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Abstract
Lysosomes are involved in pathogenesis of a variety of neurodegenerative diseases and play a large role in neurodegenerative
disorders caused by virus infection. However, whether virus-infected cells or animals can be used as experimental models of
neurodegeneration in humans based on virus-related lysosomal dysfunction remain unclear. Porcine hemagglutinating encephalo-
myelitis virus displays neurotropism inmice, and neural cells are its targets for viral progression. PHEV infection was confirmed to be
a risk factor for neurodegenerative diseases in the present. The findings demonstrated for the first time that PHEV infection can lead to
lysosome disorders and showed that the specific mechanism of lysosome dysfunction is related to PGRN expression deficiency and
indicated similar pathogenesis compared with human neurodegenerative diseases upon PHEV infection. Trehalose can also increase
progranulin expression and rescue abnormalities in lysosomal structure in PHEV-infected cells. In conclusion, these results suggest
that PHEV probably serve as a disease model for studying the pathogenic mechanisms and prevention of other degenerative diseases.
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Abbreviations
PHE Porcine hemagglutinating encephalomyelitis
PHEV Porcine hemagglutinating encephalomyelitis virus
PGRN Progranulin
GRN Granulin
N2a Neuro-2a
CNS Central nervous system
RABV Rabies virus

ZIKV Zika virus
Aβ Amyloid-β
α-SYN A-synuclein
NCL Neuronal ceroid lipofuscinosis
FTLD Frontotemporal lobar degeneration
TDP-43 The transactive response DNA binding protein 43
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
TCID50 50% median tissue culture infectious dose
QPCR Quantitative reverse transcription-PCR analysis
PBS Phosphate-buffered saline
CTSD Cathepsin D
AD Alzheimer’s disease
PD Parkinson’s disease
FTD Frontotemporal dementia
ALS Amyotrophic lateral sclerosis
H Hour

Background

Neurodegeneration is a characteristic of many debilitating,
incurable diseases that are rapidly increasing in prevalence
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in humans. There is an urgent need to develop new and more
effective therapeutic strategies to combat these devastating
diseases. Models ranging from cell-based systems to unicellu-
lar organisms and complex animals have proven to be a useful
tool shedding light on the mechanisms underlying neurode-
generative diseases, and these advances have now begun to
reveal promising therapeutic avenues [1]. A variety of neuro-
tropic virus infections of the central nervous system, especial-
ly those characterized by a chronic progressive course, may
produce multiple incidences of damage in infected and neigh-
boring neurons; this damage is a possible risk factor for neu-
rodegenerative diseases such as those caused by rabies virus
(RABV) [2] and Zika virus (ZIKV) [3]. A growing body of
epidemiologic and experimental data indicates that viral infec-
tions cause chronic damage resulting in alterations of neuronal
function and viability by directly triggering neurotoxic path-
ways or the activation of immune responses. Indeed, viral
agents have been reported to induce molecular hallmarks of
neurodegeneration such as the production and deposition of
misfolded protein aggregates, including amyloid-β (Aβ) [4]
and a-synuclein (α-SYN) [5]. The questions of whether the
pathogenesis of these infections shows similarity to that of
human neurodegenerative diseases and whether virus-
infected cells or animals can be used as experimental models
of neurodegeneration in humans remain under debate.

Porcine hemagglutinating encephalomyelitis (PHE) is an
infectious disease of naïve pigs, in which motor disorders are
often seen during field outbreaks, but the clinical disease is
variable and dependent on age. This disease is caused by por-
cine hemagglutinating encephalomyelitis virus (PHEV), a sin-
gle-stranded, nonsegmented, positive-stranded RNA coronavi-
rus belonging to the Betacoronavirus genus within the
Coronaviridae family, subfamily Cornavirinae, order
Nidovirales [6]. PHEV also displays neurotropism in mice
and Wistar rats and produces acute encephalomyelitis [7, 8].
The results of previous in vivo or in vitro studies using mice or
neuro-2a (N2a) cells have suggested that PHEV invades the
central nervous system (CNS) via the peripheral nervous sys-
tem (i.e., neural spread) and infects nerve cells. Typical neuro-
logical symptoms of emaciated PHEV-infected mice include
generalized muscle tremors, hyperesthesia, movements of the
front and hind feet similar to piano playing, and a tendency to
sit in a dog-like position [9]. The neuronal bodies show very
little pathological change, but obvious degeneration of neuro-
nal processes occurs after infection with pathogenic PHEV,
including stunted axon elongation, unstable dendritic spine
formation, and disconnection of neurites [10, 11]. These ob-
servations indicate that PHEV infection is a risk factor for
neurodegenerative diseases. In the present study, we first found
that the pathogenesis of PHEV infection shows similarity to
that of human neurodegenerative diseases, and PHEV may
serve as a disease model for studying the pathogenic mecha-
nisms and prevention of other degenerative diseases.

Materials and Methods

PHEV, Cells Lines, Antibodies, and Chemical Reagents

The PHEV stain used in this study was PHEV CC14
(GenBank accession number MF083115.1), which was previ-
ously kept by our research group. The mouse neuroblastoma
cell line neuro-2a (N2a from ATCC) were infected with
PHEV (104.50 50% median tissue culture infectious dose
[TCID50] /0.1 mL) in cell cultures with 2% FBS for 1 hour
(h). Following a 1-h absorption period, infected cells were
incubated in the complete DMEM at 37 °C for the relevant
times in the conformity with experimental requirements.
EGFP/EGFP-PGRN-overexpressing mouse neuroblastoma
cell (N2a cell) lines were generated by our research group.
The mouse antiPHEV-S antibody was our laboratory-
prepared monoclonal antibody [12]. The following primary
antibodies were used in this study: rat antimouse LAMP1
antibody (553792) from BD Biosciences, sheep antiGRN/
progranulin antibodies from R&D systems (AF2557), rabbit
antiTDP-43 antibodies (0782-2-AP), rabbit antiCTSD anti-
bodies (21327-1-AP), and mouse antiGFP antibodies
(66002-1-Ig) from Proteintech. The following secondary an-
tibodies were used: donkey antimouse Alexa Fluor 594
(A21203), donkey antirabbit Alexa Fluor 488 (A21206), don-
key antimouse Alexa Fluor 647 (A31571), donkey antisheep
Alexa Fluor 647 (A21448), and Hoechst stain (H1339) from
Thermo Fisher Scientific. Trehalose was obtained from Sigma
andwas dissolved in ultrapureMilli-Qwater (EMDMillipore)
[13].

Animal Protocols

Three weeks old BALB/c mice (male) were obtained from the
Laboratory Animal Center of Jilin University. The PHEV-
infected model was established in mice [9, 11]. Briefly, the
mice were anaesthetized with isoflurane and were intranasally
(i.n.) inoculated with 0.1 ml of virus (104.50 TCID50) diluted in
phosphate-buffered saline (PBS, 1 M, PH7.4). Mice mock
infected i.n. with 0.1 ml PBSwere used as controls. Mice were
euthanized at 4-day postinfection (p.i) by CO 2 inhalation
according to animal handling laws.

Brain Tissue Sectioning and Staining

For immunofluorescence staining, fresh brain tissues from
PHEV-infected or mock-infected mice frozen in liquid nitro-
gen and embedded in OCT compound were cut into cryostat
sections (10 μm) and mounted on Superfrost Plus slides.
Before staining, the slides were warmed at room temperature
for 60 min and were then immersed in blocking buffer (5%
nonfat milk and 0.05% Triton X-100 in PBS) for 1 h at room
temperature. Slides were then treated with primary antibodies

5300 Mol Neurobiol (2020) 57:5299–5306



diluted in blocking buffer overnight at 4 °C, and subsequently
incubated with secondary antibodies conjugated with either
Alexa 488, Alexa 594, or Alexa 647 for 2 h at room temper-
ature. After counterstaining the samples, the coverslips were
mounted and viewed under the Olympus FV1000 confocal
microscope (Olympus, Japan).

Immunocytochemistry

PHEV-infected or mock-infected cells grown on glass cover-
slips were fixed in 4% paraformaldehyde for 15 min, washed
3 times with PBS, and permeabilized and blocked in blocking
buffer for 15min. Primary antibodies diluted in blocking buff-
er were applied to the cells overnight at 4 °C. Coverslips were
washed 3 times with PBS. Secondary antibodies and Hoechst
stain diluted in blocking buffer were applied to the cells for 2 h
at room temperature. Coverslips were viewed under the
Olympus FV1000 confocal microscope (Olympus, Japan).

Quantitative Reverse Transcription-PCR Analysis

For qPCR, RNA was purified from cells using TRIzol reagent
(Thermo Fisher Scientific). Two micrograms of total RNA
was reverse transcribed using a poly (T) primer and
SuperScript III Reverse Transcriptase (Thermo Fisher
Scientific). The primer sequences used in these assays are
shown in Fig. 1c. qPCR was performed in a LightCycler
480 (Roche Applied Science), and the thermocycler amplifi-
cation conditions were 94 °C for 5 min, and 40 cycles of 95 °C
for 15 s, 59 °C for 30 s, and 72 °C for 10 s. Transcript levels
were calculated using the efficiency-adjusted ΔΔ-CT meth-
od. All transcripts were normalized to GAPDH [14].

Immunoprecipitation

Cells were washed with PBS at 48 h postPHEV infection, and
the cell lysates were collected in IP buffer (50 mM Tris pH
8.0, 150 mM NaCl, 1% Triton, 0.1% deoxycholate with pro-
tease inhibitors) as described previously [14]. The lysates
were immunoprecipitated using GFP-trap beads for 4 h as
described previously [15].

Protein Analysis

Cells and tissues were lysed in RIPA buffer (50 mM Tris, pH
8.0, 150 mM NaCl, 1% Triton X-100 (Sigma-Aldrich,
78787), 0.1% SDS, 0.1% deoxycholic acid (Sigma-Aldrich,
83-44-3) with protease and phosphatase inhibitors (Sigma-
Aldrich, P5726). After being separated by SDS-PAGE, sam-
ples were run on 12% polyacrylamide gels and transferred to
PVDF membranes (Millipore, IPFL00010) and then
immunoblotted with the indicated antibodies. Western blot
signals were then analyzed using the Image J software.

Image Analysis

For the quantification of enlarged lysosomes, the lysosomes
were visualized by antiLAMP1 staining, and N2a were cap-
tured using Z stack. Cells with enlarged lysosomes (diameter>
1 μm) were counted. It should be noted that during fixation,
lysosomal size, and area might have been changed, but we
always have a control group and experimental group analyzed
at the same time [14]. For PGRN and LAMP1 colocalization,
background was subtracted, and the colocalization between
the PGRN and LAMP1 fluorescence was determined by
Manders’ Coefficients using Plugins ‘JACOP’ of ImageJ soft-
ware [15].

Statistical Analysis

The data were presented as mean ± SEM. Two-group analysis
was performed using the Student’s t test. *, P values < 0.05
were considered statistically significant. **, P values < 0.01
were considered statistically very significant.

Result and Discussion

Lysosomes are membrane-bound organelles that play roles in
the degradation and recycling of cellular waste. Lysosomal
dysfunction tends to affect the central nervous system (CNS)
to a greater extent than that of other organelles because the
maintenance of adequate lysosomal function is especially im-
portant for the health of postmitotic neurons in the CNS that
are destined to survive the entire lifetime of the organism.
Lysosomal dysfunction and defects in fusion with vesicles
containing cargo are commonly observed abnormalities in
proteinopathic disorders that lead to protein aggregates, which
are a common pathological feature of neurodegenerative dis-
ease [16, 17]. In addition, the lysosomes are involved in the
exclusion of infectious agents from the penetration of host
tissue and concomitant immune regulation and must therefore
be able to respond quickly with increased or decreased func-
tion to various metabolic conditions, with the aim of to
protecting cells from death or damage upon virus infection
[18]. Therefore, lysosomes play a large role in neurodegener-
ative disorders caused by virus infection. To test the roles of
lysosomes in the PHEV infection process, N2a cells were
infected with PHEV. The cells were fixed, and the lysosomes
and PHEV were visualized by antiLAMP1 and antiPHEV
staining. We found that PHEV localized to the lysosomes
and resulted in enlarged lysosomes (Fig 1a). Indeed, PHEV
infection resulted in increased LAMP1 expression levels
in vitro [19] and increased lysosome enlargement in vivo
(Additional file 1). These results showed that PHEV infection
leads directly to lysosomal dysfunction and indicated that
there was a similarly pathological feature between PHE and
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several neurodegenerative diseases. Further studies will
be needed to elucidate the underlying molecular mech-
anisms of lysosomal dysfunction by PHEV infection
in vitro or in vivo.

The progranulin (PGRN) protein, encoded by the granulin
(GRN) gene, has been recently implicated in several neurode-
generative diseases [20, 21]. PGRN localizes to the lysosome
and is important for proper lysosomal structure and function.
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Fig. 1 PHEV infection leads to lysosomal abnormalities. a PHEV
localizes to lysosomes, and PHEV infection results in greater lysosome
enlargement compared with mock infection. The percentage of N2a cells
containing enlarged lysosomes (> 1 μm) was quantified in the
experiment. Scale bar = 10 μm. All the results are presented as the
means ± the SD of the data from three independent experiments (**, P
< 0.01). b PHEV infection decreased PGRN protein expression. PGRN
protein levels in PHEV-infected or mock-infected N2a cells were quan-
tified and normalized to GAPDH. n = 3; one-way ANOVA; **, P < 0.01;

Student’s t test. c PHEV infection decreased PGRN mRNA expression.
PGRN mRNA levels in PHEV-infected or mock-infected N2a cells were
quantified and normalized to GAPDH. n = 3; one-way ANOVA; **, P <
0.01; Student’s t test. d PHEV bound to PGRN. PHEV-infected or mock-
infected N2a cells were stained with antiPHEV (red) and antiPGRN
(green). Scale bar = 10 μm. e AntiGFP immunoprecipitates from
PHEV-infected or mock-infected EGFP-PGRN-transfected N2a cells
were harvested, and the physical interaction between PGRN and PHEV
was demonstrated
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Strong evidence has shown that lysosomal dysfunction occurs
in cases of PGRN deficiency [22, 23]; haploinsufficiency re-
sults in frontotemporal lobar degeneration (FTLD), and com-
plete loss results in neuronal ceroid lipofuscinosis (NCL) [24,
25]. To examine the change in PGRN expression in PHEV-
infected N2a cells, cell lysates of PHEV-infected normal or
EGFP-PGRN-overexpressing N2a cells were analyzed by

western blotting with antiPGRN or antiGFP antibodies. The
results showed that both endogenous and exogenous PGRN
expression was obviously decreased by PHEV infection com-
pared to mock infection (Fig. 1b, Additional file 2), and
PHEV infection resulted in PGRN expression deficiency
in vivo (Additional file 3). Indeed, qPCR analysis also showed
decreased mRNA levels of PGRN in PHEV-infected N2a
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Fig. 2 Trehalose increases PGRN expression and rescue abnormalities in
lysosomal structure in PHEV-infected cells. a–c Trehalose did not influ-
ence PGRN expression in normal cells but increased PGRN expression in
PHEV-infected cells. PGRN protein levels in PHEV- or mock-infected
cells that were treated or not with 100 mM trehalose for 24 h or 48 h were
quantified and normalized to GAPDH. n = 3, one-way ANOVA; *, P <

0.05; **, P < 0.01; Student’s t test. d There were fewer enlarged lyso-
somes in PHEV-infected cells treated with 100 mM trehalose compared
to untreated cells treated with trehalose for 48 h. The percentage of N2a
cells containing enlarged lysosomes (> 1 μm) was quantified in the ex-
periment. All the results are presented as the means ± the SD of the data
from three independent experiments (**, P < 0.01). Scale bar = 10 μm
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cells (Fig. 1c). Furthermore, these cells were fixed, and the
lysosomes, PGRN, and PHEV were visualized by
antiLAMP1, antiPGRN, and antiPHEV staining, respectively.
The results showed that PHEV bound to PGRN and that
PGRN was passively transported to lysosomes because of
PHEV infection (Fig. 1d, Additional file 4). To test the phys-
ical interaction between PGRN and PHEV, PHEV- or mock-
infected EGFP-PGRN-transfected N2a cells were used. Cell
lysates were immunoprecipitated with antiGFP beads. A
PHEV signal is detected in PHEV-infected immunoprecipi-
tates but not under mock infection (Fig. 1e), suggesting a
physical interaction between PGRN and PHEV. PGRN can
be intracellularly processed into 10 kDa peptides in multiple
cell types, and this processing is dependent on lysosomal ac-
tivities [24]. However, we found that PGRNwas not passively
cleaved in the abnormal lysosomes of PHEV-infected cells
(data not shown). These results showed that PHEV infection
could lead to lysosome dysfunction by influencing PGRN
expression and lysosome trafficking and indicated similar
pathogenesis compared with human neurodegenerative dis-
eases such as NCL and FTLD upon PHEV infection.
However, the role of PGRN in lysosomal dysfunction and
the cause of PGRN deficiency induced by PHEV infection
still need further study.

Furthermore, increasing evidence indicates that upregulat-
ed lysosomal function in neurons represents a promising ther-
apeutic approach for neurodegenerative disorders by targeting
lysosomal proteins and processes, particularly with small mol-
ecules and peptide drugs [26, 27]. Recent advances in the
understanding of PGRN biology emphasize its roles in lyso-
somal function and indicate that increasing PGRN levels is a
potential therapeutic approach for multiple neurodegenerative

diseases [26]. A recent study demonstrated that trehalose
could upregulate progranulin expression in human and mouse
models of PGRN deficiency, as a novel therapeutic strategy
for treating frontotemporal dementia (FTD) [13]. Therefore,
we tried to verify the treatment effect of trehalose, which did
not influence PGRN expression in normal cells, by using
models from N2a cell-based systems after PHEV infection
(Fig. 2a, b). Our results showed that trehalose function was
successfully verified by increasing PGRN expression in
PHEV-infected N2a cells (Fig. 2c). Indeed, trehalose simulta-
neously caused a decrease in enlarged lysosomes (Fig. 2d) and
inhibited virus replication under PHEV infection (data not
shown). However, whether trehalose has a similar therapeutic
effect in PHEV-infected mice is still unclear.

It is known that the disease model is a theory concerned
with the cause and course of a pathological condition or pro-
cess and, at last, implications for clinical practice [1, 28].
Indeed, models based on pathogenic gene expression disor-
ders have provided both insight into molecular mechanisms
and the temporality of changes of the human disease and
helped to identify candidate, potentially disease modifying,
therapies. We first demonstrated that PHEV infection can lead
to lysosome disorders and showed that the specific mecha-
nism of lysosome dysfunction is related to PGRN expression
deficiency (Fig. 1). Trehalose can also increase PGRN expres-
sion and rescue abnormalities in lysosomal structure in
PHEV-infected cells (Fig. 2). Furthermore, cathepsin D
(CTSD) is the main lysosomal enzyme involved in the degra-
dation of various pathogenic proteins. We found a possible
new effect of trehalose on increasing the procathepsin D (Pro-
CTSD) and mature cathepsin D (Mat-CTSD) expression by
using models from N2a cell–based systems after PHEV
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TDP-43 protein expression. a
TDP-43 levels were increased in
the brain of PHEV-infected mice.
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normalized to GAPDH. n = 3;
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infection, and then enhancing lysosome capability to degrade
pathogenic proteins (Additional file 5). These results suggest
that PHEV may serve as an in vitro model for studying the
pathogenic mechanisms and prevention of other degenerative
diseases.

Neurodegeneration or neuronal loss by connecting with
pathogenic proteins in a specific region of the brain represent
a fundamental pathological feature across various neurode-
generative diseases in the pathological conditions of major
neurodegenerative diseases such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), frontotemporal lobar degen-
eration (FTLD), and amyotrophic lateral sclerosis (ALS) [28].
PHEV infection was confirmed to be a risk factor for neuro-
degenerative diseases in our previous reports [9–11]. Acutely
PHEV-infected mice showed typical neurological symptoms
and frequently leaving behind grievous neurodegeneration
[9–11]. Structural plasticity disorders occur in the axons, den-
drites, and dendritic spines of PHEV-infected neurons, and
PHEV-infected mice exhibit neuronal loss in the CNS [10].
In addition, acutely PHEV-infected mice were like human and
mouse models of GRN haploinsufficiency which recapitulate
pathogenic lysosomal features of various neurodegenerative
diseases (Additional files 1and 3). Furthermore, the
transactive response DNA binding protein 43 (TDP-43)–asso-
ciated proteinopathies related to PGRN expression have long
been characterized as a main hallmark of ALS and FTLDwith
ubiquitin-positive inclusions (FTLD-U, also known as FTLD-
TDP). Indeed, we found that PHEV infection increased TDP-
43 protein expression in the whole brain of mice by western
blotting analysis, especially in the hippocampus region by
confocal fluorescence microscopy analysis (Fig. 3a, b) [29].
So, PHEV-infected mice represent a fundamental pathological
feature of neurodegenerative diseases, and PHEV infection
provided the opportunity to create animal models for these
diseases. However, further research is needed to shed more
light on the molecular mechanisms of the neurodegenerative
lesions and changes in animal behavior observed in acutely,
chronically and subclinically PHEV-infected mice.
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