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Abstract: Recent data show that activation of nociceptive (sensory) nerves turns on localized inflam-
mation within the innervated area in a retrograde manner (antidromically), even in the absence of
tissue injury or molecular markers of foreign invaders. This neuroinflammatory process is activated
and sustained by the release of neuronal products, such as neuropeptides, with the subsequent
amplification via recruitment of immunocompetent cells, including macrophages and lymphocytes.
High mobility group box 1 protein (HMGB1) is a highly conserved, well characterized damage-
associated molecular pattern molecule expressed by many cells, including nociceptors and is a marker
of inflammatory diseases. In this review, we summarize recent evidence showing that neuronal
HMGB1 is required for the development of neuroinflammation, as knock out limited to neurons or its
neutralization via antibodies ameliorate injury in models of nerve injury and of arthritis. Further, the
results of study show that HMGB1 is actively released during neuronal depolarization and thus plays
a previously unrecognized key etiologic role in the initiation and amplification of neuroinflammation.
Direct targeting of HMGB1 is a promising approach for novel anti-inflammatory therapy.

Keywords: high mobility group box 1; TRPV1; nociception; cytokine; inflammation; nerve
injury; arthritis

1. Introduction: Activation of Nociceptive Neurons Turns on Inflammation

Recent studies have shown that activation of nociceptors (TRPV1+) in the absence of
tissue damage or pathogen-related products fully mobilizes local innate immune responses.
For example, using optogenetic techniques, Cohen et al. have reported that sterile triggering
of cutaneous nociceptors produces a sustained multicellular immune response within the
innervated tissue via the antidromic nerve reflex arc [1]. To underscore the critical role
of neurons in the process, this biological response has been termed neuroinflammation.
Many different processes which stimulate sensory neurons can also simultaneously activate
inflammatory processes and result in acute and chronic diseases. As one example, immune-
antibody complexes of cartilage collagen within the joint space activate sensory neurons
via Fc receptors for IgG resulting in pain behavior before the development of inflammation
and damage within the joint [2]. Interfering with neuronal activation greatly attenuates
subsequent joint inflammation, underscoring the importance of neuroinflammation in
the pathophysiology [3]. Notably, clinical experience also supports a critical role for
sensory nerves in the development of inflammatory diseases. As one example, Kane et al.
have reported that a patient with psoriatic arthritis who had suffered nerve transection
of the fourth finger prior to contracting the disease, was completely protected from the
development of inflammation and joint deformity in that digit in contrast to the other
fingers (Figure 1) [4]. Furthermore, an experimental arthritis study designed to investigate
a possible relationship between joint innervation and joint inflammation demonstrated that
prior sensory denervation, with preserved motor function, prevented the development of
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arthritis in the denervated knee [4]. Importantly, persistent activation or malfunction of
the nociceptive system also gives rise to chronic pain [5]. As reviewed by Peirs and Seal,
noxious stimuli activate primary sensory neurons that transmit nociceptive information
to the spinal and medullary dorsal horns. A cascade of signaling subsequently leads to
neuroinflammation and perceived pain [6].
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and immune stimulating molecules, typically histamine and neuropeptides [7]. These me-
diators act synergistically with local immunocompetent cells, e.g., Langerhans cells, to es-
tablish a mature inflammatory complex ultimately culminating in the accumulation of 
neutrophils and lymphocytes, generally associated with secondary tissue damage and 
maintenance of a state of disease. However, neurons also actively restrict the local inflam-
matory response via monitoring by the vagus nerve and the central nervous system. Based 
on this information, the central nervous system exerts homeostatic controls via the auto-
nomic nervous system and the hypothalamic-pituitary-adrenal system [8]. 

2. Role of High Mobility Group Box 1 Protein (HMGB1) in the Inflammatory Response
In addition to the molecular products well-known for release from sensory neurons, 

other important molecules have been implicated in the immune response. One key player 
in activating inflammation is HMGB1, which is an evolutionarily highly conserved, nu-
clear, non-histone DNA binding protein present in all nucleated cells [9]. Prior work has 
shown that HMGB1 is passively released during lytic cell death processes, as well as se-
creted by activated innate immune cells. Certain post-translationally modified isoforms 
of HMGB1 operate extracellularly as proinflammatory mediators in infectious and sterile 
inflammatory conditions [10–12]. Further, HMGB1 levels in the central nervous system 
and in dorsal root ganglion (DRG) cells are elevated in many neuronal injury models in-
cluding tibial nerve injury [13], stress-induced headache [14], ischemic brain damage [15], 
cocaine exposure [16], ethanol overdose [17], morphine-mediated analgesic tolerance and 
hyperalgesia [18], and subarachnoid hemorrhage [19]. Stressed and damaged neurons col-
laborate with activated microglial cells and astrocytes to further propagate inflammation 
via proinflammatory molecules including HMGB1. However, important questions re-
garding the functional role of neuronal HMGB1 in the cellular collaboration driving in-
flammation in the central nervous system or in the periphery have, until lately, remained 
elusive. One important, incompletely investigated area is assessing the importance of neu-
ronal HMGB1 in inflammation and whether its release occurs only via neuronal injury, or 
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deformity exist for distal and proximal interphalangeal joints except for the fourth digit in a patient
suffering from long-standing psoriatic arthritis. She had previously suffered a complete traumatic
transection of the fourth digital nerve as a child, before the onset of arthritis, which had resulted in
sensory denervation (Reproduced from Kane et al. [4]).

The current paradigm of the pathophysiology of neuroinflammation has focused on
the observation that stimulated sensory neurons actively release a variety of vasoactive
and immune stimulating molecules, typically histamine and neuropeptides [7]. These
mediators act synergistically with local immunocompetent cells, e.g., Langerhans cells,
to establish a mature inflammatory complex ultimately culminating in the accumulation
of neutrophils and lymphocytes, generally associated with secondary tissue damage and
maintenance of a state of disease. However, neurons also actively restrict the local in-
flammatory response via monitoring by the vagus nerve and the central nervous system.
Based on this information, the central nervous system exerts homeostatic controls via the
autonomic nervous system and the hypothalamic-pituitary-adrenal system [8].

2. Role of High Mobility Group Box 1 Protein (HMGB1) in the Inflammatory Response

In addition to the molecular products well-known for release from sensory neurons,
other important molecules have been implicated in the immune response. One key player
in activating inflammation is HMGB1, which is an evolutionarily highly conserved, nuclear,
non-histone DNA binding protein present in all nucleated cells [9]. Prior work has shown
that HMGB1 is passively released during lytic cell death processes, as well as secreted by
activated innate immune cells. Certain post-translationally modified isoforms of HMGB1
operate extracellularly as proinflammatory mediators in infectious and sterile inflammatory
conditions [10–12]. Further, HMGB1 levels in the central nervous system and in dorsal root
ganglion (DRG) cells are elevated in many neuronal injury models including tibial nerve in-
jury [13], stress-induced headache [14], ischemic brain damage [15], cocaine exposure [16],
ethanol overdose [17], morphine-mediated analgesic tolerance and hyperalgesia [18], and
subarachnoid hemorrhage [19]. Stressed and damaged neurons collaborate with activated
microglial cells and astrocytes to further propagate inflammation via proinflammatory
molecules including HMGB1. However, important questions regarding the functional
role of neuronal HMGB1 in the cellular collaboration driving inflammation in the central
nervous system or in the periphery have, until lately, remained elusive. One important,
incompletely investigated area is assessing the importance of neuronal HMGB1 in inflam-
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mation and whether its release occurs only via neuronal injury, or whether, similar to
immune cells, uninjured neurons can directly release HMGB1 to initiate immune responses.
Here, we focus on reviewing recent findings addressing these issues.

3. HMGB1 Is Actively Released by Nociceptive Neurons

Nuclear HMGB1 is ubiquitously expressed in the central nervous system including
neurons, satellite cells, Schwann cells, microglia, and astrocytes, and the intracellular lev-
els are further enhanced during traumatic neuropathy, denoting a possible link between
HMGB1 release and nociception [20]. A programmed nuclear-cytoplasmic translocation
of HMGB1 is a prerequisite in innate immune cells for active HMGB1 release via exo-
cytosis of cytoplasmic vesicles such as secretory lysosomes [21] or via exosomal release
during sepsis [22]. Studies by Merianda et al. provided direct evidence that, in mice
with sciatic nerve injury, HMGB1 located within DRGs shifts from cell bodies towards
release [23]. These investigators used L4–L5 DRG neurons cultured from animals that had
been conditioned 7 d previously by unilateral sciatic nerve crush. HMGB1 protein shifts
from being cell body-predominant in the naive neurons to being axon-predominant in
the injury-conditioned neurons. Immunofluorescent images of cultured neurons showed
higher cell body signals in naive neurons and higher axonal signals in injury-conditioned
neurons. Hence, this study provided direct evidence that during injury, neuronal HMGB1
shifts from cell bodies to axons towards release. All these findings implicate that HMGB1
is actively released from neurons to elicit extracellular events.

Although neurons do not contain secretory lysosomes, studies have implicated that
HMGB1 is actively released from excessively (hyper) depolarized neurons in response to
optogenetic stimulation [24], from neurons stimulated by TNF [25] or following ethanol
exposure [26]. Using an optogenetic approach, we directly demonstrated that stimu-
lated sensory neurons actively release HMGB1 [27]. Specifically, to selectively activate
sensory neurons, we generated transgenic Vglut2-Cre/ChR2-eYFP mice which express
channelrhodopsin-2 (ChR2) coupled to an enhanced yellow fluorescent protein (ChR2-
eYFP) directed by vesicular glutamate transporter type 2 (VGlut2) promoter. ChR2 is
a light-gated ion channel that is activated by exposure to blue light. Previous work has
shown that activation of these light-gated channels depolarizes the DRG neurons and elicits
propagated action potentials [28]. Vesicular glutamate transporter 2 (VGlut2) is expressed
by peripheral glutamatergic sensory neurons. Sensory neurons, harvested from dorsal root
ganglia of Vglut2-Cre/ChR2-eYFP mice, were then cultured and stimulated by 470 nm
blue light in vitro and subsequently expressed significant levels of cytoplasmic HMGB1 in
contrast to unstimulated DRGs. We subsequently observed (Figure 2A) a time-dependent
increase in the extracellular HMGB1 concentrations after the optogenetic stimulation [27].
In contrast, photo-stimulation of DRG sensory neurons using yellow light (595 nm), which
does not activate ChR2, failed to induce HMGB1 release. These combined results thus
indicate that stimulated nociceptors actively translocate nuclear HMGB1 to the cytoplasm
for ultimate release at the nerve ending. Lactate dehydrogenase (LDH), a soluble cyto-
plasmic enzyme released upon cell membrane disruption, was not released during light
exposure, further confirming that HMGB1 is actively secreted by stimulated nociceptors,
and not passively released via lytic cell death [27] (Figure 2B). In summary, although the
full temporal profile of HMGB1 release in response to neuronal activation remains to be
determined in future experiments, the results of these studies definitively show that, as
with immune cells, sensory neurons can actively release HMGB1 in response to stimulation.
That this release is physiologically relevant is shown using neuronal HMGB1 knock-out
and neutralization in preclinical models, as discussed below.
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Figure 2. Stimulated neurons actively release HMGB1. (A). Sensory neurons harvested from dorsal root 
ganglia (DRG) of Vglut2-Cre/ChR2-eYFP mice were cultured and exposed to (470 nm; stimulates) or yel-
low light (595 nm, not-stimulating control) at 20 Hz, and 10% duty cycle for 30 min using optical fiber-
coupled LEDs. Blue bar indicates the duration of stimulation. A time-dependent increase in secreted 
HMGB1 levels is observed following optogenetic stimulation (at 60 min: **: p < 0.01, at 90 min: ****: p < 
0.0001), n.s.: not significant; reproduced from Yang et al. [27]. (B). DRG viability was assessed by release 
of the soluble cytoplasmic enzyme lactate dehydrogenase (LDH), which leaks out following membrane 
disruption. Cell lysate was included as positive control. No significant increase in cell death is observed 
following optogenetic stimulation. N = 3–4 separate experiments, and each performed in duplicate (****: 
p < 0.0001); reproduced from Yang et al. [27]. 
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CXCR4, which initiates recruitment of inflammatory cells in a synergistic fashion, compared 
to CXCL12 alone [29,30]. In contrast, the cytokine-stimulating activity of HMGB1 requires cys-
teine 23 and 45 to form a disulfide link as a result by mild oxidation, while keeping the C106 
residue in its reduced state [31]. This disulfide isoform exclusively binds and activates the 
TLR4/MD-2 complex [32,33]. Finally, HMGB1 with any of the cysteines terminally oxidized 
(sulfonyl HMGB1) has until recently been regarded as an immunologically inactive molecule. 
However, recent studies indicate that sulfonyl HMGB1 is actually a potent anti-inflammatory 
molecule [34]. 

The HMGB1 molecule has binding sites for both the receptor for advanced glycation end-
product (RAGE) and Toll-like receptor 4 (TLR4; Figure 3A). Using global TLR4 knockout (KO) 
mice, Svensson et al. demonstrated that TLR4 is required for HMGB1-mediated hyperalgesia 
[35,36]. However, no previous study has investigated the impact of tissue-specific TLR4 in 
neuronal HMGB1 signaling. To gain insight into the mechanism of neuronal HMGB1-induced 
nociceptive responses, we generated novel neuronal TLR4 (Syn-Cre/TLR4fl/fl) and RAGE-spe-
cific KO (Syn-Cre/RAGEfl/fl) mouse models. To determine if the absence of neuronal TLR4 is 
sufficient to significantly reduce hyperalgesia in the presence of high levels of HMGB1, mice 
had paw injections of disulfide HMGB1 (6 µg/paw) and mechanical hypersensitivity was as-
sessed 5 h afterwards. Similar to global KO, neuronal specific TLR4 KO had significant pro-
tection against HMGB1-induced allodynia as compared to wild type or neuronal RAGE KO 
mice (Figure 3B). In agreement with this observation, mice subjected to sciatic nerve injury 
developed hypersensitivity in wild type and neuronal RAGE KO as compared to sham-oper-
ated controls. In contrast, neuronal TLR4 KO mice were significantly protected from this sci-
atic injury-induced allodynia (Figure 3C). Taken together, these findings show that HMGB1-
inducing nociceptive responses predominantly occur via a neuronal TLR4-dependent signal-
ing mechanism. The effect of neuronal knock-out of HMGB1 on TLR4 expression, if any, is 
currently unknown. 
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Figure 2. Stimulated neurons actively release HMGB1. (A). Sensory neurons harvested from dorsal root ganglia (DRG) of
Vglut2-Cre/ChR2-eYFP mice were cultured and exposed to (470 nm; stimulates) or yellow light (595 nm, not-stimulating
control) at 20 Hz, and 10% duty cycle for 30 min using optical fiber-coupled LEDs. Blue bar indicates the duration of
stimulation. A time-dependent increase in secreted HMGB1 levels is observed following optogenetic stimulation (at
60 min: **: p < 0.01, at 90 min: ****: p < 0.0001); reproduced from Yang et al. [27]. (B). DRG viability was assessed by
release of the soluble cytoplasmic enzyme lactate dehydrogenase (LDH), which leaks out following membrane disruption.
Cell lysate was included as positive control. No significant increase in cell death is observed following optogenetic
stimulation. n = 3–4 separate experiments, and each performed in duplicate (****: p < 0.0001), n.s.: not significant; reproduced
from Yang et al. [27].

4. HMGB1 Induces Nociceptive Responses via Neuronal TLR4-Dependent Mechanisms

The biological activities of HMGB1 depend upon receptor binding which is sensi-
tive to the redox state of each of HMGB1′s three cysteines [11]. Fully reduced (all-thiol)
HMGB1 exerts chemotactic activity by forming a heterocomplex with the chemokines
CXCL12 and CXCR4, which initiates recruitment of inflammatory cells in a synergistic
fashion, compared to CXCL12 alone [29,30]. In contrast, the cytokine-stimulating activity
of HMGB1 requires cysteine 23 and 45 to form a disulfide link as a result by mild oxi-
dation, while keeping the C106 residue in its reduced state [31]. This disulfide isoform
exclusively binds and activates the TLR4/MD-2 complex [32,33]. Finally, HMGB1 with any
of the cysteines terminally oxidized (sulfonyl HMGB1) has until recently been regarded
as an immunologically inactive molecule. However, recent studies indicate that sulfonyl
HMGB1 is actually a potent anti-inflammatory molecule [34].

The HMGB1 molecule has binding sites for both the receptor for advanced glyca-
tion end-product (RAGE) and Toll-like receptor 4 (TLR4; Figure 3A). Using global TLR4
knockout (KO) mice, Svensson et al. demonstrated that TLR4 is required for HMGB1-
mediated hyperalgesia [35,36]. However, no previous study has investigated the impact of
tissue-specific TLR4 in neuronal HMGB1 signaling. To gain insight into the mechanism
of neuronal HMGB1-induced nociceptive responses, we generated novel neuronal TLR4
(Syn-Cre/TLR4fl/fl) and RAGE-specific KO (Syn-Cre/RAGEfl/fl) mouse models. To de-
termine if the absence of neuronal TLR4 is sufficient to significantly reduce hyperalgesia
in the presence of high levels of HMGB1, mice had paw injections of disulfide HMGB1
(6 µg/paw) and mechanical hypersensitivity was assessed 5 h afterwards. Similar to global
KO, neuronal specific TLR4 KO had significant protection against HMGB1-induced allo-
dynia as compared to wild type or neuronal RAGE KO mice (Figure 3B). In agreement
with this observation, mice subjected to sciatic nerve injury developed hypersensitivity in
wild type and neuronal RAGE KO as compared to sham-operated controls. In contrast,
neuronal TLR4 KO mice were significantly protected from this sciatic injury-induced allo-
dynia (Figure 3C). Taken together, these findings show that HMGB1-inducing nociceptive
responses predominantly occur via a neuronal TLR4-dependent signaling mechanism. The
effect of neuronal knock-out of HMGB1 on TLR4 expression, if any, is currently unknown.
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Figure 3. Neuronal TLR4, not RAGE, mediates HMGB1-induced nociceptive response. (A). Location of receptor binding 
sites in the HMGB1 molecule. The human HMGB1 protein expresses 214 amino acid residues and contains three functional 
domains: two DNA binding regions termed Box A and Box B, and a bactericidal C-terminal tail. The three ligand binding 
sites of the HMGB1 protein: RAGE binding site (23–50 aa’), TLR4 binding site (89–108 aa’) [31] and RAGE binding site 
(150–183 aa’). (B). Wild type (C57BL/6), Syn-Cre/TLR4fl/fl and Syn-Cre/RAGEfl/fl mice (generated by crossing Rage fl/fl (from 
Dr. Daolin Tang, Dallas, TX, USA) or TLR4 fl/fl (Jackson Laboratories, Hudson, NY, USA) to mice carried the Synapsin I 
promoter-driven Cre recombinanse transgene (Jackson Laboratories)) had intra-plantar injection of HMGB1 (6 µg/paw) 
or vehicle (PBS) on hindpaw, and 5 h later mechanical hypersensitivity (dynamic plantar aesthesiometer) was assessed. (n 
= 8–10 mice per group. ***: p < 0.0001). n.s.: not significant. (C). Wild type (WT), Syn-Cre/TLR4fl/fl and Syn-Cre/RAGEfl/fl 

mice (male, 8–12 weeks old) were subjected to sciatic nerve ligation surgery (CCI) or sham surgery. Two weeks after sciatic 
nerve ligation (or sham) surgery, mechanical hypersensitivity (von Frey filament) was assessed. n = 4–8 per group. *: p < 
0.02. **: p < 0.001. 

5. Neuronal HMGB1 Ablation/Neutralization Reduces Inflammation and Hyperalgesia 
The functional in vivo role of nociceptors and HMGB1 in inflammation was recently 
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mice expressing Cre recombinase under the control of neuronal-specific synapsin pro-
moter, and by crossing synapsin-Cre (Syn-Cre) mice with floxed HMGB1 mice 
(HMGB1fl/fl), we have generated mice with neuronal-specific ablation of HMGB1 (Syn-
Cre/HMGB1fl/fl). This strain of mice allows us to determine the effects of selective neuronal 
HMGB1 deficiency in neuroinflammation. Standardized sciatic nerve injury which gener-
ates severe neurogenic inflammation in wild type mice had a much milder course of cu-
taneous paw inflammation and allodynia in the neuronal-specific HMGB1 knock out 
(Syn-Cre/HMGB1fl/fl) animals (Figure 4A). Further, experimental collagen antibody-in-
duced arthritis (CAIA) in wild-type mice induces painful, destructive polyarthritis that 
depends on nociceptor-induced neuroinflammation [37,38]. The onset of CAIA in HMGB1 
lacking Syn-Cre/HMGB1fl/fl mice was significantly delayed compared to that in controls 
and the neuronal HMGB1 knockout mice were subsequently substantially protected from 
joint inflammation and allodynia (Figure 4B). Thus, nociceptor HMGB1 is an essential me-
diator of the neuroinflammatory response to different forms of tissue injury. 

Figure 3. Neuronal TLR4, not RAGE, mediates HMGB1-induced nociceptive response. (A). Location of receptor binding
sites in the HMGB1 molecule. The human HMGB1 protein expresses 214 amino acid residues and contains three functional
domains: two DNA binding regions termed Box A and Box B, and a bactericidal C-terminal tail. The three ligand binding
sites of the HMGB1 protein: RAGE binding site (23–50 aa’), TLR4 binding site (89–108 aa’) [31] and RAGE binding site
(150–183 aa’). (B). Wild type (C57BL/6), Syn-Cre/TLR4fl/fl and Syn-Cre/RAGEfl/fl mice (generated by crossing Rage
fl/fl (from Dr. Daolin Tang, Dallas, TX, USA) or TLR4 fl/fl (Jackson Laboratories, Hudson, NY, USA) to mice carried the
Synapsin I promoter-driven Cre recombinanse transgene (Jackson Laboratories)) had intra-plantar injection of HMGB1
(6 µg/paw) or vehicle (PBS) on hindpaw, and 5 h later mechanical hypersensitivity (dynamic plantar aesthesiometer) was
assessed. (n = 8–10 mice per group. ***: p < 0.0001). n.s.: not significant. (C). Wild type (WT), Syn-Cre/TLR4fl/fl and
Syn-Cre/RAGEfl/fl mice (male, 8–12 weeks old) were subjected to sciatic nerve ligation surgery (CCI) or sham surgery.
Two weeks after sciatic nerve ligation (or sham) surgery, mechanical hypersensitivity (von Frey filament) was assessed.
n = 4–8 per group. *: p < 0.02. **: p < 0.001. n.s.: not significant.

5. Neuronal HMGB1 Ablation/Neutralization Reduces Inflammation and Hyperalgesia

The functional in vivo role of nociceptors and HMGB1 in inflammation was recently
evaluated in studies of mice with HMGB1 expression silenced only in neurons [27]. Using
mice expressing Cre recombinase under the control of neuronal-specific synapsin promoter,
and by crossing synapsin-Cre (Syn-Cre) mice with floxed HMGB1 mice (HMGB1fl/fl), we
have generated mice with neuronal-specific ablation of HMGB1 (Syn-Cre/HMGB1fl/fl).
This strain of mice allows us to determine the effects of selective neuronal HMGB1 defi-
ciency in neuroinflammation. Standardized sciatic nerve injury which generates severe neu-
rogenic inflammation in wild type mice had a much milder course of cutaneous paw inflam-
mation and allodynia in the neuronal-specific HMGB1 knock out (Syn-Cre/HMGB1fl/fl) ani-
mals (Figure 4A). Further, experimental collagen antibody-induced arthritis (CAIA) in wild-
type mice induces painful, destructive polyarthritis that depends on nociceptor-induced
neuroinflammation [37,38]. The onset of CAIA in HMGB1 lacking Syn-Cre/HMGB1fl/fl

mice was significantly delayed compared to that in controls and the neuronal HMGB1
knockout mice were subsequently substantially protected from joint inflammation and
allodynia (Figure 4B). Thus, nociceptor HMGB1 is an essential mediator of the neuroin-
flammatory response to different forms of tissue injury.
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Figure 4. Ablation of neuronal HMGB1 reduces joint inflammation and cartilage destruction, while improving hyperalge-
sia in murine collagen antibody-induced arthritis. Polyarthritis was induced by administration of anti-collagen antibodies 
in mice. Wild type (WT) and HMGB1fl/fl control mice develop increased mechanical hypersensitivity (A) and polyarthritis 
(B). A significantly delayed onset and reduced severity of polyarthritis are observed in HMGB1 knock out (Syn-
Cre/HMGB1fl/fl) mice. This is accompanied by a marked reduction in mechanical hyperalgesia. (Syn-Cre/HMGB1fl/fl versus 
HMGB1fl/fl group: * p < 0.05, ***p < 0.001, ****p < 0.0001. Reproduced from Yang et al. [27]). 

HMGB1-specific monoclonal antibodies have been demonstrated to be effective for 
the treatment of a wide range of neuroinflammatory diseases in multiple preclinical mod-
els, including stroke [39–42], traumatic brain injury [43], Parkinson’s disease [44], epilepsy 
[45,46], autoimmune encephalomyelitis [47,48], Alzheimer’s disease [24], nerve root com-
pression [49], and cognitive decline after sepsis or major surgery [50,51]. Potential thera-
peutic implications have been addressed in the comprehensive recent reviews of Paudel 
et al. [52] and Nishibori et al. [53,54]. 

Interestingly, the therapeutic results seem to be more consistent and successful in 
disease models where neuronal HMGB1 is involved than in non-neuronal HMGB1-de-
pendent inflammatory conditions. The reasons for these discrepant therapeutic outcomes 
are presently not fully understood, but may depend upon the molecular form of 
HMGB1.Specifically, extracellular HMGB1 either generates inflammation by operating as 
an individual molecule that signals via TLR4 or the receptor for advanced glycated end 
products (RAGE) or, alternatively, by acting complex-bound to extracellular 
DAMP/PAMP molecules. These complexes are endocytosed via RAGE expressed on mac-
rophages and other innate immunity cells and end up in the endolysosomal system of 
these cells. There, during acidic conditions, HMGB1 acts as a detergent and damages the 
lysosomal membrane allowing partner molecules access to cytosolic sensors including in-
flammasomes that initiate inflammation [55]. Extracellular HMGB1 has a vigorous capac-
ity to form these complexes with partner molecules during systemic inflammatory condi-
tions. From a therapeutic point of view, this biology may create major obstacles for 
HMGB1-specific antagonists to recognize and neutralize HMGB1. However, the neu-
ronally released HMGB1 can be discharged close to its cognate TLR4 receptors with much 
less risk that HMGB1 will first bind to other molecules, causing steric hindrance for 
HMGB1-specific antagonists to mediate beneficial therapeutic effects. We thus speculate 
that future treatment with HMGB1-specific antagonists might offer a unique clinical op-
portunity to pacify HMGB1 in diseases where harmful neuronal HMGB1 release is at 
hand. Many scientists and clinicians interested in HMGB1 are puzzled and disappointed 
by the fact that, after more than two decades of HMGB1 research, we still lack successful 
therapeutic HMGB1 antagonists in clinical use. If our speculations about problems and 
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Figure 4. Ablation of neuronal HMGB1 reduces joint inflammation and cartilage destruction, while improving hyperalgesia
in murine collagen antibody-induced arthritis. Polyarthritis was induced by administration of anti-collagen antibodies in
mice. Wild type (WT) and HMGB1fl/fl control mice develop increased mechanical hypersensitivity (A) and polyarthritis (B).
A significantly delayed onset and reduced severity of polyarthritis are observed in HMGB1 knock out (Syn-Cre/HMGB1fl/fl)
mice. This is accompanied by a marked reduction in mechanical hyperalgesia. (Syn-Cre/HMGB1fl/fl versus HMGB1fl/fl

group: * p < 0.05, *** p < 0.001, **** p < 0.0001. Reproduced from Yang et al. [27]).

HMGB1-specific monoclonal antibodies have been demonstrated to be effective for the
treatment of a wide range of neuroinflammatory diseases in multiple preclinical models, in-
cluding stroke [39–42], traumatic brain injury [43], Parkinson’s disease [44], epilepsy [45,46],
autoimmune encephalomyelitis [47,48], Alzheimer’s disease [24], nerve root compres-
sion [49], and cognitive decline after sepsis or major surgery [50,51]. Potential therapeutic
implications have been addressed in the comprehensive recent reviews of Paudel et al. [52]
and Nishibori et al. [53,54].

Interestingly, the therapeutic results seem to be more consistent and successful in dis-
ease models where neuronal HMGB1 is involved than in non-neuronal HMGB1-dependent
inflammatory conditions. The reasons for these discrepant therapeutic outcomes are
presently not fully understood, but may depend upon the molecular form of HMGB1.
Specifically, extracellular HMGB1 either generates inflammation by operating as an indi-
vidual molecule that signals via TLR4 or the receptor for advanced glycated end prod-
ucts (RAGE) or, alternatively, by acting complex-bound to extracellular DAMP/PAMP
molecules. These complexes are endocytosed via RAGE expressed on macrophages and
other innate immunity cells and end up in the endolysosomal system of these cells. There,
during acidic conditions, HMGB1 acts as a detergent and damages the lysosomal mem-
brane allowing partner molecules access to cytosolic sensors including inflammasomes
that initiate inflammation [55]. Extracellular HMGB1 has a vigorous capacity to form
these complexes with partner molecules during systemic inflammatory conditions. From
a therapeutic point of view, this biology may create major obstacles for HMGB1-specific an-
tagonists to recognize and neutralize HMGB1. However, the neuronally released HMGB1
can be discharged close to its cognate TLR4 receptors with much less risk that HMGB1
will first bind to other molecules, causing steric hindrance for HMGB1-specific antago-
nists to mediate beneficial therapeutic effects. We thus speculate that future treatment
with HMGB1-specific antagonists might offer a unique clinical opportunity to pacify
HMGB1 in diseases where harmful neuronal HMGB1 release is at hand. Many scientists
and clinicians interested in HMGB1 are puzzled and disappointed by the fact that, after
more than two decades of HMGB1 research, we still lack successful therapeutic HMGB1
antagonists in clinical use. If our speculations about problems and opportunities for
HMGB1-specific antibody treatment are correct, they might be helpful to optimize future
clinical therapeutic strategies.

6. Perspective

Studies of nociception and neuropathic pain have revealed that HMGB1 release from
injured or activated cells occurs as it translocates from the nucleus to the cytosol as a mech-
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anism of active release [35,56–58]. However, it was not previously known whether HMGB1
is actively released by neurons during neuropathic inflammatory pain syndromes. Our
critical recent findings not only confirmed the role of actively released HMGB1, but also
established that neuronal HMGB1 is required to induce neuroinflammation in tissues [27].
The active involvement of neurons in the initiation of inflammation and tissue damage
is direct evidence that the nervous system can stimulate innate immune responses and
inflammation. It has been long established that neurotransmission in the vagus nerve
inhibits inflammation and nociceptive responses through “the inflammatory reflex” [59,60].
Successful preclinical as well as clinical studies with implanted or external vagus nerve
stimulators in patients with rheumatoid arthritis or inflammatory bowel disease have
validated the importance of this mechanism [61–66]. The new observation that neurons
directly release HMGB1 as the trigger of immune system defense during tissue injury,
while simultaneously directing anti-inflammatory activities via the inflammatory reflex,
establishes an important framework to understand how the nervous system evolved to
reflexively enhance or inhibit inflammation. The ability to inhibit and stimulate inflamma-
tion yields a highly controllable homeostatic process to modulate inflammation to optimize
survival and propagation of the species against threat from infection and injury (Figure 5).
This new understanding of the neural reflex basis of immune homeostasis, and revelation
of underlying mechanisms for the neural control of inflammatory signaling, paves the
way for the development of experimental therapeutics, e.g., specific HMGB1 antagonists,
or of electromagnetic devices to block neuronal HMGB1 release as novel treatments for
inflammatory diseases.
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inflammatory reflex) [60]. However, these actions also feedback upon neurons to provide inhibition (red dashed line)
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