen

et al., 2014; Mulcahy Levy and Thornburn, 2020). These examples underpin the importance of altered
12 iScience 25, 104721, August 19, 2022
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signaling components of trafficking pathways in conferring an array of functional advantages to cancer

cells.

To illustrate how these key signature proteins (Rab, SNX, EXOC, and ATG) involved in regulating vesicle

trafficking might be altered in the patients of cancer types considered in Figure 1, we used the cBioPortal

(http://cbioportal.org) (Cerami et al., 2012; Gao et al., 2013) to query for and analyze the mutations and

copy number variations of the signature proteins in the extensive patient-derived cancer genomics data

from The Cancer Genome Atlas (TCGA). Table 2 summarizes the results from this genomic analysis. We

can see that a significant proportion of patients with cancer across different cancer types showcase geno-

typic variations in the protein families critical in trafficking pathways, further highlighting the importance of

the signaling (regulatory) portion of intra- and inter-cellular cargo trafficking machinery in tumorigenesis.

Future work will be focused on integrating signaling pathways triggered bymechanical cues from ECMwith

the biophysical model to understand better how vesicular biogenesis and trafficking are (de)regulated in

tumors by mechanobiology-based mechanisms. This would extend the mechanosensitive paradigm for

cellular functioning presented in this study wherein tumors exploit the connection between cortical tension

and biogenesis of tubulo-vesicular membranous compartments along with altered signaling components

in trafficking pathways to survive and thrive.
Limitations of the study

Single-cell proteomics data was not available in the machine learning model, and average protein spectral

counts were used instead of single-cell data. An additional limitation is that all the data in NCI Leidos

Mechanobiology dataset is derived from subconfluent cells on a flat substrate, and therefore additional

factors owing to cell-cell contacts and three dimensionality are missing. In our mesoscale membrane

model, we have focused on surface deformation owing to curvature-inducing proteins. However, several

other mechanisms also contribute to curvature generation. For instance, actin polymerization and motor

protein forces can directly contribute to highly curved structure generation processes in endocytic path-

ways, such as the elongation of tubules in recycling endosomes and contribution to vesicle secession at

the plasma membrane (Anitei and Hoflack, 2011). Cell membrane adhesion, which can be seen from a bio-

physical perspective as pinning of membranes (such as membrane-cytoskeleton linker proteins), has also

been implicated in promoting curvature generation (Kutty Kandy and Radhakrishnan, 2019). Another factor

to consider is the glycocalyx-induced membrane remodeling (Kutty Kandy and Radhakrishnan, 2022). We

have also not undertaken in vivo experimental studies for the signature proteins identified by our analysis.

Given the prior supporting data discussed in this study, future work focusing on in vivo experiments (such as

live-cell interventions and patient-derived xenograft models) could provide further biological relevance to

the observations from our investigation and identify potential druggable targets.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

NCI Leidos mechanobiology dataset

(PS-ON Cell Line Characterization)

Synapse Synapse data: https://doi.org/10.7303/syn7248578

Code for analysis of the mechanobiology dataset This paper https://github.com/jnukpezah/

iScience_StiffnessCode

Experimental models: Cell lines

Human: SK-MEL-2 ATCC HTB-68;

RRID:CVCL_0069

Human: A375 ATCC CRL-1619;

RRID:CVCL_0132

Human: WM266-4 ATCC CRL-1676;

RRID:CVCL_2765

Human: RWPE-1 ATCC CRL-11609;

RRID:CVCL_3791

Human: 22Rv1 ATCC CRL-2505;

RRID:CVCL_1045

Human: Panc-1 ATCC CRL-1469;

RRID:CVCL_0480

Human: SK-OV-3 ATCC HTB-77;

RRID:CVCL_0532

Human: NCI-H2126 ATCC CCL-256;

RRID:CVCL_1532

Human: NL20 ATCC CRL-2503;

RRID:CVCL_3756

Human: HCT116 ATCC CCL-247;

RRID:CVCL_0291

Human: HT-29 ATCC HTB-38;

RRID:CVCL_0320

Human: SW620 ATCC CCL-227;

RRID:CVCL_0547

Human: SW480 ATCC CCL-228;

RRID:CVCL_0546

Human: T-47D ATCC HTB-133;

RRID:CVCL_0553

Human: MCF7 ATCC HTB-22;

RRID:CVCL_0031

Human: MDA-MB-231 ATCC CRM-HTB-26

RRID:CVCL_0062

Human: hTERT-HME1 ATCC CRL-4010;

RRID:CVCL_3383

Human: MCF10A-JSB ATCC CRL-10317;

RRID:CVCL_VH36

Human: U-87 ATCC HTB-14;

RRID:CVCL_0022

Human: T98G ATCC CRL-1690;

RRID:CVCL_0556

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python 3.9.12 Python Software Foundation https://www.python.org/

SciPy v1.6.2 Virtanen et al., 2020 https://scipy.org/

pyitlib v0.2.2 MIT licensed library https://pafoster.github.io/pyitlib/

TensorFlow v2.5.0 Abadi et al., 2016 https://www.tensorflow.org/

scikit-learn v1.0.2 Pedregosa et al., 2011 https://scikit-learn.org/stable/

SHAP python package Lundberg and Lee, 2017 https://shap.readthedocs.io/en/latest/index.html

Source code for DTMC membrane model Ramakrishnan et al., 2014 https://doi.org/10.1016/j.physrep.2014.05.001

Other

ATCC SOPs for cell growth Synapse https://www.synapse.org/#!Synapse:

syn7248578/wiki/410632

Experimental procedure for obtaining

Young’s modulus using atomic force

microscopy

Synapse https://doi.org/10.7303/syn7248585

Experimental procedure for RNA-seq

data in Leidos genomic dataset

Synapse https://doi.org/10.7303/syn11510898

Experimental procedure for obtaining

proteomics data in Leidos dataset

Synapse https://doi.org/10.7303/syn9697791

cBioPortal : web application for analysis

of TCGA database

Cerami et al., 2012; Gao et al., 2013 http://cbioportal.org
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Ravi Radhakrishnan.
Materials availability

This study did not generate new unique reagents.

Data and code availability

d Cell stiffness, RNA-seq, and proteomics data have been deposited at Synapse and are publicly available

as of the date of publication. DOIs are listed in the key resources table. The clinical, mutation and copy

number variation analysis used existing, publicly available TCGA data on cBioPortal web server.

d Python code for ML analysis has been deposited at GitHub (https://github.com/jnukpezah/

iScience_StiffnessCode) and is publicly available as of the date of publication. Source code for the

DTMC membrane model used for mesoscale simulation is provided in Ramakrishnan et al. (2014).

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell growth

All cell lines were from ATCC (Manassas, VA) and grown according to ATCC standard operating proced-

ures (SOPs), which are provided in the Synapse site along with the source data (see key resources table).

Media and reagents used for cell culture were either provided by ATCC or purchased from an outside sup-

plier as per ATCC SOP instructions. Thawed cells were taken to be primary cultures (p0). Cells were

passaged until passage 3 (p3) and plated on polyacrylamide or HA gels at single cell density (25,000

cells/gel). Experiments were performed 24 hours after cell plating.
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Polyacrylamide gel fabrication

Polyacrylamide gels were created by using a combination of acrylamide and bisacrylamide from Bio-Rad

Laboratories (Hercules, CA), along with water and NHS (N-hydroxysuccinimide ester) from Sigma (St. Louis,

MO) dissolved in toluene (Fisher Scientific, Waltham, MA). Briefly, NHS was dissolved in toluene to create a

saturated solution. The solution was then spun for 5 minutes on a tabletop centrifuge to remove any undis-

solved NHS. The NHS-toluene solution was then added to the water/polyacrylamide/bisacrylamide

mixture and vortexed for ten seconds. To make the 30kPa polyacrylamide gels, a final concentration of

13.5% acrylamide was used, while 500 Pa polyacrylamide gels had a final concentration of 3.5%. Both

gels had a bisacrylamide concentration of 0.33%. Acrylamide and bisacrylamide were from BioRad Labo-

ratories (Hercules, CA). After vortexing the solution, we centrifuged at 1000 rpm in a tabletop centrifuge to

separate the toluene from the polyacrylamide solution. We then removed the polyacrylamide solution from

under the toluene layer, being careful not to disturb the toluene. We then aliquoted out the polyacryl-

amide. To begin polymerization, we then added to a final concentration of 0.3% and 0.06% of Temed

and APS (ammonium persulfate solution) respectively. Our solution was immediately pipetted onto func-

tionalized coverslips and a siliconized coverslip was added on top. Gels were allowed to polymerize for

20 minutes.

Top coverslips were removed, and gels were rinsed twice for 5 minutes each in PBS. To crosslink protein to

the surface of the gel, the gels were incubated in a 0.1 mg/mL solution of collagen (BD Biosciences, San

Jose, CA) or fibronectin (EMD Millipore, Billerica, MA) in HEPES pH 8.0 either overnight at 4C or at RT

for 4 hours. Gels were then rinsed and kept in PBS for storage. One additional set of 500 Pa Collagen

gels were made along with the other PAA gels but containing fluorescent beads and were sent to our

collaborators for volume and traction force measurements.
Hyaluronic acid gel fabrication

HA gels were created by polymerizing thiol-modified hyaluronic acid with Extra Link (PEGDA) (Ascendance

Biotechnology, Alameda, CA) according to the manufacturer’s instructions. A 1mL vial of lyophilized HA

was reconstituted with 875ul of degassed, deionized water for 30 minutes at 37C. After 30 minutes,

125ul of a 1 mg/mL solution of either collagen or fibronectin was added to the vial. Gels were polymerized

at a ratio of 1-part Extra Link to 4 parts HA/protein solution. The desired volume of this mixture was

pipetted on a glutaraldehyde-functionalized glass cover slip and then a siliconized coverslip was placed

on top. Gels were allowed to polymerize for twenty minutes before removing the top coverslip and storing

in PBS.
METHOD DETAILS

NCI Leidos mechanobiology dataset

The National Cancer Institute (NCI) commissioned the Leidos study to understand the relative importance

of substrate stiffness on the structure, motility, and proliferation rate of cancer cells in substrates with

defined stiffness and chemical composition. 25 different human cancer cell lines derived from human

tumors from the breast, colon, brain, ovary, pancreas, prostate, and skin were studied along with five

immortalized but non-tumorigenic cells from the same set of tissues. 20 of the cell lines had a complete

data universe comprising the measurements of 9 physical quantities (cell stiffness, motility, adherent

area, circularity, aspect ratio, proliferation, cell volume, nuclear volume, and contractility) characterizing

the cell phenotype, of which 9 cell lines (A375, RWPE-1, 22RV1, SW620, SW480, T-47D, MDA-MB-231,

U-87, and T98G) had measurements of genetic variants, gene and transcript expression values, and prote-

omics data. These cells were grown in 7 different ECM substrates (of varying stiffness); namely, Glass, 500Pa

Fibronectin (FN)-coated polyacrylamide gels, 30kPa FN-coated polyacrylamide gels, 500Pa Collagen

(COL) I-coated polyacrylamide gels, 30kPa Collagen I-coated polyacrylamide gels, 500Pa FN-coated

hyaluronan (HAFN) gels, 500Pa Collagen I-coated hyaluronan (HACOL) gels. The dataset was created to

provide a corpus of well-characterized molecular and cellular phenotypes measured on the same cell lines

in the same substrate conditions that would provide a rich source of information about making inferences

between these phenotypes and their corresponding genotypes. We focus on the analysis of the cell

stiffness dataset as characterized by the Young’s Modulus (E) measuring cell stiffness (Figure 1A) and

the proteomics data specifying the intensity-based absolute quantitation (iBAQ) spectral counts of the

protein expression of the cell types in various substrates.
20 iScience 25, 104721, August 19, 2022
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AFM, RNA-seq, proteomics

Detailed description of the experimental procedure followed for obtaining Young’s modulus via atomic

force microscopy (AFM), RNA-seq data in Leidos genomic dataset, and proteomics data used in this study

are provided on Synapse along with the dataset. DOIs are listed in the key resources table.

KDEs of cell stiffness data

We used SciPy 1.6.2 (Virtanen et al., 2020), an open-source Python library for scientific and technical

computing, to compute the kernel density estimates (KDE, estimation of the probability density function)

of the Young’s modulus E using Gaussian kernels with bandwidth estimator as Scott’s Rule. KDEs were

calculated: across all cell types and substrates, and across all substrates for each cell type (Figure S1). In

order to obtain a more discrete view of the data, we introduced a binarization scheme using the median

of the kernel density estimate (either across all cell types and all substrates or across all substrates for

each cell type) to split the Young’s modulus data into low or high categories based on if the value is below

or above the median respectively. To quantify the distribution of cell count in the low E and high E regime,

we computed the ratio of the count of cells in high E over low E.

Mutual information calculations

The coupling of the phenotype (cell stiffness in our analysis) to proteomics was achieved through the use of

an information-theoretic measure, mutual information (I). Mutual Information (I) is a statistical measure of

two random variables X, Y which describes the amount of information contained in one random variable

relative to the other. In this study, we used normalized mutual information such that 0%I%1 . Therefore,

a normalized mutual information I with a value close to 1 indicates a high informational dependency be-

tween the two variables X, Y. We used this framework to select proteins that have high mutual information

with the cell phenotype. We assume that the protein spectral count and the cell stiffness (E) are random

variables generated by some biologically driven stochastic process. We are interested in finding the

amount of information that the protein spectral count contains about the cell phenotype variable E. The

MIT licensed library of information-theoretic methods pyitlib 0.2.2 was used to calculate the normalized

mutual information.

Neural network, PCA and shapley analysis

The proteins that are selected through the mutual information-driven process are used as features in a

neural network to predict if a cell belongs to low E or high E regime (where low or high is determined if

below themedian or above themedian respectively). Note that themachine learningmodel for proteomics

is applied to bulk level data while the phenotype data is at single cell resolution. The neural network was

implemented in TensorFlow 2.5.0 (Abadi et al., 2016) using the Keras API with one single hidden layer. For

training, ‘binary_crossentropy’ was used as the loss function, and Adam optimizer was used with 0.001 as

the learning rate. A 70:30 split of the dataset was done to obtain a training set and test set. K-fold cross-

validation (with k = 5) was used to determine the optimal number of neurons (hyperparameter) in the hid-

den layer, which was found to be 5 neurons. Scikit-learn’s (Pedregosa et al., 2011) balanced accuracy metric

was used to estimate the accuracy of the neural network prediction.

Principal component analysis (PCA) of the protein spectral count features was performed using Scikit-

learn’s PCA library. The Shapley game-theoretic metric to calculate the feature importance of the neural

network protein spectral count features was implemented using the SHAP python package (Lundberg

and Lee, 2017).

Continuum membrane model

The core methodology followed for performing the simulations is the same as that reported in Tourdot

et al. (2015). In brief, the membrane patch is modeled as a thin elastic sheet and discretized intoN vertices,

each of characteristic size a0, interlinked by L links that form T triangles. The thermodynamic behavior of the

membrane is well captured by the elastic energy functional given by:

H =
XN

v = 1

�
k

2
ðC1;v +C2;v � H0;vÞ2 + sbare

�
Av (Equation 2)

which is a discretized form of the Canham-Helfrich Hamiltonian (Helfrich 1973); where the material proper-

ties k and sbare represent the bending rigidity and the bare surface tension, respectively. C1, v and C2, v are
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the curvatures at vertex v along the two principal axes, computed as in Ramakrishnan et al. (2010), and Av is

the corresponding surface area. H0, v is a spontaneous curvature field at vertex v which captures the curva-

ture-inducing interactions between the protein and membrane and is given by

H0;v =
Xnp

i = 1
C0exp

 
� ðrv � RiÞ2

2ε2

!
(Equation 3)

where rv and Ri denote the position of vertex v and ith protein field, respectively. This approach of treating

the effect of the curvature-inducing proteins as a curvature field in the continuum field formulation has been

utilized in prior studies (Agrawal et al., 2010; Liu et al., 2012; Zhao et al., 2013). See Ramakrishnan et al., 2014

for a comprehensive review on the methodological aspects of the membrane model used in this work.

The results presented in this study are for a membrane patch withN = 900, k = 20kBT and sbare= 0. A typical

value of a0 for the systems we model is a0 = 10nm; this value ensures that the C0 = 0:8a� 1
0 and ε

2 = 6:3a20
used in this study are primed to model curvature-inducing proteins such as BAR and ENTH domains, as

justified in previous works (Tourdot et al., 2014, 2015). Note that a detailed sensitivity analysis for the meso-

scale model has been presented in an earlier study (Tourdot et al., 2015) for the parameters of the protein

fields (C0 and ε
2). Monte Carlo techniques evolve the membranemorphology and diffusion of protein fields

on the membrane patch. The membrane is allowed to equilibrate for 3 million MC steps. The number of

protein fields in the tubular regions (nt) are calculated using a clustering algorithm with a mean curvature

(H) cutoff of 0.5 a� 1
0 , i.e. membrane regions with tubulation are characterized as H> 0:5a� 1

0 (see Tourdot

et al., 2015 for detailed discussion). All reported data is averaged over four independent ensembles.

The non-linear fits for Equation 1 to the simulation data at different values of np (total number of curvature-

inducing protein fields on the membrane) were obtained using the curve_fit function of python library SciPy

1.6.2. Parameters used for curve_fit were ‘lm’ (Levenberg-Marquardt algorithm) as the method for optimi-

zation, [1, 0, 0] as the initial condition for [‘a’, ‘b’, ‘c’] in Equation 1, and 8000 as maximum function

evaluations.

Excess area dependence from micelle model

In our previous work (Tourdot et al., 2015), we showed the analogy between membrane tubulation and

micellization, and determined the relation between the number of protein fields in the planar and tubular

regions as

np = n1

 
1 +

�
2n1

np;�

�Nppt � 1
!

(Equation 4)

where np is total number of proteins fields and n1 is the number of protein fields in the planar region.Nppt is

the absolute number of protein units within each tubule given as Nppt = npptz, where nppt is the average

number of protein fields per tubule (which from simulation was found to bez4) and z refers to the number

of protein units per curvature-inducing protein field. Critical aggregation number (np, * refers to the critical

number of protein fields that promote membrane tubulation (see Tourdot et al. (2015) for detailed discus-

sion). Taking nN to be number of tubes each containing nppt protein fields, the number of protein fields

in the tubular region (nt is then given by nt = npptnN. Figure S3 shows the excellent agreement between

the micelle model in Equation 4 and results from our simulation for different excess areas. Substituting

n1 = np � nt in Equation 4, we get

np = np � nt +
�
np � nt

	Nppt $

�
2

np;�

�Nppt � 1

(Equation 5)

� �N � 1
� �Nppt
0nt

np;�
2

ppt

= n
Nppt
p 1 � nt

np
(Equation 6)

In asymptotic limit of ðnt =npÞ � 1, the above expression can be simplified to

nt

�np;�
2

�Nppt � 1

= n
Nppt
p

�
1 � Nppt $

nt

np

�
(Equation 7)

Nppt
0nt =
np

n
Nppt � 1
p $Nppt +

�np;�
2

	Nppt � 1 (Equation 8)
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The value for np, * for different excess area (A/Ap was obtained from simulation data, and a non-linear fit for

np, * as a function of A/Ap was evaluated (see Figure S3D) which is given by

np;� =
0:543

A


Ap � 0:998

z
0:543

A


Ap � 1

(Equation 9)

Substituting the above expression for np, * in Equation 8, we get

nt =
n
Nppt
p

n
Nppt � 1
p $Nppt +

�
1
2$

0:543
A=Ap � 1

�Nppt � 1 (Equation 10)

Equation 10 suggests that the relation between nt and A/Ap can be written as

nt = a+
b

c +
�

A
Ap

� 1
�n (Equation 11)

cBioPortal: genomic analysis of patient data

The cancer genomic data exploration platform of cBioPortal (Cerami et al., 2012; Gao et al., 2013) was used

to obtain measures such as percentage of mutations, percentage of copy number variations for protein

families of RabGTPases, sorting nexins (SNX), exocyst complex component (EXOC) and autophagy-related

proteins (ATG) for different tumor types. For copy number variations, both amplifications and deep dele-

tions were considered. Table S1 lists the tissue type and the corresponding TGCA PanCancer Atlas data

used for the analysis.
cBioPortal: survival analysis

Survival analysis was performed using the cBioPortal (Cerami et al., 2012; Gao et al., 2013) web server for all

the tumor types listed in Table S2. For each of the selected cytoskeleton genes, the control and subject

groups were defined based on the normalized mRNA expression (z -score) of the gene. Here, z-score is

defined as

z � score =
r � m

s
(Equation 12)

where r is the raw expression value, m and s are the mean and standard deviation of the reference popu-

lation (taken as all profiled tumor samples of a particular cancer type), respectively. Note that we used log

transformed data for computing the z-score. For each gene, two subject groups were defined, (i) samples

having low expression (z -score % � ðthreshold)), and (ii) samples having high expression (z -score R

threshold). Control group was defined as samples satisfying � ðthresholdÞ<z-score< threshold.

The Onco Query Language (OQL) was used to define the control and subject groups on the cBioPortal.

See the OQL documentation on cBioPortal for more details. The queries used in our analysis were

‘<gene name>: EXP <= -threshold’ and ‘<gene name>: EXP >= threshold’ for defining the subject groups.

The samples not satisfying these conditions are separately grouped as unaltered (control group) by

cBioPortal. Subsequently, the Kaplan-Meier plots for overall and progression free survival, produced on

cBioPortal using the clinical data of the patients in control and subject groups, were analyzed. We exam-

ined threshold values of 1.0 and 1.5 (higher threshold values had too few events in subject groups and

thereby, made their KM curves much less reliable).
QUANTIFICATION AND STATISTICAL ANALYSIS

Log-rank test was used to compare the survival curves of two groups on the cBioPortal web server, and

p-value < 0.05 was considered a significant difference.
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