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Abstract

The blooms of Noctiluca in the Gulf of Oman and the Arabian Sea have been intensifying in

recent years, posing now a threat to regional fisheries and the long-term health of an eco-

system supporting a coastal population of nearly 120 million people. We present the results

of a local-scale data analysis to investigate the onset and patterns of the Noctiluca blooms,

which form annually during the winter monsoon in the Gulf of Oman and in the Arabian Sea.

Our approach combines methods in physical and biological oceanography with machine

learning techniques. In particular, we present a robust algorithm, the variable-length Linear

Dynamic Systems (vLDS) model, that extracts the causal factors and latent dynamics at the

local-scale along each individual drifter trajectory, and demonstrate its effectiveness by

using it to generate predictive plots for all variables and test macroscopic scientific hypothe-

ses. The vLDS model is a new algorithm specifically designed to analyze the irregular data-

set from surface velocity drifters, in which the multivariate time series trajectories are having

variable or unequal lengths. The test results provide local-scale statistical evidence to sup-

port and check the macroscopic physical and biological Oceanography hypotheses on the

Noctiluca blooms; it also helps identify complementary local trajectory-scale dynamics that

might not be visible or discoverable at the macroscopic scale. The vLDS model also exhibits

a generalization capability (as a machine learning methodology) to investigate important

causal factors and hidden dynamics associated with ocean biogeochemical processes and

phenomena at the population-level and local trajectory-scale.

Introduction

Background

Recent advances in Data Science and Machine Learning have produced great successes in a

variety of data-driven modeling for interdisciplinary scientific problems concerning complex
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natural phenomena, in a number of fields including Marine Ecology [1–6], Climatology [7],

Oceanography [8–11], Geoscience [12], Computer Vision [13–15], Social Science [16],

Computational Neuroscience [17–20], Speech and Language Processing [21–23], and Environ-

mental Health Science [24]. Here we present a local drifter-scale data analysis technique to

investigate the onset and patterns of the Noctiluca winter monsoon blooms, which form annu-

ally in the Gulf of Oman and in the Arabian Sea. Our approach relies on a combination of

physical oceanography and machine learning techniques. In particular, we obtain a robust

model, the variable-length Linear Dynamic System Model (vLDS mode, hereafter) that is capa-

ble of identifying the causal factors and dynamics at the local-scale population-level along each

individual drifter trajectory. The difficulty of analyzing this dataset lies in its irregularity, in

which all the multivariate time series trajectories do not share an equal length. This renders

the conventional multivariate Linear Dynamical System (LDS) method unsuitable. The vLDS

model is a new algorithm specifically designed to address this irregularity of the dataset. Fur-

thermore, we assess the effectiveness of vLDS by generating predictive plots for all variables

and testing macroscopic scientific hypotheses. Rigorously statistical, the vLDS model available

in the supplementary materials (S1 Software) is a powerful tool that helps: 1) discover local tra-

jectory-scale causal relationships in a high-dimensional dataset, 2) identify complementary

local trajectory-scale dynamics that might not be discoverable at the macroscopic scale or

accessible in controlled laboratory experiments, and 3) obtain a generalizable machine learn-

ing methodology to probe important local trajectory-scale causal factors and hidden dynamics

for other trajectory-based datasets in marine ecology.

The significance of this research is that these blooms of Noctiluca have been intensifying in

recent years, posing now a threat to regional fisheries and the long-term health of an ecosystem

supporting a coastal population of nearly 120 million people [25–28]. When seen from space,

the Noctiluca blooms appear as large drifting swirls and filaments on the surface of the sea (Fig

1A and 1C). Traditionally, photosynthetic diatoms supported the Arabian Sea food chain.

Zooplankton preyed on diatoms, a type of algae, and were in turn grazed by fish. The situation

changed since the early 2000s, when researchers began to observe vast developments of Nocti-
luca blooms associated with a steep decline in diatoms. Within a decade, Noctiluca had virtu-

ally replaced diatoms at the base of the food chain, marking the start of a colossal ecosystem

shift [26]. By previous macroscopic studies [25–39] based on satellite observations, ocean

observations, in-situ data sampling, and biologically controlled experiments in the laboratory,

a part of the underlying dynamics that governs the transport, growth and decay of the Nocti-
luca scintillans blooms in the Arabian Sea region has been disclosed. It has been demonstrated

that Noctiluca can dive down with a flick of its tail-like flagellum, to eat plankton, living or

dead, or swim up to the light, drawing energy from the millions of green algae, or “endosymbi-

onts,” living within its transparent cell walls (Fig 1B). This flexibility gives it an edge on dia-

toms, which survive on sunlight alone. Putting Noctiluca and its diatom competitors in

oxygen-starved water we found that Noctiluca’s carbon-fixation rate rose by up to 300 percent

while the diatoms’ fell by nearly as much. S1 Appendix shows more details on the research

development of the Noctiluca blooms in recent years.

Goal and outline

To understand the local-scale impact of the physico-chemical and physical oceanographic fac-

tors at the population-level on Noctiluca blooms along drifter trajectories, we have collected,

combined, and preprocessed data from both the Ocean and Satellite datasets. The trajectory of

each drifter is recovered by its spatio-temporal information. The physical oceanographic pro-

files associated with the spatio-temporal coordinates of each drifter is then utilized to discern
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the behavior and movement of the Noctiluca blooms along the trajectory of the particular

drifter. This behavior and movement is statistically learned or transformed by the vLDS

model. Since the drifters have different launch time and longevity, the time series representing

individual drifter trajectories have unequal (variable) lengths. To our knowledge, no existing

model can simultaneously process regularly-sampled multiple multivariate time series with

variable lengths collected by velocity drifters. The goal in this paper is to describe a variable-

length Linear Dynamic Systems (vLDS) model that is tailored to this particular data structure,

to learn, summarize, and recover the latent dynamics for all drifter trajectories, and to generate

predictive dynamics that match closely with the observed data along drifter trajectories.

The previous analysis of the phytoplankton blooms in [25–26, 41–42] was based on the

macroscopic scale of space and time, namely, the data is aggregated or pooled across spatio-

temporal dimensions. This research hypothesized (1) that nutrient-enrichment of the surface

waters are increasing productivity. The potential sources of nutrients are multiple [25–26].

Moreover, these previous research hypothesized (2) that Noctiluca grew faster in light than in

dark on the sea surface and in the sea water, thanks to its sun-loving endosymbiotic algae,

which are thought to have survived 1.3 billion years on an oxygen-scarce Earth. However, in

our study, the surface velocity drifter dataset [43] and satellite image dataset [44–47] are not

aggregated or pooled across spatio-temporal dimensions. With the data structure of individual

Fig 1. (A) Satellites images displaying Noctiluca blooms as large swirls on the surface of the Arabian Sea [40]. (B)

Noctiluca scintillans with a flick of its tail-like flagellum drawing energy from the millions of green algae, or

“endosymbionts”, captured inside its transparent cell walls. (C) Satellite image for the monthly data of the chlorophyll

a concentration in the Arabian Sea during year 2013, 2015, and 2016.

https://doi.org/10.1371/journal.pone.0218183.g001
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drifter trajectories kept intact, the vLDS model tests the previous hypotheses on the dynamics

of the Noctiluca blooms from the spatio-temporal trajectory-scale. By comparing the vLDS

model predictions directly with the observed ocean profiles along the drifter trajectories, we

can easily visualize its predictive performance and interpret the underlying latent dynamics of

the Noctiluca blooms at the trajectory scale, as discussed in the “Discussion & conclusion”

Section.

The benefits of vLDS are threefold. First, it provides statistical evidence in a direct and

zoomed-in manner to compare the macroscopic physical and biological oceanographic obser-

vations and the inherent physiological behavior of Noctiluca blooms, by recovering the latent

dynamics that governs the probabilistic distribution of the Noctiluca concentration in space and

time and by comparing the model predictions with the observed ocean profiles. Second and

more importantly, it helps identify complementary local drifter-scale dynamics that might not

be visible or discoverable at the macroscopic scale. The vLDS predictive plots in “Discussion &

Conclusion” Section provide statistical evidence that the atmospheric deposition measured by

the quantities T865 aerosol optical thickness at wavelength 865 nm does not have much impact

on the underlying dynamics that are driving the Noctiluca growth, as measured by the chloro-

phyll a concentration (Chl a) at the time scale of two days. Third, it provides a generalizable

machine learning methodology to probe important causal factors and hidden dynamics for the

ocean biogeochemical processes at the local population-level along individual drifter trajecto-

ries. These scientific findings in the local trajectory-scale of the population data can lead to criti-

cal hypothesis and even conclusions at the macroscopic scale of the pooled data.

Materials and methods

Data collection

The Arabian Sea (coordinate range ~5 to 28˚N, 45 to 75˚E) is predominantly located in the

tropics (Fig 1A), and it has one of the most energetic current systems driven by the seasonally

reversing monsoons. Dataset on Chlorophyll a (Chl a), from the GlobColour Project [45–47],

which provides merged products based on measurements from the ocean color satellites Sea-

WiFS, MODIS-Aqua (NASA), VIIRS (NOAA) and MERIS and OLCI-A (ESA), was used for

studying the distribution of Noctiluca blooms during winter. In practice, the Ocean color data-

sets have missing values at certain locations due to the limitations of the satellite coverage or

the presence of clouds. The dark spots are regions with missing values (Fig 2). For the purpose

of our study, we used merged products from both NASA and the GlobColour Project [44–47].

Ocean color satellites can provide remote sensing reflectance values for different wavebands.

These wavebands are used in empirical and semi-analytical algorithms to convert remote sens-

ing reflectance to chlorophyll a concentration. Pre-processed Chl a data products were used to

explore a time series of snapshots of chlorophyll a concentration on a lattice of latitude and

longitude coordinates. In the next sections, we provide detailed descriptions of the data aggre-

gation and preprocessing steps.

The temporal evolution of the satellite images reflects both physical and biological dynam-

ics. To impose the structures of physical drivers (advection) onto the data sample, we utilized

the drifter array data from the NOAA’s Global Drifter Program (GDP). These freely drifting

buoys provide information about the upper ocean currents that are responsible for the advec-

tion of the planktonic particles [48]. The Lagrangian trajectory of each float is retrieved from

the database as a time series of variables representing the location, velocity field, and sea sur-

face temperature. We note that each float has a typical lifetime of a couple years and has differ-

ent launch times. Therefore, the drifter dataset is highly heterogeneous in both time and space.

Fig 3 displays the temperature measurements of all the drifters in the Arabian Sea. It is known
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that the Lagrangian drifter trajectories are highly chaotic [49–51], and the prediction of parti-

cle trajectories has been a challenging research task [52]. There have been recent research

results on using Kalman filter and data assimilation with various physical models, namely, the

Gauss–Markov Lagrangian particle model [8], the Eulerian velocity field [9, 11], and the upper

ocean horizontal momentum balance model from Ekman dynamics [10], to track the position

and velocity of the floats. For comparison in our study, we are introducing and imposing sta-

tistical structure on the latent state variables to capture the joint dynamics among the Chl a,

the spatio-temporal information of the floats, namely, the latitude, longitude, velocity, speed

and distance to the coast, and the physico-chemical predictors, such as CDOM, KD490, T865,

PAR, and SST4, where KD490 is the diffuse attenuation coefficient at 490 nm using the Lee

algorithm indicating light under the sea surface, and PAR is photosynthetically available radia-

tion indicating light on the sea surface. The predictive plots generated by the vLDS model in

our study (as displayed in Section “Discussion and Conclusions”) reveal the relationships

among the physical and physico-chemical ocean profiles and the Noctiluca blooms inside a

collection of chaotic drifter trajectories in the Arabian Sea region from 2002 to 2017.

Combining multiple dataset

We merged the satellite data with the buoy data to generate a Lagrangian dataset. It is a collec-

tion of multivariate time series for each drifter with a unique id to combine the information

from the satellites, namely, Chl a, CDOM, KD490, T865, PAR, and SST4, and the data associ-

ated with the drifters including id, time, latitude, longitude, velocity components, speed, and

distance to the coast. Fourteen features were selected in our experiments; the variance inflation

factors (VIF) on multicollinearity of all the predictors are listed in Table 1. The drifter id and

time are mainly used for ordering and grouping data in the vLDS model. The twelve (12)

remaining factors represent the physical and physico-chemical variables that is related to the

evolution of Noctiluca blooms [25–26]. Since the timescale of the phytoplankton reproduction

is on the order of a few days [53], we carried out a resampling process to match the frequencies

of both datasets to the same level. At the same frequency, we interpolated the variables from

the satellite dataset onto the specific spatial and temporal points of the Lagrangian drifter data-

set, in order to make each observation in the drifter dataset more informative. This process

builds up a multivariate time series for each drifter id with all the physico-chemical and physi-

cal information embedded on the drifter trajectory. Furthermore, this interpolation process is

repeated for all other features from the satellites.

Fig 2. Level-3 data for the chlorophyll a concentration from Dec. 27 to Dec. 31, 2015 [40]. Dark regions indicate

missing values.

https://doi.org/10.1371/journal.pone.0218183.g002
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We note that each float record has information on its coordinates flat; lon; timeg. For conve-

nience, we denote flat; lon; timeg as fx; y; tg, which is almost always not precisely on the grid

of the Ocean Color dataset. To resolve this issue, we now describe the multidimensional interpo-

lation operator to map the chlorophyll a concentration onto the GDP float dataset. For any float

data point with coordinates fx0; y0; t0g, we identify the coordinate cube or the grid cell in the

Ocean Color dataset that contains this point. In particular, this cube has 8 vertices with coordi-

nates generated by the outer product xnearest; xfurthest

n oJ
ynearest; yfurthest
n o J

tnearest; tfurthest
n o

,

where the subscripts nearest and next indicate the nearest and furthest neighbors in the cube for

Fig 3. Temperature trajectories of all drifters in the Arabian Sea Region from 2002 to 2017.

https://doi.org/10.1371/journal.pone.0218183.g003
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each coordinate, respectively. We further denote the interpolation weight wx for x0 by

wx ¼
x0 � xnearest

xfurthest � xnearest

Similarly, we define the weights wy and wt for y and t. Using the function f ðx; y; tÞ to repre-

sent the chlorophyll a concentration at the coordinate fx; y; tg, we write the interpolated chlo-

rophyll a concentration at fx0; y0; t0g as

f ðx0; y0; t0Þ ¼ ð1 � wxÞð1 � wyÞð1 � wtÞ � f ðxnearest; ynearest; tnearestÞ

þ ð1 � wxÞð1 � wyÞwt � f ðxnearest; ynearest; tfurthestÞ

þ ð1 � wxÞwyð1 � wtÞ � f ðxnearest; yfurthest; tnearestÞ

þ ð1 � wxÞwywt � f ðxnearest; yfurthest; tfurthestÞ

þ wxð1 � wyÞð1 � wtÞ � f ðxfurthest; ynearest; tnearestÞ

þ wxð1 � wyÞwt � f ðxfurthest; ynearest; tfurthestÞ

þ wxwyð1 � wtÞ � f ðxfurthest; yfurthest; tnearestÞ

þ wxwywt � f ðxfurthest; yfurthest; tfurthestÞ

In our implementation, we have applied the interpolation process to the chlorophyll a con-

centration, distance to the nearest coast, and all other predictors. As an illustration of the inter-

polation process, we display the distance to the nearest coast [40] with a resolution of 4km in

Fig 4A and the interpolated distance to the nearest coast for all the floats in Fig 4B.

Using the multidimensional interpolation procedure described above, we map the satellite

observations for each of the variables {‘chlor_a’, ‘dist’, ‘cdm’, ‘kd490’, ‘t865’, ‘par’, ‘sst4’} onto

the GDP floats. Along with the information on the floats, namely {‘time’, ‘id’, ‘lat’, ‘lon’, ‘ve’,
‘vn’, ‘spd’}, the interpolated float dataset becomes high dimensional (Table 1). Here ‘chlor_a’
denotes the chlorophyll a concentration, ‘dist’ the distance from nearest coast, ‘cdm’ the

Table 1. Factors used in the vLDS model.

Factor Description Median (range) VIF

id Drifter id Totally 230 drifters with

5594 data records

—

time Time of the observation Nov 1 to Mar 31,

from 2002 to 2017

—

lat Latitude 12.92 �N (5.03–26.99) 2.16

lon Longitude 63.86 �E (45.07–74.95) 1.62

ve Eastward velocity component -4.54 cm=s
(-122.87–108.47)

1.09

vn Northward velocity component 1.58 cm=s (-132.75–114.55) 1.01

spd Speed of the drifter 22.14 cm=s (0.86–146.58) 1.36

dist Distance to the nearest coast 390.85 km (1.33–1166) 1.32

chlor_a Chlorophyll a concentration (Chl a) 0.25 mg m� 3 (0.03–44.77) —

sst4 Nighttime sea surface temperature at 4-micron (SST4) 27.06 �C (0–30.06) 1.80

cdm Colored dissolved and detrital organic materials (CDOM) absorption coefficient at 443 nm 0.02 m� 1 (0.01–0.81) 2.64

kd490 Diffuse attenuation coefficient at 490 nm using the Lee algorithm (KD490) 0.07 m� 1 (0.04–1.36) 2.51

t865 Aerosol optical thickness over water (T865) 0.13 (0.02–0.56) 1.04

par Photosynthetically available radiation (PAR) 46.18 Einstein m� 2 day� 1

(12.20–57.80)

1.08

https://doi.org/10.1371/journal.pone.0218183.t001
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colored dissolved and detrital organic materials (CDOM) absorption coefficient at 443 nm,

‘kd490’ the diffuse attenuation coefficient at 490 nm using the Lee’s algorithm (KD490), ‘t865’
the aerosol optical thickness over water (T865), ‘par’ the photosynthetically available radiation

(PAR), ‘sst4’ the 4-micron nighttime sea surface temperature (SST4), ‘id’ the id of a float, ‘ve’
the eastward velocity component, ‘vn’ the northward velocity component, and ‘spd’ the speed

of a float. These physico-chemical and physical factors are chosen to represent all the possible

causes for the distribution of the Noctiluca blooms in the Arabian Sea. The ‘chlor_a’ measured

during the period from November 1 to March 31 are mostly attributed to Noctiluca blooms.

The ‘cdm’ measures CDOM the amount of dissolved organic materials in the sea water, which

supports the growth of the Noctiluca [26]. The ‘dist’ measures the distance from the particle to

the nearest coast, which is the source of the nutrient rich water. Moreover, in the winter sea-

son, the northwestern Arabian Sea off the coast of Oman experiences winter convective mixing

from November to January, during which nutrient rich, low-oxygen, cold water is brought to

the surface both by convective mixing and by cyclonic eddy activity and benefit the growth of

the Noctiluca in a complex and nonlinear fashion as described in the “Discussion and Conclu-

sions” Section. The factor ‘par’ measures PAR the amount of light that is available on the sea

surface for the photosynthesis of the symbiotic green algae (Fig 1B) living within Noctiluca.

The ‘kd490’ provides an indication of the transparency of the water column and amount of

light that penetrates into the sea water. The ‘t865’ represents the amount of particles in the

atmosphere over the water, an indicator for the atmospheric deposition. The rest of the factors

{‘time’, ‘id’, ‘lat’, ‘lon’, ‘ve’, ‘vn’, ‘spd’} represent the spatio-temporal information describing the

physical transport and dispersal of the Noctiluca blooms.

Data preprocessing for vLDS

Due to the limitation of the satellite coverage mentioned in the “Data Collection” Section,

there are missing values in each of the variables in the interpolated dataset. Our focus here is

on the chlorophyll a concentration ‘chlor_a’, since it is the key variable for Noctiluca blooms.

Fig 4. (A) Distance to the nearest coast for all the geographical locations in the Arabian Sea Region. (B) Interpolated values of the distance to the nearest coast for all the

data points in the drifter dataset.

https://doi.org/10.1371/journal.pone.0218183.g004
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The data structure of the post-processed float dataset is determined by the pre-processing

steps for the variable ‘chlor_a’.
The overall objective of data preprocessing is to keep the microscopic trajectory-based data

structure intact, to split the drifter trajectories that are spanning over multiple years, and to

remove the drifter trajectories that are too short to be meaningful for the learning algorithm,

with due consideration of the physical and physico-chemical meaning. We consider that each

period from November 1 to March 31 (during winter monsoon) represents one growth cycle

of the Noctiluca bloom for a particular float or drifter. For any float with a unique id that has

chlorophyll a data over two or more cycles, we split the data and assign a new derived float id

to the data within each cycle, by adding a small increment 0.05 to the original float id. The

resulting dataset allows the vLDS model to learn the trajectory-scale dynamics of each cycle

independently.

To enhance the quality of the raw input dataset, for each float id, we calculate the percentage

of ‘NaN’ values in the dataset in the column ‘chlor_a’ and choose a threshold of 40%. There are

two cases. First, if this percentage is smaller than the threshold, the data quality for this particu-

lar float is considered to be good, and we interpolate all the missing values for each of the vari-

ables in {‘chlor_a’, ‘dist’, ‘cdm’, ‘kd490’, ‘t865’, ‘par’, ‘sst4’}. See Fig 5 for an example, in which

the time series is interpolated for ‘chlor_a’. Also, after the interpolation process, there might

still be gaps in the time series. For instance, the float might just not have any record, including

‘NaN’, in a certain short period. In this case, the float will be further split into continuous sub-

series. Therefore, every interpolated float time series will go through the second step for check-

ing and splitting, which we now describe.

In the other case, if this percentage of ‘NaN’ values is larger than the threshold, the data

quality for this particular float is considered unsuitable for interpolation. We split the discon-

tinuous series into smaller continuous series for ‘chlor_a’. We loop through the time series on

‘chlor_a’ and split it into smaller continuous series for ‘chlor_a’. Moreover, we assign a new

derived float id to each newly generated shorter series, by adding a small increment 0.03 to the

original float id. Also, we drop any series for ‘chlor_a’ of length 1. See Fig 6 for an example, in

Fig 5. The interpolated time series of ‘chlor_a’ from the float id 64113560 on the left is shown on the right.

https://doi.org/10.1371/journal.pone.0218183.g005
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which we split the time series for ‘chlor_a’ into 5 different shorter series, and we drop three

series of length 1. For a threshold of 40%, the irregularity of the drifter dataset is evident from

the distribution of the trajectory lengths characterized by [10, 16, 26, 53] at the [20%, 40%,

60%, 80%] quantiles, respectively. For a threshold of 20%, the quantiles are [7, 10, 16, 30]. For

a threshold of 10%, the quantiles are [7, 9, 11, 19]. It is evident that with a tighter threshold,

such as 20% or 10%, many of the long time series will be split into too many shorter time series.

Many of the resulting shortened series are too short, comparing to the time series in the held-

out dataset. Therefore, we have fixed a threshold of 40% in the following experiment.

Linear dynamical systems (LDS)

After preprocessing, the merged GDP floats dataset consisted of 186 float records. For each

float, the measurement is a multivariate time series, given by a vector

y:¼ flat; lon; ve; vn; spd; dist; chlor a; par; cdm; t865; kd490; sst4g:

We use xn ¼ ðxn
1
; xn

2
; . . . xn

Tn
Þ to denote the latent variables, yn ¼ ðyn

1
; yn

2
; . . . yn

Tn
Þ the obser-

vations from the float n, and Tn the length of the time series of the float n. The plain version

Linear Dynamical System (LDS) is an adaptive procedure that can learn from data to recover

the latent relationship between y and x, using assumptions of linear relationships at time i
between xi and xi� 1; yi and xi, with Gaussian Noise. For the moment, we omit the superscript

Fig 6. The time series of ‘chlor_a’ from the float 71140 on the top panel is split into 5 different shorter series. Three series of length 1 are dropped, and the

remaining two are shown on the bottom panel.

https://doi.org/10.1371/journal.pone.0218183.g006
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n and focus on one float. More specifically, we assume that for a specific float, the time series

of the latent variables and the observations hold the following relationships:

xi ¼ Axi� 1 þ wi wi e Nðwij0;G Þ
yi ¼ Cxi þ vi vi e Nðvij0;SÞ
x1 ¼ μ0 þ u u

e Nðuj0;V0Þ ;

ð1Þ

where wi; vi; u are noise terms. The LDS model fits the model parameters Θ :¼

A;C;G;S; μ0;V0f g by taking the expectation over the latent variables xijθold, and maximiz-

ing the log-likelihood of the complete data fx; yjθg, where θold is the model parameter from

the previous iteration and θ is the parameter that we are seeking at the current iteration. In

the expectation step, with the parameter θold, the mean and the variance of the posterior

marginal latent variables xijθold; y1
; y

2
; . . . yi at time i (see float 1 in Fig 7A) and the mean

and the variance of the posterior marginal latent variable xijθold; y1
; y

2
; . . . yT based on the

information at all time (see float 1 in Fig 7B), are calculated using the forward and back-

ward iterations. Here, T is the total length of a particular time series in a float. These mar-

ginal variables lead to the sufficient statistics of the complete data fx; yjθg, namely the

Exjθold ;y1 ;y2 ;...yT
½xi�, Exjθold ;y1 ;y2 ;...yT

½xixT
i� 1
�, Exjθold ;y1;y2 ;...yT

½xixT
i �. Using these sufficient statistics [54,

55], we obtain the updated LDS model parameters Θ :¼ A;C;G;S; μ0;V0f g. The graphical

model [56] of the plain LDS is schematically plotted in Fig 7A and 7B as one branch, for

instance, the branch of float 1. The workflow of the plain LDS model is described in Algo-

rithm 1.

Algorithm 1. Plain version of training the LDS model on one float

1. initialize Y :¼ A;C;G;S; m0;V0f g, iter = 1, maxiter = 100, rtol ¼ 10� 4

2. for (iter < maxiter) do

3. Expectation step:

4. forward iteration to compute xijy; y1; y2; . . . yi
5. backward iteration to compute xijy; y1; y2; . . . yT
6. compute Exjy;y1 ;y2 ;...yT

½xi�; Exjy;y1 ;y2 ;...yT
½xixTi� 1

�; Exjy;y1 ;y2 ;...yT
½xixTi �; llhðiterÞ

7. if llh iterð Þ � llh iter � 1ð Þ � rtol�llhðiter � 1Þ break; end if

8. Maximization step:

9. update Y :¼ A;C;G;S; m0;V0f g

10. end for

Variable-length linear dynamical systems (vLDS)

In this study, each float generates one or more statistically independent time series of the Chl a
concentration, due to the interpolation or splitting process discussed in the “Data Preprocess-

ing” Section. For the preprocessed dataset with 186 floats, we treat it as multiple multivariate

time series, each with a unique id. Also, we note that the lengths of the time series in the dataset

are mostly different, due to the irregularity of the longevity of the floats. The variable-length

Linear Dynamical Systems model is specifically designed to address this situation, as it summa-

rizes and recovers the latent dynamics from multiple multivariable time series with a different

time span.

To fit the vLDS model, we start with some initial parameter Θ0, which is shared across all

floats in the dataset. We keep the superscript n here. The Expectation step is carried out on

each float id, using a two-loop forward and backward smoothing step to compute the
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conditional expectations of the sufficient statistics of the complete data fx; yjθg, namely the

Exjθold ;y1 ;y2 ;...yTn
½xi�, Exjθold ;y1 ;y2 ;...yTn

½xixT
i� 1
�, Exjθold ;y1 ;y2 ;...yTn

½xixT
i �. In the maximization step, we use

the averaging formula derived in Eq (5) across all floats to update the model parameter

Θ :¼ A;C;G;S; μ0;V0f g.

We emphasize that for a particular drifter n, the multivariate observation

yni ; i ¼ 1; 2; 3; . . .Tn, contains all the physical and physico-chemical information along a

drifter trajectory at time i, and it is the multivariate latent random variable xn
i that we are

solving for from the vLDS model to represent the hidden dynamics between different

Fig 7. (A) Information flow of the forward iteration in the Expectation step of the vLDS model for computing the

mean and the variance of the posterior marginal latent variables xijθold ; y1
; y

2
; . . . yi at time i. (B) Information flow of

the backward iteration in the Expectation step of the vLDS model for computing the mean and the variance of the

posterior marginal latent variables xijθold; y1; y2; . . . yT based on all the information from times 1 to T.

https://doi.org/10.1371/journal.pone.0218183.g007
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components of yn
i , namely,

flat; lon; ve; vn; spd; dist; chlor a; par; cdm; t865; kd490; sst4g:

It is possible that some of the components of yni , for instance, the t865 in our study, as dem-

onstrated in the “Discussion and Conclusions” Section, are not much involved in the latent

dynamics. Therefore, the dimension of the latent space recovered by the latent variable xn
i

might be smaller than the dimension of the observations yni . In this study, the latent dimension

in xn
i , as determined by the cross-validation procedure, turns out to be 11, and the dimension

of the observations yni is 12.

To test the hypotheses in the “Background” Section, we first generate the predicted values

of yni
e by using Eq (1) with the recovered latent variables xn

i from the vLDS model. Since the

vLDS model automatically maximizes the log-likelihood of the complete data, including the

latent variable x and the observational variable y, it is beneficial to visualize the predictive plots

of all predictors along the drifter trajectories, as shown in the “Discussion and Conclusions”

Section, and study the performance metric R-squared, as described in the “Results” Section.

Probabilistic computation of vLDS

We assume that the observed multivariate variable yn
i , including the chlorophyll a concentra-

tion, of each float is evolving independently with other floats, except that they are driven by

the same underlying physico-chemical and physical forces. It is this assumption that allows the

vLDS model to share the same model parameters Θ :¼ A;C;G;S; μ0;V0f g in all branches in

Fig 7A and 7B and makes the vLDS model a powerful algorithm to summarize and capture the

population-level structures along drifter trajectories. Multiple variants of the LDS model have

been applied successfully at the microscopic scale in several research areas such as computa-

tional neuroscience [19–20, 57–58] and sound tracking [22], in which the authors considered

various extensions of LDS to data sequences with fixed length. Our vLDS method is different,

and particularly designed for trajectory-based data sequences with variable lengths. The irreg-

ularity of the drifter dataset is evident from the distribution of the trajectory lengths character-

ized by [10, 16, 26, 53] at the [20%, 40%, 60%, 80%] quantiles, respectively

Algorithm 2. Training the vLDS model on the cross-validation dataset
with many floats

1. initialize Θ :¼ A;C;Γ;Σ;μ0;V0f g, iter = 1, maxiter = 100, rtol ¼ 10� 4

2. for (iter < maxiter) do

3. Expectation step:

4. for float n ¼ 1; . . . ;N do

5. forward iteration to compute xijθ; y1
; y

2
; . . . yi

6. backward iteration to compute xijθ; y1
; y

2
; . . . yTn

7. compute Exjθ;y1 ;y2 ;...yTn
½xi�, Exjθ;y1 ;y2 ;...yTn

½xixTi� 1
�, Exjθ;y1 ;y2 ;...yTn

½xixTi �, llh
8. sum llh iterð Þ ¼ llh iterð Þ þ llh
9. end for

10. if llh iterð Þ � llh iter � 1ð Þ � rtol � llhðiter � 1Þ break; end if

11. Maximization step:

12. update Θ :¼ A;C;Γ;Σ;μ0;V0f g using Eqs (3)–(5)

13. end for
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Although the distribution of the complete data fx; yjθg depends on the model parameter

θ, we omit the dependence on θ for notational ease in the following derivation. For a particular

float n, letting i be the time step and Tn be the total length of the time series, the distribution of

the complete data (namely the observations y and the latent variables x) can be written as

Pðfxn; yngÞ ¼ Pðxn1Þ
YTn

i¼2

Pðxn
i jx

n
i� 1
Þ
YTn

i¼1

Pðyn
i jx

n
i Þ

logPðfxn; yngÞ ¼ logPðxn
1
Þ þ

XTn

i¼2

logPðxn
i jx

n
i� 1
Þ þ

XTn

i¼1

logPðyn
i jx

n
i Þ ð2Þ

¼ �
1

2
ðxn

1
� μ0Þ

TV � 1

0
ðxn

1
� μ0Þ �

1

2

�
XTn

i¼2

1

2
ðxn

i � Axn
i� 1
Þ
T
G� 1ðxn

i � Axn
i� 1
Þ

� �

�
Tn � 1

2
logjGj

�
XTn

i¼1

1

2
ðyn

i � Cxn
i Þ

T
S� 1ðyn

i � Cxn
i Þ

� �

�
Tn

2
logjSj þ const:

By the assumption of independence, the joint probability of the observations and state vari-

ables across all floats expands into the product of the joint probability of the observations and

state variables of all the time series generated by each float n ¼ 1; 2 . . .N

Pðfx1; . . . ; xN ; y1; . . . ; yNgÞ ¼
YN

n¼1

Pðxn
1
Þ
YTn

i¼2

Pðxn
i jx

n
i� 1
Þ
YTn

i¼1

Pðyn
i jx

n
i Þ ð3Þ

log Pðfx1; . . . ; xN ; y1; . . . ; yNgÞ ¼
XN

n¼1

logPðfxn; yngÞ ð4Þ

We note that, for each float, the preprocessed data of this float might generate multiple mul-

tivariate time series (see the “Data Preprocessing” Section for more details.) Under the tradi-

tional i.i.d. assumptions, the objective function of the vLDS model is simply the addition of the

objective functions for each individual time series’ log-likelihood with all the parameters

Θ :¼ A;C;G;S; μ0;V0f g that define the plain version LDS for each float (or each box-branch

in Fig 7) being shared across all the floats. Using the Expectation-Maximizing algorithm, the

Expectation step can be carried out using a two loop backward and forward iteration for each

time series independently, due to the conditional independence of the state variables across

different time series of different floats. However, in the maximization step we need to average

the vLDS model parameter across all the time series from all the floats.

The derivation of the update formula for the vLDS model parameters Θ :¼ A;C;G;S; μ0;V0f g

follows directly by taking derivatives of the complete data log-likelihood with respect to each com-

ponent inΘ and by using the standard results from the Maximum Likelihood Estimators of the

mean and variance for the Gaussian Distribution. For a dataset of many floats, the complete data

log-likelihood has an addition summation sign running through n ¼ 1; 2 . . .N in Eq (4). We use

Tn, instead of T, to denote the length of the time series of the float n: Given the fact that the deriva-

tive of a linear combination of functions is a linear combination of derivatives of each function, we

Robust learning algorithms for capturing oceanic dynamics of Noctiluca blooms using linear dynamical models

PLOS ONE | https://doi.org/10.1371/journal.pone.0218183 June 13, 2019 14 / 24

https://doi.org/10.1371/journal.pone.0218183


can write the updating formula for the maximization step as:

Cnew ¼
XN

n¼1

XTn

i¼1

yn
i Eðx

n
i Þ

T

 !
XN

n¼1

XTn

i¼1

Eðxn
i ðx

n
i Þ

T
Þ

 !� 1

Snew ¼
1

XN

n¼1
Tn

 XN

n¼1

XTn

i¼1

ðyn
i ðy

n
i Þ

T
� CnewEðxn

i Þðy
n
i Þ

T
� yni Eðx

n
i Þ

TCnew

þCnewEðxn
i ðx

n
i Þ

T
ÞCnew Þ

!

Anew ¼

 
XN

n¼1

XTn

i¼2

Eðxn
i ðx

n
i� 1
Þ
T
Þ

! 
XN

n¼1

XTn

i¼2

Eðxn
i� 1
ðxn

i� 1
Þ
T
Þ

!� 1

ð5Þ

Gnew ¼
1

XN

n¼1
ðTn � 1Þ

 XN

n¼1

XTn

i¼2

ðEðxn
i ðx

n
i Þ

T
� AnewEðxn

i� 1
ðxn

i Þ
T
Þ � Eðxn

i ðx
n
i� 1
Þ
T
ÞAnew

þAnewEðxn
i� 1
ðxn

i� 1
Þ
T
ÞðAnew Þ

T
Þ

!

μnew
0
¼

1

N

XN

n¼1

Eðxn
1
Þ

Vnew
0
¼

1

N

XN

n¼1

ðEðxn
1
ðxn

1
Þ
T
Þ � Eðxn

1
ÞEððxn

1
Þ
T
ÞÞ

The workflow of the vLDS model is described in Algorithm 2, and the averaging of the

vLDS model parameters Θ across all the floats in Eq (4) is carried out in step 12. During this

procedure, the vLDS model adaptively learns the latent dynamics of the underlying process.

We have fitted the chlorophyll a concentration for the particular float in Fig 5 with id

64113560. The result is displayed in the “Discussion and Conclusions” Section.

Each Expectation-Maximization cycle of the LDS model for Gaussian random variables is

guaranteed to increase the value of the complete data log-likelihood. Therefore, a standard

stopping criterion for the Expectation-Maximization algorithm is based on the complete data

log-likelihood in Eqs (2) and (4) with a relative tolerance rtol ¼ 10� 4 and maximum iteration

100. (The source code of the vLDS implementation is available at: https://bitbucket.org/

yy2250cu/vlds-oceancolormodeling/src/).

One of the key model parameters in the LDS modeling is the dimension k of the latent space,

namely, the number of components in the latent variable x. It is the dimension of the subspace

generated by the projection of the full feature space onto the latent subspace, whose projection

back onto the full feature space in Eq (1) under the vLDS linear transformation matrix C maxi-

mizes the complete data log-likelihood. A larger k indicates that there are more independent fac-

tors in the latent space of x driving the underlying dynamical system of fx, y}. Moreover,

varying the values of the dimensionality k induces a family of different vLDS models (1)—(3)

indexed by k. To select the model with the most appropriate parameter k, we carry out a 10-fold

cross-validation [59–61] on the parameter k and choose the optimal k that achieves the maximum

complete data log-likehood on the test dataset. More specifically, we group the dataset by float

ids. We hold a portion of the floats ids and consider them as the heldout testing dataset. We take

the rest of the float ids as the cross-validation dataset. In the cross-validation step, we split the
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cross-validation set evenly into 10 folds. Each time we take one fold as the testing dataset, we take

the rest as the training dataset. We fit the vLDS parameter Θ :¼ A;C;G;S; μ0;V0f g on the train-

ing dataset and compute the complete data log-likelihood on the testing dataset using this newly

fitted parameter Θ. The complete data log-likelihood is averaged for different testing fold for a

fixed k. Then, we repeat the entire process for different values of k. See Table 2 for the complete

data log-likelihood generated by different cross-validation trails. The averaged complete-data log-

likelihood across different testing sets is maximized at k ¼ 11.

With the optimal value k ¼ 11 of the latent space dimension identified, we fit the vLDS

model one more time with the full cross-validation dataset to generate the vLDS model param-

eter. In Fig 8, we display the log-likelihood convergence of the Expectation-Maximization

algorithm for the complete cross-validation dataset and five individual floats in the cross-vali-

dation dataset. We note that from Eqs (2)–(4), the log-likelihood of the complete cross-valida-

tion dataset is the sum of the log-likelihood of each individual floats in the cross-validation

dataset (step 8 in Algorithm 2.)

Results

With the optimally selected latent space dimension k ¼ 11, the vLDS algorithm obtains a set

of model parameters Θ :¼ A;C;G;S; μ0;V0f g when the stopping criterion inside the Expecta-

tion-Maximization algorithm is reached. The spatial distribution of the vLDS prediction error

for the chlorophyll a concentration is shown in Fig 9. Fig 10 shows the prediction results for

some drifter ids in the cross-validation dataset, using Eq (1) and the expected conditional

mean of the latent variables at the last iteration of the Expectation steps 4, 5, and 6 in Algo-

rithm 2. The dark lines are the observations, and the cyan lines are the predictions. Most of the

hidden dynamics of the float profiles inside the cross-validation dataset are well captured by

the vLDS model. The R2 values of the drifters in Fig 10 are 0.95, 0.98, 0.98, 0.98, 0.99, respec-

tively. We note the positive correlations among ‘chlor_a’, ‘cdm’, and ‘kd490’ in the recovered

vLDS latent dynamics (cyan lines in Fig 10) at the local drifter-scale and population-level in

the cross-validation dataset. The model captures this correlation with some overshooting or

undershooting in certain regions. Also, ‘t865’, the aerosol optical thickness over water, turns

out to be independent of the chlorophyll a concentration and other ocean profiles. Moreover,

the spatial information, namely, the longitude, latitude, velocity, speed of the float, and

Table 2. 10-fold cross-validation on the parameter k. The optimal k that achieves the maximum complete data log-likelihood on the test set is k ¼ 11. The unit of the

test-dataset log-likelihood in the table is 104.

k 1 2 3 4 5 6 7 8 9 10 11 12

fold llhtest

1 -1.44 -1.36 -1.33 -1.23 -1.15 -1.19 -1.15 -1.04 -1.14 -1.18 -1.01 -1.65

2 -1.33 -1.22 -1.20 -1.09 -0.98 -1.02 -0.95 -0.83 -0.94 -0.97 -0.81 -1.42

3 -1.58 -1.53 -1.47 -1.27 -1.25 -1.19 -1.26 -1.10 -1.19 -1.15 -1.02 -1.46

4 -1.29 -1.18 -1.15 -1.04 -0.98 -0.97 -0.94 -0.82 -0.88 -0.86 -0.80 -1.11

5 -1.44 -1.33 -1.30 -1.17 -1.12 -1.11 -1.10 -0.91 -1.06 -1.11 -0.88 -1.57

6 -1.58 -1.45 -1.45 -1.34 -1.22 -1.36 -1.31 -1.17 -1.27 -1.19 -1.14 -1.70

7 -1.71 -1.55 -1.52 -1.34 -1.25 -1.22 -1.19 -1.02 -1.07 -1.09 -0.95 -1.31

8 -1.14 -1.02 -1.02 -0.93 -0.84 -0.88 -0.87 -0.73 -0.76 -0.76 -0.71 -0.95

9 -1.63 -1.48 -1.44 -1.27 -1.17 -1.18 -1.19 -0.99 -1.06 -1.10 -0.94 -1.35

10 -1.52 -1.40 -1.35 -1.22 -1.20 -1.13 -1.11 -0.92 -0.99 -1.04 -0.85 -1.33

Average -1.47 -1.35 -1.32 -1.19 -1.11 -1.12 -1.11 -0.95 -1.04 -1.05 -0.92 -1.38

https://doi.org/10.1371/journal.pone.0218183.t002
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distance to the nearest coast, is all well recovered by the vLDS model (lat and spd are not

shown in Figs 10 and 11 due to space limitations.)

We next examine on the robustness of the vLDS model. The floats in the heldout testing

dataset are not used in the cross-validation process or the model’s parameter estimation pro-

cess. Therefore, the heldout testing dataset is totally unknown to the vLDS learning algorithm.

We use the cross-validated latent dimension k ¼ 11, and the model parameter Θ :¼

A;C;G;S; μ0;V0f g generated by training the vLDS model on the cross-validation dataset.

Applying one iteration of the forward-backward smoothing process, namely, i.e., one iteration

of the Expectation steps 4, 5, and 6 in Algorithm 2, to each float in the heldout testing dataset,

we obtain the predictions of their profiles (Fig 11). Most of the hidden dynamics along drifter

trajectories for the floats in the heldout testing dataset, which is totally unknown to the learn-

ing algorithm, is well captured by the vLDS model. The R2 values of the drifters in Fig 11 are

0.93, 0.97, 0.98, 0.99, 0.99, respectively. They clearly demonstrate the generalization ability of

the vLDS model’s capability to summarize and capture the local population-level structures

along the drifter trajectories on unknown datasets.

We note again the positive correlations among ‘chlor_a, ‘cdm’, and ‘kd490’ in the recovered

vLDS latent dynamics (cyan lines in Fig 11) at the local population-level for the drifters in the

Fig 8. Convergence history of the log-likelihood of the complete cross-validation dataset and a sample of the convergence history for 5 floats.

https://doi.org/10.1371/journal.pone.0218183.g008
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Fig 9. Spatial distribution of the vLDS prediction error for the chlorophyll a concentration (chlor_a).

https://doi.org/10.1371/journal.pone.0218183.g009

Fig 10. Predictions of the drifter profiles for the floats in the cross-validation dataset, using the expected conditional mean of the latent variables at the last

iteration of the Expectation-Maximization algorithm.

https://doi.org/10.1371/journal.pone.0218183.g010
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heldout dataset. Even in this heldout testing dataset, the model captures this correlation to a

large degree, with some overshooting or undershooting in certain regions. Again, ‘t865’, the

Fig 11. Predictions of the drifter profiles for the floats in the heldout testing dataset, using the expected conditional mean of the latent variables generated by one

iteration of the forward-backward smoothing process of the Expectation-Maximization algorithm with the vLDS model parameterY :¼ A;C;G;S;μ0;V0f g

optimized on the cross-validated dataset.

https://doi.org/10.1371/journal.pone.0218183.g011

Table 3. R-squared ðR2Þmetric for the cross-validation dataset and heldout testing dataset. R2 is computed for each individual feature and aggregated together for all

features.

cross-validation data heldout testing data

SSTotal SSE SSE(stdev) R2 R2(stdev) SSTotal SSE SSE(stdev) R2 R2(stdev)

lat 1.17E+5 3.78E+2 2.45E+1 0.99 2.08E-4 4.32E+3 1.86E+1 2.14E+0 0.99 4.94E-4

lon 2.32E+5 4.42E+2 2.58E+1 0.99 1.13E-4 3.52E+3 3.23E+1 2.31E+0 0.99 6.56E-4

ve 2.37E+6 3.67E+5 2.02E+4 0.85 8.52E-3 1.51E+5 2.49E+4 3.72E+3 0.84 2.46E-2

vn 2.36E+6 4.51E+5 2.70E+4 0.81 1.09E-2 1.07E+5 1.63E+4 1.47E+3 0.85 1.37E-2

spd 1.78E+6 2.62E+5 1.49E+4 0.85 8.38E-3 7.20E+4 1.09E+4 8.77E+2 0.85 1.22E-2

dist 3.55E+8 2.05E+6 1.14E+5 0.99 3.42E-4 1.78E+7 1.52E+5 9.24E+3 0.99 5.19E-4

cdm 1.65E+1 1.88E+0 4.91E-1 0.89 3.01E-2 3.40E-1 4.00E-2 1.03E-2 0.87 2.91E-2

kd490 2.43E+1 8.02E+0 2.31E+0 0.67 9.51E-2 3.19E-1 1.39E-1 3.96E-2 0.56 1.24E-1

t865 1.34E+1 1.29E+1 5.91E-1 0.04 4.51E-2 7.30E-1 7.49E-1 7.28E-2 -0.04 9.97E-2

par 2.41E+5 1.80E+4 1.09E+3 0.93 4.55E-3 9.43E+3 7.87E+2 7.35E+1 0.91 7.81E-3

sst4 1.20E+4 2.07E+3 4.25E+2 0.83 3.51E-2 1.02E+3 5.13E+2 2.06E+2 0.49 2.02E-1

chlor_a 4.60E+4 2.19E+4 4.28E+3 0.52 9.31E-2 2.59E+2 1.46E+2 5.47E+1 0.43 2.11E-1

Aggreg. 3.62E+8 3.17E+6 1.82E+5 0.99 5.03E-4 1.82E+7 2.06E+5 1.57E+4 0.98 8.62E-4

https://doi.org/10.1371/journal.pone.0218183.t003
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aerosol optical thickness over water, seems to be independent of the Chl a concentration and

other ocean profiles in the heldout dataset. The vLDS model simply estimates the mean value

for the variable ‘t865’ in both the cross-validation and heldout datasets. However, by compar-

ing the predictions generated by the vLDS model for ‘t865’ and for other variables, we con-

clude that the variable ‘t865’ is not much involved in the latent dynamics of the Noctiluca’s

growth. Otherwise, the predicted values of ‘t865’ should match its observations in Figs 10 and

11, and the R2 of ‘t865’ in Table 3 should not be too small. Evidently, the vLDS model indicates

that there is no strong relationship between ‘t865’ and the latent dynamics of the Noctiluca’s

growth at the population-level along the drifter trajectories, a feature lacking in models that do

not take the local trajectory-based population-level structure into consideration. Moreover,

the spatial information of the heldout floats, namely, longitude, latitude, velocity, speed of the

float, and distance to the nearest coast, is all well recovered by the vLDS model.

In addition to the above-mentioned correlations that are recovered correctly from the vLDS

predictive data stream f~yig, it is evident that both spatio-temporal {time, lon, lat, dist}, physical

{ve, vn, spd}, and physico-chemical factors {sst4, cdm, kd490, par} are involved in this 11-dimen-

sional ðk ¼ 11Þ latent dynamics for the Noctiluca blooms. It is important to note that vLDS

serves as a mechanism to exclude irrelevant variables, such as ‘t865’, for the underlying micro-

scopic latent dynamics at the local drifter-scale, which is the Noctiluca’s growth in this study.

To quantify the performance of the vLDS model, we use the R-squared metric ðR2Þ. In

Table 3, the total sum of squares (SSTotal), sum of squared errors of predictions (SSE), and R2,

which is the portion of the variance captured by the predictive model, are computed for both

the cross-validation and heldout testing datasets. The standard deviations (stdev) of SSE and

R2are also listed in Table 3. Although the vLDS model has the log-likelihood of the complete

data in Eqs (3) and (4) as its own performance metric, we use R2 here for an intuitive interpre-

tation. The quantitative results reflect the visualization in Figs 10 and 11. The feature ‘t865’ has

a very small value in its R2 metric and does not exhibit any predictive power. The vLDS recov-

ers the spatio-temporal information well, and explains most of the variance in the physico-

chemical factors {‘cdm’, ‘kd490’, ‘par’, ‘sst4’, ‘chlor_a’}.

Discussion and conclusions

We have introduced a new model vLDS and showed that it offers a new local-scale trajectory-

based data analysis tool to recover biogeochemical mechanisms underlying chaotic drifter tra-

jectories that might be unobservable at the macroscopic scale or accessible only in controlled

laboratory experiments. The vLDS model generates predictions that recover the causal rela-

tionship among the Noctiluca blooms, physical dispersal, and physico-chemical environments

(Figs 10 and 11 and Table 3.) The model’s generalization capability also summarizes, recovers,

and predicts the latent dynamics from unknown heldout testing datasets, thus inspiring confi-

dence in our local-scale findings along drifter trajectories and macroscopic findings of pooled

data. The highly correlated relationships between the ‘chlor_a’ and ‘cdm’ (colored dissolved

organic matter CDOM), and between the ‘chlor_a’ and ‘kd490’ (light under the sea surface) are

close to linear. The tightly correlated relationships between the ‘chlor_a’ and ‘par’ (light on the

sea surface PAR), and between the ‘chlor_a’ and ‘sst4’ (sea surface temperature SST4) are non-

linear. The vLDS model does not provide evidence of a strong relationship between ‘t865’ and

the latent dynamics of the Noctiluca’s growth.

Furthermore, in the vLDS model, individual components are not assumed to be mutually

independent in the multivariate random variable. After the prediction step, the linear correla-

tions are only one aspect of insights that can be obtained from vLDS. In fact, correlations are lin-

ear relationships. The latent dynamics recovered by vLDS predictions, on the other hand, is not
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simply a linear correlation. Although the vLDS is named Linear, it is evident from the updating

formula Eq (1) that recursively applying linear transformations on the latent variable xi� 1 makes

both the latent data stream fxig and the predictive data stream f~yig generated by the vLDS

highly nonlinear. So the data stream f~yig recovered or generated by vLDS is not simply linear

correlated. Instead, it is on a low-dimensional nonlinear manifold generated by vLDS. It is evi-

dent that both spatio-temporal {time, lon, lat, dist}, physical {ve, vn, spd}, and physico-chemical

factors {sst4, cdm, kd490, par} are involved and correctly recovered in this 11-dimensional ðk ¼
11Þ latent dynamics for the Noctiluca blooms. It is important to observe that vLDS also serves as

a mechanism to exclude irrelevant variables, such as ‘t865’, for the underlying local trajectory-

scale latent dynamics in general, beyond the results in this study for Noctiluca’s growth.

These results confirm the macroscopic hypotheses in the “Background” Section from the

local trajectory-scale perspective, and confirms the impact of both the physical transport and

physico-chemical factors of light and nutrients, proxies for the latter being CDOM, on the dis-

tribution of the Noctiluca blooms. Also, the test results imply that the nutrient and light (light

on and under the sea surface) are important positive factors for the Noctiluca’s growth.

Regarding the atmospheric deposition ‘t865’, the vLDS model does not provide evidence of a

strong relationship between ‘t865’ and the latent dynamics of the Noctiluca’s growth (Figs 10

and 11 and Table 3). Due to the fact that the nutrient dynamics involving the atmospheric

deposition may have lagging and cumulating effects, further research regarding the role of the

atmospheric deposition in the Noctiluca’s growth is needed. It has also been confirmed from

the drifter dynamics recovered by the vLDS Model that Noctiluca grow faster in lighted than in

dark areas on the sea surface and in the sea water.

We have demonstrated the effectiveness of the vLDS model as a local-scale trajectory-based

statistical modeling tool for detecting important causal relationships in biogeochemical pro-

cesses. Although the trajectories of the oceanographic probing devices are chaotic and the

dataset is high dimensional, the vLDS model is very parsimonious on model parameters. The

model only requires Θ :¼ A;C;G;S; μ0;V0f g and the latent-space dimension k to be able to

summarize all the drifters in the Arabian Sea region from 2002 to 2017. The predictive dynam-

ics matches the local-scale observations along drifter trajectories well, and affords tremendous

confidence in support of the macroscopic hypotheses.

Furthermore, the intertwined relationships recovered by the vLDS model between the physi-

cal and physico-chemical dynamics of the Noctiluca blooms and the intertwined relationships

among the physico-chemical factors such as ‘cdm’ and ‘kd490’ have inspired us to use inference

tools to quantify the isolated impact of the physico-chemical factors that are responsible for the

Noctiluca blooms as ‘chlor_a’ in the Arabian Sea region. The vLDS model presented here is fully

generalizable to other datasets for other applications, such as larval transport in marine ecology.

Code availability

The source code for the variable-length Linear Dynamical System (vLDS) method is available

at: https://bitbucket.org/yy2250cu/vlds-oceancolormodeling/src/
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