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ABSTRACT Twenty-seven Salmonella enterica serovar Schwarzengrund isolates from
clinical sources were sequenced as part of a larger study to examine phenotypic and
genotypic characteristics. The majority of the sequenced strains were isolated from
human stool (n � 20) followed by urine (n � 3) and blood (n � 2). Four isolate se-
quences contained plasmids of known incompatibility groups.

Salmonella enterica serovar Schwarzengrund strains can cause salmonellosis in hu-
mans and infections in other animal species (1). The spread of multidrug-resistant

S. Schwarzengrund from imported food products to humans has been reported (1). S.
Schwarzengrund strains isolated from imported food products have been found to
display a high level of resistance to fluoroquinolones (2). Furthermore, the production
of extended-spectrum �-lactamase (ESBL), including carbapenemase (KPC-2), by S.
Schwarzengrund has been found in different countries, which concerns observers (3–5).
ESBL genes are often encoded on plasmids (3, 4, 6), which can facilitate their rapid
transfer among Gram-negative pathogens, and this has created a major public health
concern. Therefore, monitoring antimicrobial resistance (AMR) dynamics and charac-
terization of mobile genetic elements, including plasmids of S. Schwarzengrund iso-
lated from domestic and imported foods, food animals, and humans, is important. In
the present study, whole-genome sequencing analyses of S. Schwarzengrund isolates
from clinical sources will facilitate the study of AMR and resistance transmission.

Twenty-seven S. Schwarzengrund isolates from clinical sources were collected from
the Minnesota Department of Health (Saint Paul, MN) and sequenced at the Division of
Microbiology, National Center for Toxicological Research, U.S. Food and Drug Admin-
istration (Jefferson, AR). Epidemiological information for these isolates is listed in
Table 1.

Stool samples were plated on Hektoen enteric agar, salmonella-shigella agar, and
enrichment broths (Becton, Dickinson and Company [BD], Franklin Lakes, NJ). The plate
or broth was then incubated at 35°C for 18 to 24 h. Colonies that were suspiciously
lactose negative and positive for H2S were subsequently inoculated in motility-indole-
lysine agar, triple sugar iron agar, and a urea agar plate (BD). Identification was
confirmed using matrix-assisted laser desorption ionization–time of flight mass (MALDI-
TOF) spectrometry. Likewise, blood and other clinical isolates were identified using
standard microbiological procedures.

The total bacterial DNA was extracted with a DNeasy blood and tissue kit (Qiagen,
Valencia, CA), and DNA sequencing libraries were constructed with the Nextera XT DNA
library preparation kit (Illumina, San Diego, CA). Samples were multiplexed with a
unique combination of two indexes of the Nextera XT index kit. Whole-genome
sequencing (WGS) reactions were carried out on an Illumina MiSeq instrument with a
2 � 300 paired-end format (7). Trimming and de novo assembly were performed with
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CLC Genomics Workbench (v. 9, Qiagen, Germantown, MD). Genome sequences from
individual samples were examined simultaneously with individual annotation tools,
such as Rapid Annotation using Subsystem Technology (RAST) (8) and Pathosystems
Resource Integration Center (PATRIC) (9), to cross-examine the sequence data. Subse-
quently, sequences were submitted to the NCBI using the WGS submission portal for
final annotation with the Prokaryotic Genome Automatic Annotation Pipeline (PGAAP)
(10) (Table 1). The number of contigs, assembly size, coding sequences (CDSs), and
G�C contents of each sample included in Table 1 were annotated with PATRIC.
Annotation performed with the PGAAP was used as the final annotation available in the
NCBI. We applied default settings for the bioinformatic software tools used for se-
quence trimming, de novo assembly, and annotation of the sequences.

Among 27 S. Schwarzengrund clinical isolates, PlasmidFinder (11) analyses showed
that four of the isolates contained plasmids of identified incompatibility (Inc) groups.
MDH-8 contained the IncHI2 and IncHI2A plasmids, and MDH-18, MDH-20, and MDH-25
contained the IncI1 plasmid. ResFinder (12) analyses showed that MDH-8 contained the
aph(6)-Id, strA, and tet(B) resistance genes; MDH-18 and MDH-20 contained the
aph(3=)-Ia and blaCMY-2 genes; and MDH-25 contained the aac(3)-VIa, aadA1, and sul1
genes.

Data availability. This whole-genome shotgun project is deposited at DDBJ/ENA/
GenBank under the accession numbers listed in Table 1, and the SRA submission of raw
data (FastQ format) is recorded under the accession number PRJNA312617.
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TABLE 1 Whole-genome sequencing analyses of Salmonella Schwarzengrund isolates from clinical sources

Strain
no.

Source of
isolate

Yr of
isolation

No. of
sequence
reads

N50 value
(bp)

No. of
contigs

Assembly
size (bp)

No. of
CDSs

G�C
content
(%)

GenBank
accession
no.

MDH-1 Blood 2003 4,813,548 255,417 61 4,771,771 4,845 52.2 QZET00000000
MDH-2 Stool 2003 3,729,214 340,162 56 4,775,162 4,828 52.2 QZES00000000
MDH-3 Stool 2004 3,706,472 112,364 100 4,684,005 4,717 52.1 QZER00000000
MDH-4 Stool 2004 3,221,282 167,201 80 4,674,736 4,715 52.1 QZEQ00000000
MDH-5 Stool 2004 4,754,358 149,628 118 4,715,784 4,767 52.0 QZEP00000000
MDH-6 Stool 2005 3,945,558 138,815 101 4,774,615 4,854 52.2 QZEO00000000
MDH-7 Stool 2005 4,316,768 93,969 128 4,775,144 4,853 52.2 QZEN00000000
MDH-8 Stool 2006 2,438,762 91,707 158 5,117,666 5,291 51.6 QZEM00000000
MDH-9 Stool 2007 3,737,938 85,408 119 4,700,238 4,787 52.0 QZEL00000000
MDH-10 Stool 2007 4,576,284 102,545 106 4,693,974 4,766 52.0 QZEK00000000

MDH-11 Stool 2008 4,129,638 389,856 43 4,722,650 4,752 52.2 QZFD00000000
MDH-12 Stool 2009 4,399,374 230,080 54 4,706,223 4,745 52.1 QZFE00000000
MDH-13 Stool 2010 4,764,064 310,035 49 4,739,724 4,806 52.1 QZFF00000000
MDH-14 Blood 2011 3,208,474 312,411 51 4,767,578 4,829 52.2 QZFG00000000
MDH-15 Stool 2011 2,124,138 177,815 85 4,766,481 4,829 52.2 QZMP00000000
MDH-16 Stool 2012 1,892,712 153,861 67 4,800,611 4,894 52.0 QZFH00000000
MDH-17 Stool 2012 1,532,044 123,253 100 4,802,467 4,863 52.0 QZFI00000000
MDH-18 Gallbladder 2013 3,806,536 75,786 162 4,881,277 5,005 52.1 QZFJ00000000
MDH-19 Urine 2013 2,291,464 60,132 201 4,775,923 4,879 52.2 QZFK00000000
MDH-20 Subhepatic aspirate 2013 2,936,934 69,988 168 4,888,146 5,028 52.1 QZFL00000000

MDH-21 Stool 2014 2,343,572 57,255 195 4,688,259 4,773 52.1 QZFM00000000
MDH-22 Stool 2014 2,023,560 59,303 176 4,687,016 4,762 52.1 QZMQ00000000
MDH-23 Urine 2014 1,872,516 52,555 195 4,690,085 4,776 52.1 QZFN00000000
MDH-24 Stool 2014 2,607,656 53,183 197 4,682,121 4,730 52.2 QZMR00000000
MDH-25 Stool 2015 2,424,548 35,368 313 4,778,730 4,868 52.1 QZFO00000000
MDH-26 Urine 2016 3,795,856 36,628 274 4,807,879 4,944 52.0 QZFP00000000
MDH-27 Stool 2016 2,566,758 54,067 225 4,807,042 4,891 52.0 QZFQ00000000
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