
molecules

Review

Neuroprotective Effect of SGLT2 Inhibitors

Agnieszka Pawlos , Marlena Broncel *, Ewelina Woźniak and Paulina Gorzelak-Pabiś
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Received: 3 November 2021

Accepted: 26 November 2021

Published: 28 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Laboratory of Tissue Immunopharmacology, Department of Internal Diseases and Clinical Pharmacology,
Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland; agnieszka.sanetra@stud.umed.lodz.pl (A.P.);
ewelina.wozniak@umed.lodz.pl (E.W.); paulina.gorzelak-pabis@umed.lodz.pl (P.G.-P.)
* Correspondence: marlena.broncel@umed.lodz.pl; Tel.: +48-42251-60-03

Abstract: Patients with diabetes are at higher risk of cardiovascular diseases and cognitive impair-
ment. SGLT2 inhibitors (Empagliflozin, Canagliflozin, Dapagliflozin, Ertugliflozin, Sotagliflozin) are
newer hypoglycemic agents with many pleiotropic effects. In this review, we discuss their neuropro-
tective potential. SGLT2 inhibitors (SGLT2i) are lipid-soluble and reach the brain/serum ratio from
0.3 to 0.5. SGLT receptors are present in the central nervous system (CNS). Flozins are not fully SGLT2-
selective and have an affinity for the SGLT1 receptor, which is associated with protection against
ischemia/reperfusion brain damage. SGLT2i show an anti-inflammatory and anti-atherosclerotic
effect, including reduction of proinflammatory cytokines, M2 macrophage polarization, JAK2/STAT1
and NLRP3 inflammasome inhibition, as well as cIMT regression. They also mitigate oxidative
stress. SGLT2i improve endothelial function, prevent remodeling and exert a protective effect on
the neurovascular unit, blood-brain barrier, pericytes, astrocytes, microglia, and oligodendrocytes.
Flozins are also able to inhibit AChE, which contributes to cognitive improvement. Empagliflozin
significantly increases the level of cerebral BDNF, which modulates neurotransmission and ensures
growth, survival, and plasticity of neurons. Moreover, they may be able to restore the circadian
rhythm of mTOR activation, which is quite a novel finding in the field of research on metabolic
diseases and cognitive impairment. SGLT2i have a great potential to protect against atherosclerosis
and cognitive impairment in patients with type 2 diabetes mellitus.

Keywords: SGLT2i; sodium-glucose cotransporter 2 inhibitors; neuroprotection; atheroprotection;
mTOR; type 2 diabetes mellitus; cognitive impairment; inflammation; oxidative stress

1. Introduction

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease causing a variety of
complications, including atherosclerosis which is associated with increased cardiovascu-
lar risk contributing to reduced life expectancy [1]. Additionally, atherosclerosis is an
important factor leading to cognitive impairment in the elderly via several mechanisms
such as ischemia and a direct molecular link [2,3]. Diabetes mellitus type 2 accelerates the
development of atherosclerosis, and patients with T2DM are at a two to four times higher
risk of developing vascular diseases than non-diabetics [4]. There is a lot of evidence that
proves that diabetic patients are at an increased risk of developing cognitive impairment.
Glucose metabolism is also impaired in Alzheimer’s disease, as it is sometimes called ‘Type
3 diabetes’ or ‘diabetes of the brain’ [5]. According to a meta-analysis performed by Zhang
J. et al., patients with diabetes mellitus type 2 have a 53% higher relative risk of Alzheimer’s
disease than non-diabetic individuals (RR 1.53, 95% CI: 1.42–1.63) [6]. Among diabetics,
the presence of micro- and macrovascular complications increases the risk of cognitive
decline even further, suggesting that vascular mechanisms, including atherosclerosis, are
important players [7]. As diabetic patients with atherosclerosis are especially vulnerable to
cognitive impairment, it is necessary to search for drugs that could ensure T2DM control,
reduce cardiovascular risk and improve cognitive functions.
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SGLT2 inhibitors are newer hypoglycemic drugs that have revolutionized the clinical
approach to T2DM management. Their main mechanism of action is inhibiting SGLT2
receptors in the proximal tubules of the kidneys and thus lowering blood glucose levels
by blocking its reabsorption from the urine [8]. As it has been proved by large double-
blind clinical trials, Empagliflozin not only decreases HbA1c in diabetic patients but also
improves their life expectancy by reducing cardiovascular mortality [9]. Canagliflozin,
Dapagliflozin, Sotagliflozin significantly decrease the composed primary end-point, in-
cluding cardiovascular mortality and other cardiovascular outcomes [10–12]. Ertugliflozin
showed non-inferiority vs. placebo in reducing cardiovascular mortality and other car-
diovascular outcomes [13]. The exact mechanism has not been fully established yet, and
SGLT2 inhibitors show many additional beneficial effects which contribute to their wider
use, even in non-diabetic patients [14]. There is growing evidence that SGLT2 inhibitors
have a neuroprotective potential, as in a murine mixed model of diabetes mellitus and
Alzheimer’s disease, empagliflozin improved both cerebral microvascular and cognitive
impairment [15]. There is no available data on the adverse effects flozins may exert on
the Central Nervous System. The most commonly known side effects are genitourinary
infections; however, rare but more serious effects also may occur, like euglycemic ketoaci-
dosis [16]. In this review, we are focusing on SGLT2 inhibitors’ potential to improve the
impaired cognitive functions of diabetic patients with atherosclerosis.

2. Neurological Potential of SGLT2 Inhibitors

SGLT2 inhibitors are lipid-soluble and cross the blood-brain barrier reaching the brain-
to-serum ratio of the areas under the curves from 0.3 (Canagliflozin and Dapagliflozin)
up to 0.5 (Empagliflozin) [17]. They have the ability to directly affect their target, since
SGLT1 and SGLT2 co-receptors are expressed in the human central nervous system and
play an important role in maintaining glucose homeostasis. SGLTs are responsible for the
transport of glucose, galactose and sodium ions against the concentration gradients [18].
SGLT1 transports two Na+ ions with one D-glucose molecule and SGLT2 one sodium ion
with one D-glucose [19]. They may be found in many areas of the central nervous system
in several isoforms. SGLT1 inhibitors are present in the pyramidal cells of the brain cortex,
Purkinje cerebellum cells, hippocampus pyramidal, and granular cells [20]. They were
also detectable in glial cells in the ventromedial hypothalamus [21]. Brain expression of
SGLT2 is lower than SGLT1, and it occurs mainly in the microvessels of the blood-brain
barrier, but also in the amygdala, hypothalamus, periaqueductal gray (PAG), and in the
dorsomedial medulla – the nucleus of the solitary tract (NTS) [22,23]. The presence of
SGLT1/SGLT2 was also described in the abluminal membrane of the capillary endothe-
lium [21]. Interestingly, the brain locations where SGLTs are present have been proven
to be responsible for learning processes, food intake, energy and glucose homeostasis,
and central cardiovascular and autonomic regulation [23,24]. The location of SGLT1 and
SGLT2 receptors in the CNS is presented in Figure 1. It is possible that SGLT2 receptors
also exert a cardioprotective effect through central mechanisms by directly influencing
cardiovascular regulation and autonomic pathways, including the paraventricular nucleus
of the hypothalamus, the nucleus of the solitary tract, and the periaqueductal gray [23]. An
immunoblotting study of post-mortem human brain tissue showed a significant increase in
SGLT1 and SGLT2 expression following brain injury [25]. Results of a study performed
in a murine model suggest that, after a brain injury, SGLT1 blockage may bring beneficial
effects with regard to the area of the brain lesions, the volume of damaged tissue, edema,
and motoric disability [26].
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nucleus of the solitary tract (NTS). 
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SGLT2 inhibitors are not fully selective for SGLT2 co-receptors, and they also affect
SGLT1 to various extents (Table 1). Sotagliflozin has the most affinity to SGLT1 receptors.
It is even called a “dual SGLT1/SGLT2 inhibitor”, however, it is the newest Flozin, and it
is not yet used in diabetic patients on a large scale [12]. Among commonly used SGLT2
inhibitors, Canagliflozin has the greatest potential for inhibiting SGLT1 receptors. In
contrast, Empagliflozin and Ertugliflozin are the most selective for SGLT2 and have the
lowest potential for interaction with SGLT1 [27]. Therefore, theoretically, to obtain the
neuroprotective effect associated with SGLT1 inhibition in diabetic patients, Sotagliflozin
and Canagliflozin should be preferred over Dapagliflozin, Empagliflozin, and Ertugliflozin.

Table 1. Comparison of pleiotropic effects of Sotagliflozin, Canagliflozin, Dapagliflozin, Empagliflozin, Ertugliflozin.

Sotagliflozin Canagliflozin Dapagliflozin Empagliflozin Ertugliflozin

SGLT2 Selectivity
over SGLT1

20 fold
[28]

250 fold
[28]

1200 fold
[28]

2500 fold
[28]

2500 fold
[28]

Brain/Serum Ratio n/a 0.3 0.3 0.5 n/a

AChE Inhibition Ki 5.6µM
[29]

The most potent, even
called a dual inhibitor

Ki 0.13 µM
[29]

Ki 25.02µM
[29]

Ki 0.177µM
[30] Ki 31.69µM

[29]

BDNF Increase n/a n/a n/a Yes
[31] n/a

Anti-epileptic
Potential n/a n/a Yes

[32] n/a n/a

CIMT Regression n/a n/a Yes
[33]

Yes
[34] n/a

Anti-inflammatory n/a Yes
[35]

Yes
[36]

Yes
[37]

No|n/a
[38]

Blood-brain Barrier
Protection n/a n/a n/a Yes

[37] n/a
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Table 1. Cont.

Sotagliflozin Canagliflozin Dapagliflozin Empagliflozin Ertugliflozin

NLRP3 Inflammasome
Inhibition n/a n/a Yes

[39]
Yes
[40] n/a

Promoting M2
Macrophages
Polarization

n/a Yes
[41]

Yes
[42]

Yes
[43] n/a

Oxidative Stress
Reduction

Yes
[44]

Yes
[45]

Yes
[46]

Yes
[47]

Yes
[48]

Neurovascular Unit
Remodeling n/a n/a n/a Yes

[49] n/a

Cerebral
Ischemia/Reperfusion

Damage Reduction
n/a n/a n/a Yes

[50] n/a

Reduced mTOR
Signaling n/a Yes

[51]
Yes
[51]

Yes
[52]

Yes
[53]

In the central nervous system, there is also a place for selective SGLT2 inhibitors
since, based on the results obtained by Erdogan MA. et al., Dapagliflozin significantly
reduces seizure activity, both at the electrophysiological and clinical level, in a rat model of
epilepsy [32]. It may be associated with a similar effect of glucose fasting-like metabolic
switch as the one observed in ketogenic diets, which in some circumstances also improve
brain seizure activity [54]. There is no clinical data comparing the efficacy of ketogenic diets
and dapagliflozin therapy on brain epileptic activity; however, adhering to a ketogenic
diet is difficult and has to be closely monitored. On the contrary, dapagliflozin is a safe
drug widely used in diabetic patients. Interestingly, cognitive impairment shares the same
risk factors as epilepsy and atherosclerosis, and commonly used anti-epileptic drugs such
as phenytoin, carbamazepine, valproic acid are associated with increased cardiovascular
risk [55]. Dapagliflozin may be a preferable flozin in diabetic patients with epilepsy as it
has an anti-epileptic potential. Moreover, it significantly reduces cardiovascular risk and
thus may prevent cognitive decline.

There is in vivo evidence for the expression of SGLT2 protein in choroid plexus
epithelial cells and ependymal cells of the human brain [56]. This is crucial information
indicating that SGLT2 may have an influence on the composition of the cerebrospinal
fluid (CSF), whose role in the pathology of neurodegenerative disorders provides a new
direction for research and requires further investigation [57].

There is growing evidence that apart from direct mechanisms of SGLT2 inhibitors in
the central nervous system, they also exert a beneficial pleiotropic effect. In silico studies
indicate that flozins have the molecular ability to inhibit acetylcholinesterase. Canagliflozin
was even called a ‘dual inhibitor of SGLT2 and AChE’ as its estimated inhibition constant
Ki (i.e., the concentration required to produce half-maximum inhibition) against AChE was
0.12859 µM [58]. It is clinically relevant as patients taking canagliflozin reach a serum drug
concentration of 10µM, and the brain/serum ratio of canagliflozin is 0.3. Therefore, the
amount of canagliflozin penetrating the brain (3 µM) is enough to inhibit AChE [17,59]. As
for other SGLT2i, the Ki for inhibiting AChE is 0.177 µM for empagliflozin and 25.02 µM
for dapagliflozin, and brain concentrations are 0.5 µM and 0.3 µM, respectively, so out
of those two, only in the case of empagliflozin, brain concentration is enough to inhibit
AChE (Table 1) [17,30,60]. Patients with Alzheimer’s disease have a reduced amount of
acetylcholine neurotransmitters in the brain, and acetylcholinesterase inhibitors including
donepezil, rivastigmine, galantamine are commonly used to increase the acetylcholine
level and improve cognition [61]. In a rat model of cognitive impairment induced by
scopolamine, canagliflozin, similarly to galantamine, decreased AChE activity, increased
acetylcholine M1 receptor (M1 mAChR) and monoamines levels. It also improved cognitive
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functions in the Y maze task and water maze task [62]. Canagliflozin has the greatest
potential of inhibiting AChE and may be a preferable solution in patients with T2DM who
would also benefit from the inhibition of acetylcholinesterase.

Another promising effect SGLT2i exert on the central nervous system was described by
Lin B. et al., for empagliflozin, which significantly increased cerebral BDNF (Brain-derived
neurotrophic factor) levels in db/db mice (Table 1). Moreover, this effect was accompanied
by improvement in cognitive functions [31]. BDNF takes part in the growth, survival, and
plasticity of neurons as well as in the modulation of neurotransmission. It is an important
factor for the processes of learning and memorizing [63]. Interestingly, a significant decline
of BDNF was observed in patients with T2DM, and it was associated with cognitive
impairment, which was not observed in non-diabetic controls [64]. Surprisingly, BDNF is
crucial not only for the central nervous system but also for atherosclerosis. Patients with
DMAS (Diabetes Mellitus Accelerated Atherosclerosis) had a lower expression of BDNF,
and it was negatively correlated with inflammation. In the same study, supplementation
of BDNF in mice significantly reduced atherosclerotic lesions [65]. The anti-inflammatory
properties of BDNF are probably associated with promoting M2 macrophages polarization
via STAT3 [65]. SGLT2i may thus bring benefits to diabetic patients with atherosclerosis by
preventing cognitive impairment associated with low levels of BDNF.

3. Atherosclerosis, Cognitive Impairment, and SGLT2i

The presence of cholesterol-rich plaques in the walls of large cerebral arteries is de-
fined as Cerebral Atherosclerosis (CA). In previous studies, atherosclerotic lesions in intra-
and extra-cranial arteries were associated with cognitive impairment and even demen-
tia [2,66,67]. According to results obtained by Dearborn JL. et al., atherosclerotic plaques
in the anterior cerebral artery occurred independently of vascular risk factors associated
with increased prevalence of dementia (RPR 3.81 95%CI [1.57–9.23] p = 0.003) in elderly
patients [2]. On the other hand, atherosclerosis in the posterior cerebral artery increased
the risk of Mild Cognitive Impairment (MCI) (RPR 1.44 95% CI [1.04–1.98] p = 0.027) [2].
As demonstrated by another study, dementia occurred more frequently in patients with
atherosclerotic calcifications in intra and extra-cranial arteries as opposed to coronary
vessels [66]. Cerebral atherosclerosis and dementia are related to each other; however,
the exact mechanism remains unknown. In reference to the proteomic sequencing of the
dorsolateral prefrontal cortex of 438 humans performed by Wingo A.P. et al., CA was
associated with reduced synaptic function, excess myelination, and axonal injury indepen-
dently of ischemia [67]. Preventing atherosclerosis would contribute to the improvement
in cognitive functions in elderly people. Results obtained by Sabia S. et al. show that
cardiovascular health at the age of 50 years is crucial for further development of cognitive
impairment [68]. As mentioned before, SGLT2i significantly reduce cardiovascular risk.
They exert a pleiotropic anti-atherosclerotic effect by reducing vascular inflammation,
oxidative stress and improving endothelial dysfunction [69]. In a previous study including
diabetic patients, a three-month treatment with empagliflozin resulted in a significant
regression of complex intima media thickness (cIMT) by 7.9%; p < 0.0001. Interestingly,
this effect was significant just after one month of empagliflozin therapy [34]. CIMT is a
relevant marker of early atherosclerosis, and it is often measured in the carotid arteries [70].
According to Feinkohl I. et al., cIMT is also a significant predictor of cognitive decline in
patients with T2DM [71]. Future studies should evaluate the clinical relevance of the ability
of SGLT2 to reduce atherosclerotic lesions and thus the impact on cognitive functions.

4. Inflammation

The inflammatory process in the central nervous system also referred to as neuroin-
flammation, is associated with a lot of pathologies, including cognitive dysfunction. In
a study conducted by Suridjan I. et al., and including patients with Alzheimer’s disease,
the presence of neuroinflammation detected by [18F]-FEPPA was positively correlated
with the level of cognitive decline [72]. There is growing evidence that the presence of
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inflammation outside the central nervous system (systemic inflammation) can also con-
tribute to a decline in cognitive functions [73]. According to Walker K. et al., elevated
inflammatory markers in middle adulthood resulted in significant cognitive decline after
20 years [74]. The neurovascular unit (NVU), which is composed of endothelial cells lin-
ing brain microvessels as well as neurons, microglia, astrocytes, and pericytes, mediates
homeostasis by regulating traffic between blood and the neural environment. Systemic
inflammation is associated with circulating proinflammatory cytokines, which impair the
endothelium of brain microvessels, increase the permeability of the blood-brain barrier
and change the phenotype of astrocytes and microglia into pro-inflammatory ones [75]. M1
activated microglia impair NVU by secreting proinflammatory cytokines, including TNF-α,
IL-1β, IL-6, IL-18, which contribute to neurodegeneration by breaking neurotransmitters
into bioactive metabolites, tau hyperphosphorylation, β-amyloid oligomerization, and
complement activation [76,77]. In a mouse model of T2DM, empagliflozin had a protective
effect, involving remodeling prevention on the neurovascular unit, the blood-brain barrier,
pericytes, astrocytes, microglia, and oligodendrocytes [49]. The inflammatory process is
also a key driver of atherosclerosis. In the CANTOS study, inhibition of interleukin-1β with
canakinumab significantly reduced cardiovascular risk independently of lipid levels [78].
Proinflammatory cytokines including TNF-α, IL-1β, IL-6 are also a mediator of atheroscle-
rosis since they activate endothelial cells, attract monocytes, and facilitate their adhesion
by up-regulating MCP-1, ICAM, VCAM [79]. There is abundant evidence from animal
studies showing that SGLT2 inhibitors slow down the progression of atherosclerosis and
exert an anti-inflammatory effect by reducing the expression of proinflammatory cytokines,
including TNF-α, IL-1β, IL-6, MCP-1, ICAM, VCAM [69]. In humans, the serum level of
IL-6 dropped by 26.6% (p = 0.010) after 2 years of canagliflozin treatment [35].

NLRP3 (NOD-, LRR- and pyrin domain- containing protein 3) inflammasome acti-
vation is one of the key molecular pathways mediating inflammation as it leads to the
release of IL-1β and IL-18 cytokines. It is a crucial element of the innate immune system ac-
tivated not only by microbial infection or cellular damage but also by chronic inflammatory
diseases, including atherosclerosis and Alzheimer’s disease [80]. NLRP3 is an important
mechanism that drives inflammation in atherosclerosis since activation of this pathway
in arterial walls by lipoproteins triggers inflammatory response [81]. In a mouse model
of atherosclerosis, the inhibition of the NLRP3 inflammasome by MCC950 resulted in a
significant reduction in atherosclerotic lesions [82]. In Alzheimer’s disease, NLRP3 inflam-
masome links systemic inflammation with neuroinflammation and impairs the removal of
amyloid-beta by the microglia [83]. This effect may be clinically significant, as, in another
study, the inhibition of NLRP3 by OLT1177 significantly improved cognitive impairment in
a mouse model of Alzheimer’s disease [84]. SGLT2 inhibitors may improve atherosclerosis
and cognitive dysfunction via NLRP3 inflammasome inhibition (Table 1). As proven by
Kim S. et al., in the ex vivo study in diabetic patients, empagliflozin significantly attenuated
the inflammasome activity after 30 days of treatment [40].

Macrophages play a central role in atherosclerosis due to their foam cell formation
in the vascular lesions. They are also an important factor in the pathology of cognitive
impairment associated with Alzheimer’s disease as their infiltration is increased in patients
with AD being most abundant in the brain regions rich in Aβ plaques [85]. Macrophages
are immune cells responsible for mediating chronic low-grade inflammation and residual
cardiovascular risk, which remains after lipid reduction. They are characterized by an
ability to change in response to the environment. There are two immunological types of
macrophages, i.e., M1 and M2 macrophages. M1 proinflammatory macrophages secrete 1β,
IL-6, and TNF-α, maintain a chronic inflammatory state, and promote atherogenesis. On
the contrary, M2 macrophages have an anti-inflammatory and atheroprotective profile by
secreting IL-1 receptor agonist, IL-10, and collagen [86]. SGLT2 inhibitors have been proven
to strongly promote macrophage polarization towards M2 and thus alleviate inflammation
and atherosclerosis (Table 1) [42]. In the central nervous system, M1 polarization of glial
cells was associated with neurodegeneration [73]. M1 polarized macrophages activate
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STAT-1, which is a proinflammatory transcription factor [87]. It can also be involved
in cognitive impairment in Alzheimer’s disease since it is activated by intracellular Tau
accumulation. In a murine model, depletion of STAT-1 activation significantly reduced
synaptic dysfunction and cognitive impairment associated with Tau accumulation [88].
Empagliflozin was proven to mitigate inflammation by downregulation of the JAK2/STAT1
pathway in macrophages [89]. Macrophages take part in cognitive impairment as perivas-
cular macrophages (PVM) are the source of vascular oxidative stress by producing a large
amount of free radicals near the neurovascular unit [90]. They also affect the permeability
of the blood-brain barrier [91]. In previous studies, depletion of perivascular macrophages
prevented short-term memory impairment in a murine model [92]. SGLT2 inhibitors
may possibly attenuate atherosclerosis and cognitive impairment via macrophages by
promoting M2 polarization and downregulating STAT-1 (Figure 2).
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5. Oxidative Stress and Mitochondrial Dysfunction

A chronic inflammatory state also contributes to oxidative damage as it causes the
release of reactive oxygen species (ROS) [93]. The overproduction of ROS or decrease in
the anti-oxidant defense results in oxidative stress, which is a significant contributor to
vascular diseases, including atherosclerosis, as it causes endothelial dysfunction, promotes
remodeling and further enhances inflammation [94]. Oxidative stress is also associated with
Aβ- or tau -induced neurotoxicity since it facilitates their aggregation, phosphorylation,
and polymerization. These processes contribute to neurodegeneration which results in
impaired synaptic plasticity, neuroinflammation, neurotransmitter imbalance, neuronal
and synaptic loss leading to cognitive impairment [95]. In the previous study, the increased
level of oxidative stress was associated with cognitive decline in a healthy population [96].
Interestingly, SGLT2 inhibitors were proven to ameliorate oxidative stress not only by
maintaining a normal glucose level but also by reducing the generation of free radicals
(Table 1) [97]. In patients with T2DM, empagliflozin significantly enhanced leukocyte
expression of antioxidative enzymes including glutathione s-reductase and catalase and
simultaneously reduced pro-oxidative myeloperoxidase after four months of treatment [47].

Mitochondrial function is crucial for maintaining neuronal homeostasis, as neurons
are vulnerable to bioenergetic changes. Mitochondrial dysfunction plays an important
role in the pathogenesis of neurodegenerative diseases; there is even a ”Mitochondrial
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Cascade hypothesis” in Alzheimer’s Disease pathology [98]. In a murine model, deple-
tion of AIF (apoptosis-inducing factor), which is a mitochondrial protein taking part
in apoptosis and electron transport chain, was associated with serious disturbances in
hippocampal-dependant spatial learning and memory [99]. In a rat model, taking da-
pagliflozin was associated with significant improvement in brain mitochondrial function,
including decreased ROS production, mitochondrial swelling, and mitochondrial mem-
brane depolarization [100]. The existing evidence supports the concept that SGLT2 may
improve atherosclerosis and cognitive impairment by reduction in oxidative stress and
improvement in mitochondrial dysfunction.

6. mTOR Signaling

mTOR (mechanistic/mammalian target of rapamycin) is a novel, promising molecu-
lar pathway linking metabolic diseases and cognitive impairment. It is a crucial cellular
coordinator of systemic energy status and local nutrients. Chronic up-regulation of mTOR
is present in an anabolic state (increased levels of glucose, amino acids, growth factors)
associated with over-nutrition and lack of physical activity [101]. Continuous activation of
mTOR causes endothelial cell dysfunction, which is not only a key point of atherosclerosis
but also contributes to interruption in the blood-brain barrier [102]. Unrestrained mTOR
up-regulation has also been linked to tau and amyloid β hyperphosphorylation and aggre-
gation in Alzheimer’s disease [103]. Moreover, chronic mTOR activation impairs lysosomal
protein degradation, which supports the “Endo-Lysosomal Dysfunction” hypothesis of
Alzheimer’s Disease [104]. It is believed that restoring the circadian rhythm of mTOR acti-
vation would be beneficial in metabolic diseases and cognitive impairment. This effect can
be achieved by increasing physical activity, reducing calories intake, or intermittent fasting.
All the abovementioned interventions require the patient’s determination and are difficult
to obtain in real-life clinical practice. SGLT2 inhibitors are able to mimic those states by
promoting catabolism and restoring mTOR cycling, thus decreasing cognitive impairment
associated with metabolic diseases [105]. An interesting SGLT2i effect was noticed by
Esterline R. et al.; SGLT2 inhibitors cause loss of glucose with urine, but simultaneously
they activate glycogenolysis and gluconeogenesis and thus increase fasting endogenous
glucose production, which occurs particularly at night. This effect contributes to switch-
ing metabolism from anabolic to catabolic depending not on glucose and insulin but on
fatty acid oxidation and leads to a decrease in mTOR fuel: blood insulin and amino-acids.
Nocturnal mTOR suppression is followed by daily activation, and this state allows main-
taining mitochondrial and lysosomal homeostasis (Figure 3) [104]. Additionally, according
to Packer M, SGLT2 inhibitors cause transcriptional changes in cells that occur during
starvation, which is called “state of fasting mimicry” and include SIRT/AMPK activation
and Akt/mTOR suppression (Figure 3). Moreover, taking flozins causes changes similar
to an ischemic state, including HIF-2α activation which stimulates erythropoiesis, and
patients with higher erythrocyte count benefited most from SGLT2i therapy. Interestingly
those effects occurred also in cells, which do not express SGLT [106]. There is a lot of
evidence that SGLT2 inhibitors are able to suppress mTOR (Table 1). Flozins, by restoring
the circadian rhythm of mTOR activity, seem to bring benefits in patients with Alzheimer’s
Disease according to “Type 3 Diabetes Hypothesis”, “Mitochondrial Cascade Hypothesis”
and “Endo-Lysosomal Dysfunction Hypothesis” [105].
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7. Cerebrovascular Dysfunction

Cerebrovascular dysfunction is a pathological condition of the brain related to vascular
pathology. A hyperglycemic state impairs the microvascular structure of the brain causing
neurovascular remodeling, including loss of endothelial integrity, basement membrane
thickening, loss of myelin and neurons, astrocytes and pericytes disturbance [107]. Such
ultrastructural changes are associated with cognitive decline [108]. In a mouse model of
T2DM, empagliflozin exerted a neuroprotective effect on neurovascular remodeling [49].

Cerebrovascular dysfunction is mainly associated with disturbed blood flow being
either ischemia or bleeding. The presence of atherosclerotic lesions within arterial walls
impairs cerebral blood flow and causes cerebrovascular dysfunction [109]. Most ischemic
strokes are caused by atherosclerosis. According to a meta-analysis, the presence of carotid
atherosclerosis was associated with an increased risk of recurrent stroke (OR: 2.87; 95% CI
(2.42–3.37); p < 0.00001) [110]. Acute ischemic stroke leads to a critical limitation of blood
supply, which results in neuronal cell death and cognitive decline. Cognitive impairment
affects 20–80% of patients after acute brain ischemia [111]. Although SGLT2 inhibitors
do not reduce the risk of ischemic stroke incidence, they affect the most important cere-
brovascular risk factors, including hyperglycemia, hypertension, obesity, dyslipidemia,
and atherosclerosis [112]. Hypertension is the most common risk factor of stroke [113].
SGLT2 inhibitors significantly lower systolic and diastolic blood pressure without reflex
activation of the sympathetic nervous system and are even able to change the non-dipping
to dipping circadian blood pressure profile. While the exact mechanism of the antihyper-
tensive effect of SGLT2 inhibitors has not been clearly established, it is considered that the
most important factors are osmotic diuresis (induced by glucosuria) and natriuresis. Other
features of SGLT2 inhibitors that contribute to lowering blood pressure are suppression of
the renin-angiotensin system, decreased activity of the sympathetic system, antioxidative
activity, and improvement in endothelial cell function [114]. Moreover, SGLT2 inhibitors
may improve brain damage and cognitive impairment in patients after a stroke. SGLT
receptors are important in ischemia-reperfusion cerebral damage. As presented in a mouse
model of subcortical white matter infarct with cognitive impairment, the knockout of the
SGLT1 receptor was associated with a lower expression of proinflammatory cytokines
and better cognitive performance [115]. SGLT1 receptors mediate sodium influx, which
causes depolarization and contributes to neuronal cell death during ischemia. According
to Yamazaki Y. et al., increased sodium influx via the SGLT1 receptor was associated with
more exacerbated neuronal damage, which was not observed in SGLT-1 knockdown mice
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(Figure 4) [116]. In a study assessing cerebral ischemia/reperfusion damage in a rat model,
empagliflozin, in a dose-dependant manner, reduced neuronal death, infarct size and
ameliorated cognitive impairment via HIF-1α/VEGF signaling [50]. SGLT2 inhibitors may
preserve cognitive functions in diabetic patients by preventing neurovascular remodel-
ing and reducing the well-known risk factors of stroke. They can also bring benefits to
post-stroke patients by reducing inflammation, sodium influx, and HIF-1α/VEGF pathway.
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damage, there is an increase in the expression of SGLT1; 3. Sodium influx through SGLT1 receptors is
associated with increased ischemia/reperfusion damage, lesion size, edema, inflammation, neuronal
cell death, and decline in cognitive functions; 4. SGLT receptor blockage/knockdown was associated
with improvement in damages caused by ischemia and ischemia/reperfusion damage.

8. The Effect of SGLT2i on Alzheimer’s Disease Pathology

SGLT2 inhibitors can possibly bring benefits in patients with Alzheimer’s Disease us-
ing the abovementioned mechanisms, including not only anti-inflammatory, anti-oxidative
or atheroprotective effects, but also direct neuroprotective effects including BDNF increase
and AChE inhibition. Additionally, SGLT2i can also be favorable for AD patients by im-
proving brain insulin sensitivity [100]. Insulin resistance is present in 8 out of 10 patients
suffering from Alzheimer’s Disease [117]. Peripheral resistance to insulin also occurs in
the CNS, as the glucose metabolic rate is reduced in the brains of AD patients in fluo-
rodeoxyglucose positron emission tomography (FDG PET) [118,119]. Increased insulin
level in the brain contributes to Alzheimer’s Disease pathology, as the insulin-degrading
enzyme (IDE) also takes part in degrading senile plaques, and in insulin resistance, it
is involved in degrading insulin [117]. Moreover, insulin resistance is associated with
activating GSK3-β (glycogen synthase kinase 3β) signaling, which takes part in tau phos-
phorylation and Aβ production and Aβ mediated neuronal damage [117,120]. SGLT2
inhibition reduced GSK3-β activity in hepatocytes [121]. In previous studies involving
murine models, SGLT2i treatment caused a significant reduction in AD pathology, includ-
ing tau phosphorylation and senile plaques density. This effect was associated with the
improvement in cognitive functions, including memory and learning processes in the new
object discrimination test and Morris water maze test [15].

9. Summary

Type 2 Diabetes Mellitus, atherosclerosis, and cognitive impairment still remain global
health problems as they are chronic, incurable diseases leading to a reduction in life quality
and expectancy. All these diseases share many pathological pathways. In the era of tailored-
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made therapies and novel drugs with numerous pleiotropic effects, it is very important to
seek for shared molecular pathways of commonly occurring diseases and redefine indica-
tions for commonly used medications since such solutions may be beneficial for patients.
In this review, we have discussed the role of SGLT2 inhibitors used in diabetic patients for
the prevention of atherosclerosis and cognitive impairment. Flozins may bring positive
effects in T2DM, atherosclerosis, and cognitive impairment through several mechanisms,
including anti-inflammatory and anti-atherosclerotic properties, SGLT1 inhibition, AChE
inhibition, reduction in oxidative stress, amelioration cerebrovascular remodeling and
restoring a balance between catabolism and anabolism. However, long-term clinical trials
are necessary to establish whether the above-mentioned mechanisms are clinically relevant
since atheroprotective and neuroprotective effects will not be immediate and require a long-
term SGLT2i intake. Currently, the University of Kansas Medical Center (NCT03801642) is
conducting a clinical trial on dapagliflozin in patients with Alzheimer’s disease.
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