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Abstract

Several studies profile similar single cell RNA-Seq (scRNA-Seq) data using different tech-

nologies and platforms. A number of alignment methods have been developed to enable the

integration and comparison of scRNA-Seq data from such studies. While each performs

well on some of the datasets, to date no method was able to both perform the alignment

using the original expression space and generalize to new data. To enable such analysis we

developed Single Cell Iterative Point set Registration (SCIPR) which extends methods that

were successfully applied to align image data to scRNA-Seq. We discuss the required

changes needed, the resulting optimization function, and algorithms for learning a transfor-

mation function for aligning data. We tested SCIPR on several scRNA-Seq datasets. As we

show it successfully aligns data from several different cell types, improving upon prior meth-

ods proposed for this task. In addition, we show the parameters learned by SCIPR can be

used to align data not used in the training and to identify key cell type-specific genes.

Author Summary

Integrating single cell expression data (scRNA-Seq) across labs, platforms, and technolo-

gies is a major challenge. Current methods for addressing this problem attempt to align

cells in one study to match cells in another. While successful, current methods are unable

to learn a general alignment in gene space that can be used to process new or additional

data not used in the learning. Here we show that the scRNA-Seq alignment problem

resembles a well known problem in the field of computer vision and robotics: point-

cloud registration. We next extend traditional iterative rigid-object alignment methods

for scRNA-seq while satisfying a set of unique constraints that distinguishes our solution

from past methods. Analysis of transcriptomics data demonstrates that our method can

accurately align scRNA-seq data, can generalize to unseen datasets, and can provide use-

ful insights about genes active in the cells being studied.

This is a PLOS Computational Biology Methods paper.
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Introduction

While only recently introduced, single-cell RNA-sequencing (scRNA-seq) has quickly devel-

oped into an indispensable tool for transcriptomics research. Driven by the development of

droplet microfluidics-based methods [1–4] and split-pool barcoding-based methods [5, 6],

current experiments are able to simultaneously profile expression of genes in tens of thousands

of single cells. Studies ranging from cell type and state identification [7, 8] to tracking early

development [9, 10] to unveiling the spatial organization of cells [11, 12] are all utilizing

scRNA-Seq data, providing new insights about the activity of genes within and between cells.

While the size and number of individual scRNA-seq datasets is large and constantly grow-

ing, the question of how to integrate scRNA-Seq data from multiple experiments or platforms

has become increasingly relevant. Different labs are seeking to analyze related tissues in an

organ system, such as mapping out the cell types in the human pancreas [13] or building an

adult mouse brain cell atlas [14]. On on even larger scale, consortia such as the Human Cell

Atlas [15, 16] or the HUBMaP [17] are organizing researchers globally with the goal of map-

ping cells in the entire human body.

Combining datasets, even for the same tissue, across platforms or labs is a challenging prob-

lem. This process is often referred to “dataset alignment”, “dataset harmonization”, or “batch

correction,” and is an active area of research. A number of methods have been recently sug-

gested to address this problem. Many of these rely on nearest neighbors computations. For

example, Mutual Nearest Neighbors (MNN) integrates two datasets by first identifying cells in

the two datasets that are mutual nearest neighbors (in each other’s set of k nearest neighbors)

[18]. It then computes vector differences between these pairs and uses weighted averages of

these vector differences to shift one batch onto the other. Another method, Seurat [19],

extends this idea by first computing MNNs in a reduced dimension space, via canonical corre-

lation analysis (CCA) which identifies common sources of variation between the two datasets,

and then proceeding to correct the batch effects in a similar fashion as MNN. Other methods

such as scVI [20] and ScAlign [21] use a neural network embedding to align the two datasets.

These methods seek to encode the scRNA-seq datasets using a common reduced dimensional

space in which the batch effects are reduced. While the above methods are unsupervised, there

are also a few supervised methods proposed for this task. These method require as input the

correct cell type labels for cells in the training data and use that to learn a function to assign

cell types for the test data. An example of such method is Single Cell Domain Generalization

Network (scDGN) which uses a supervised neural network trained with adversarial objectives

to improve cell type classification [22]. Another example is Moana, which uses hierarchical cell

type classifiers robust to batch effects to project labels from one dataset onto another [23].

Each of the methods mentioned above offers different features and so might be appropriate

for different settings. For example, some methods align the data in the given gene space and

thus maintain gene semantics while others, namely the neural network-based methods, do the

alignment in a new embedded space (i.e. a reduced dimensional space). On the other hand,

the neural network methods typically are learning an alignment function which enables the

alignment to be applied to new data (generalization). A comparison of the features of several

popular methods is summarized in Table 1. See also [24–26] for recent reviews comparing dif-

ferent alignment methods.

As the table shows, none of the current methods enable both maintenance of semantics

(required for analyzing genes following the alignment) and generalization (required for keep-

ing the alignment consistent when new data arrives). Here we propose a new method, Single

Cell Iterative Point set Registration (SCIPR), which achieves both using an unsupervised

framework. Our method extends a well known method in image analysis termed iterative
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closest points (ICP), which is used for the problem of point-set or point-cloud registration

[27]. In ICP, two datasets are represented as sets of points in a common coordinate system,

and the method proceeds by pairing together points between the two sets and learning a trans-

formation to move one set closer to (the corresponding points) in the other [28]. A method

based on ICP can maintain semantics because it operates in the input data space, meaning that

if the input features are genes, then the output features will also be those same genes. Such

methods can also generalize to unseen data because they are fitting a transformation function,

which can then be applied to new batches.

We tested SCIPR on three benchmark datasets and compared its performance to several

prior methods suggested for the alignment task. As we show, single cell iterative point set regis-

tration outperforms prior methods for most of the tasks and is able to generalize to both

unseen data in the target and in the source batch by learning a general function which can be

applied to new data. Finally, since it retains the original (gene space) representation, the coeffi-

cients learned by single cell iterative point set registration can be used to identify key genes

related to the cell types being analyzed.

Materials and methods

Dataset selection

To evaluate SCIPR and to compare its performance to previous alignment methods we used

different scRNA-Seq datasets, each profiling similar cells in multiple batches. The first is the

CellBench dataset (GEO: GSE118767) [29], which profiled human lung cancer cell lines and

contained three batches, each from a different platform: 10x Chromium [4], Dropseq [2], and

CEL-seq2 [30] (S1(a) Table). The smallest batch had 210 cells (Dropseq) and the largest had

895 (10x Chromium) after removing cells with low reads, and we filtered the genes to the most

highly variable genes across all batches leaving us with 2351 genes (S1 Appendix section “Data

preprocessing and filtration”). The second was data from human pancreatic cells (GEO:

GSE84133) [31], with four batches all using Indrop sequencing [3] where the largest batch had

Table 1. Comparison of features and properties of various scRNA-seq alignment methods.

Method Unsupervised? Corrects input? Maintains semantics? Generalizable? Transfers labels?

scDGN X X X

Moana X X

ScAlign X X X�

scVI X X X

Harmony X X

Scanorama X X X

MNN X X X

Seurat X X X

SCIPR X X X X

The “Corrects input?” column refers to whether the method actually aligns (transforms) the input data batches in order to integrate them. The “Maintains semantics?”

column refers to whether the output of the method retains the gene semantics given as input. The “Generalizable?” column refers to whether the method learns a model

which can be applied to new data. The “Transfers labels?” column refers to whether the method also explicitly aims to apply the cell type labels of one data batch onto

another, unlabeled batch.

� ScAlign is theoretically able to be applied on new data, as it learns a neural network embedding model, but the ability to save and load the function in different sessions

to apply it on new data was not available in software at the time of testing.

https://doi.org/10.1371/journal.pcbi.1007939.t001
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1488 cells (inDrop3), the smallest had 834 cells (inDrop4), and we used the five largest cell

types and the set of 2629 highly variable genes (S1(b) Table). Finally, the third and largest data-

set is a PBMC dataset (GEO: GSE132044) [32] which consisted of four different batches using

10x Chromium [4] sequencing. We used the three largest cell types and the largest batch had

2510 cells (10x Chorm. (v2)), the smallest had 2011 cells (10x Chrom. (v2) A), and we used the

set of 1466 highly variable genes (S1(c) Table). See S1 Appendix section “Data preprocessing

and filtration” for complete details, and S1 Table for exact numbers of cells in each batch and

their cell type distributions.

scRNA-seq alignment

In the scRNA-seq alignment task, our goal is to learn a new representation of the data (either

in the same dimensions as the original data, or in a new reduced dimension) to accomplish the

following:

Property 1 Cell type identification: Cells from different cell types are distinct and cells from the
same type are in close proximity

Property 2 Batch mixing: Cells from different batches are mixed together as much as possible
while respecting the first property

Point set registration for single cell alignment

Unsupervised alignment of single cell data relies on the implicit assumption that the different

datasets share several of the same cell types though potentially using different representations

for the same type. A similar assumption is central to much of the literature in point set registra-

tion, a well-studied problem in the robotics and computer vision fields [27]. In the point set

registration problem, we wish to assign correspondences between two sets of points (two

“point clouds”), and learn a transformation that maps one set onto the other (Fig 1). Point sets

are commonly the 2D or 3D coordinates of rigid objects, and the class of transformation func-

tion under consideration is often rigid transforms (rotations, reflections, and translations).

The various point sets often originate from differing settings of sensors (viewing angle, light-

ing, resolution, etc) viewing the same objects or scene. Among the most widely used and classi-

cal of point-cloud registration algorithms is Bessl and McKay’s Iterative Closest Point (ICP)

algorithm [28]. Briefly, each iteration of ICP has two steps: 1) assigning each point in one set

(A, “source”) to its closest point in the other set (B, “target”), 2) update the rigid transforma-

tion function to transform the points in A as close as possible to their assigned points in set B.

At the end of each iteration, the points in A are transformed via the current rigid transform

and the process is repeated until convergence. Thus, each iteration of ICP can be concisely rep-

resented as minimizing the following loss function:

LICPðA;B; fyÞ ¼
X

i2A

min
j2B

1

d
jjfyðAiÞ � Bjjj

2

2 ð1Þ

where A, B 2 Rd, and d is the number of genes and fθ is further constrained to rigid transfor-

mation functions

However, applying ICP as-is to align two scRNA-seq datasets could be problematic since:

• ICP assumes that every point in A corresponds to a point in set B, whereas scRNA-seq data-

sets may not fully overlap in cell types. For example, in studying embyronic development, we

observe the transcriptome at different embryonic days, where some cell fates exist only after

a certain day [33, 34].
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• ICP assumes that a rigid transform relates the two sets. This may have been appropriate for

3D rigid objects, but not for the complicated, high-dimensional single cell transcriptome

data.

• ICP is prone to assigning many points in A to the same point in B (collapsing a point) even

when they are not fully compatible [35]. In contrast, if the same cell type exists in both data-

sets we can expect the number of cells to be more balanced.

Thus, while ICP has been very successful in image analysis, it requires modifications in

order to accurately align scRNA-Seq data.

Adapting ICP for scRNA-seq dataset alignment

Given the discussion above, both stages of ICP need to be changed in order to align scRNA-

Seq data. More formally, these two stages are:

1. Assignment stage (input: point sets A and B)—assign pair set S� {(i, j) | 1� i� |A|, 1� j
� |B|} (Fig 1 panel 2). Options for this stage may vary in the cardinality of S, and whether

or not it allows points to be shared between pairs.

2. Transformation stage (input: assigned pairs S)—given S from the Assignment stage, learn a

transform function that transforms points in A to reduce the mean squared error (MSE)

between the assigned pairs in S (Fig 1 panel 3). Options for this stage vary based on the fam-

ily of functions considered.

Fig 1. Summary of steps in iterative point set registration for scRNA-seq data. Each cell in an scRNA-seq dataset can be viewed as a point

in high dimensional space. 1) We start with two unaligned batches (sources, blue and targets, orange). 2) A matching algorithm (e.g. picking

the closest corresponding point, or using mutual nearest neighbors) is used to pair source cells from A with a corresponding target cell in B.

The number of source and/or target cells matched can vary for different matching strategies. 3) Based on the selected pairs, a global

transformation function is learned so that source cells in A become closer to their paired cell in B. 4) The learned transformation is next

applied to all points in A. 5) This process (steps 2–4) is repeated, iteratively aligning set A onto B until the mean distance between the

assigned pairs of cells no longer improves. 6) The final global transformation function is the composition of the functions learned in each

iteration at step 3.

https://doi.org/10.1371/journal.pcbi.1007939.g001
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To adapt stage 1, we propose two approaches for assigning points in the next section: one

based on a novel greedy algorithm and another based on Mutual Nearest Neighbors (MNNs).

For stage 2, we set the family of transformation functions to be affine transformations (section

titled “Learning a transformation function”).

Assigning cells between datasets

First, we focus on the Assignment stage. The input to this stage is the target set B and the cur-

rent state of the source set of points A (A is being updated at every iteration of the algorithm).

ICP computes the pairwise distance matrix between members of these sets D 2 Rn×m where

n = |A| and m = |B| (S1 Fig), and finds the element in each row with the smallest distance to

match to that point in A.

In contrast, for scRNA-seq alignment we would like to require the following:

• Not too many points in A are matched with the same point in B (avoid collapsing many

points in one dataset onto a single point).

• Not all points must be assigned (since the two dataset may not fully overlap in terms of cell

types).

One approach for addressing the first requirement is using a bipartite matching algorithm

[36] instead of picking the closest point. In such an algorithm a global optimal matching is

found such that each point is only matched to a single point in the other set. However, such

algorithms violate the second requirement since they result in “perfect” matchings, where all

points in A are matched. An alternative is to use partial matching algorithms in which only a

subset (or a fraction) of the points in A are required to be matched to points in B. Optimal par-

tial matching is a well studied problem in the computer science literature and requires solving

a min-cost flow graph problem [37]. The problem can be solved via an efficient network sim-

plex algorithm, however, for graphs with thousands of nodes (as in single cell data) this is still

rather time consuming. If we let the number of vertices be V = n + m (e.g. number of cells in

both batches), the number of edges be E = n × m, and the largest edge weight (distance between

points) be C, then the polynomial time network simplex algorithm has a run time of O(VE log

V log(VC)) [38]. Given the large number of cells in each dataset such partial matching methods

are too time consuming in practice (S2 Fig).

Instead, in S1 Algorithm we propose an efficient greedy algorithm for partial assignment

between A and B. The algorithm sorts all of the edges between members of the two sets based

on distance. Next, we proceed along the ordered edges starting from the smallest distance. If

an edge includes a point in set B that has already been selected β times by previously chosen

edges, we discard it and continues down the list. Our algorithm has parameters to adjust how

many times we allow each point in B to be matched to (β), and how many of the points in A
must be matched (α). In our experiments, we set β = 2 to allow more flexibility than bipartite

single-matching, while strictly preventing over-matching and the collapse of several cells onto

the same point and α = 0.5 because requiring 50% matching would allow for cases where sig-

nificant portions of the source or target cell types do not overlap. These hyperparameters can

be more precisely set based on the user’s prior belief of the composition of their batches,

though we show that these default settings worked well in our experiments across three data-

sets. The runtime of this algorithm is dominated by the sortElementsAscending func-

tion which sorts the distances leading to a worst case runtime of O(E2) and a much faster

O(E log(E)) on average. Though not an optimal solution to the partial bipartite matching prob-

lem, we find that this works well in our related scRNA-seq cell pair assignment problem for

alignment.
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We also experiment with a matching procedure which follows the foundational work of

using mutual nearest neighbors (MNNs) [18] to define our pair assignments between the two

sets. For a point i in set A and a point j in set B, if i is in the set of k-nearest neighbors among A
for point j, and j is in the set of k-nearest neighbors among B for point i, then i and j are

MNNs. In our experiments, we set k = 10. To pick this default value for k, we used the average

of the defaults in two well-established analysis frameworks for scRNA-seq, Seurat [39] (Fin-
dIntegrationAnchors function which uses k = 5) and scanpy [40] (scanpy.pp.
neighbors which uses k = 15) and we found that such assignment worked well in our exper-

iments across all three datasets.

Learning a transformation function

So far we focused on matching points given their distance. In the next stage, we will fit a trans-

formation function to align the matched points. As discussed above, the family of rigid trans-

forms is not well suited to compute such alignments for scRNA-seq data (S3 Fig). Instead, we

propose to use the family of affine transformations to align scRNA-seq datasets. Affine trans-

forms are of the form fθ(x) = WT x+ b where θ = {W, b} is the learnable weights of the function,

and include rotation, reflection, scaling, and shearing.

To learn this function, we minimize an objective function that aims to move the assigned

points closer to each other, via such an affine transformation. Given a pair assignment S from

the previous step (section “Assigning cells between datasets”) (which may be the result of the

classic “closest” strategy from ICP, our greedy algorithm, or MNN matching), learning the

transformation function (Fig 1 panel 3) is equivalent to minimizing the loss function given as

Eq (2). We note that this objective function is not over all pairs of points in sets A and B; it is

computed over only those pairs of points selected in S, denoted by the subscript under the

sum.

LðA;B; fy; SÞ ¼
1

jSj

X

i;j2S

1

d
jjfyðAiÞ � Bjjj

2

2

¼
1

jSj

X

i;j2S

1

d
jjðWTAi þ bÞ � Bjjj

2

2

ð2Þ

where A, B 2 Rd, and d is the number of genes.

This is a least-squares objective function. If the system is overdetermined, this could be

solved exactly. However, due to the high dimension we are working in (each point is the

expression of thousands of genes), the matrix inversion for the exact solution is expensive to

compute, as matrix inversion is O(d3). To avoid this, we approximate the solution using gradi-

ent descent to arrive at our transformation function f ðtÞy for the current iteration t (see S1

Appendix section “Parameter settings for SCIPR experiments” for gradient descent settings).

Iterative step

After each of the stages (assignment and transformation function update), we use our learned

transformation function at the current iteration f ðtÞy to transform the all points in A (not just

those in the set S from the matching algorithm) (Fig 1 panel 4), and then repeat the stages for

T iterations (Fig 1 panel 5). The final learned transformation of source points A to target points

B is a chained series of transformations (composite function) from each iteration (Fig 1 panel

6). Since our function class for fθ is affine transformations, and the composition of affine trans-

formations is itself an affine transformation, we can combine this chain of transformations
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into a single affine transformation. See S1 Appendix section “Computing the final affine trans-

formation at the end of SCIPR” for details.

In all of our experiments, we ran the iterative point set registration for five iterations. Our

experiments (S9 Fig) indicate that distances between matched cells converge within very few

iterations for all three datasets. We note that this is in line with prior work that used the ICP

algorithm on image data. For that data ICP also exhibited fast convergence within the first few

iterations [28].

The runtime of our iterative algorithm is slower than that of the pure matching-based

methods such as MNN and Seurat (S6 Table), and is similar to the runtime of neural network-

based methods such as ScAlign. This is because while MNN and Seurat do not learn a function

and must be recomputed to align any new data, our point set registration method and methods

like ScAlign aim to learn an alignment function that can generalize and be applied to align

new data not seen in the learning process. This comes at the cost of having to optimize an

objective function via an iterative learning procedure. However, we note that these methods

can utilize graphics processing units (GPUs) to greatly accelerate the process, and we see that

our iterative algorithms can be even faster than MNN or Seurat when run with a GPU (S6

Table).

Validation

A number of methods have been proposed to test the accuracy of alignment based methods

[41, 42]. These evaluation metrics try to balance two, sometimes competing, attributes. The

first is dataset mixing which is the goal of the alignment. The second is cell type coherence. A

method that randomly mixes the two datasets would score high on the first measure and low

on the second while a method that clusters each of the datasets very well but cannot match

them will score high on the second and not on the first.

To track both dataset mixing and biological signal preservation, we follow [42] and use the

local inverse Simpson’s Index (LISI). LISI measures the amount of diversity within a small

neighborhood around each point in a dataset, with respect to a particular label. The lowest

value of LISI is 1 (no diversity). As in [42], we define integration LISI (iLISI) as the score com-

puted when using the batch label for each datapoint, and cell-type LISI (cLISI) as the score

when using the cell-type label. iLISI measures the effective number of datasets within the

neighborhood (so the higher the better). cLISI measures the effective number cell types within

the neighborhood (so the lower the better). See [42] and S1 Appendix section “Computing

iLISI and cLISI scores” for details on how to compute LISI scores (Equation S1). With these

two metrics in hand, we can keep track of not only the ability of our algorithms to align one

dataset onto another, but also their ability to preserve original signal. In our figures which

report the iLISI and cLISI scores, we rank the methods based on the difference of medians

iLISI − cLISI score to capture the ability of the methods to maximize and minimize these two

quantities respectively.

Results

Method and benchmarking overview

We developed SCIPR which aligns two batches of scRNA-seq data (termed source and target)

using methods motivated by point set registration algorithms. SCIPR first identifies corre-

sponding pairs of cells between source and target batches (Fig 1 panel 1). Rather than using

the closest cell (as defined by euclidean distance) in the target to match a source cell, SCIPR

uses either of two matching algorithms to account for the heterogeneity and noise in scRNA-

seq data: Mutual Nearest Neighbors (MNN) matching [18], and a novel greedy matching
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algorithm (S1 Algorithm, Methods). Once a pairing of cells is established (Fig 1 panel 2), a

transformation function is learned to transform source cells so that they are closer to their

matched target cell (Fig 1 panel 3). To allow for accurate alignment of high-dimensional

scRNA-seq data, we replace the rigid transformation commonly used for point cloud registra-

tion with affine transformations. After fitting the transformation function (Methods), we

apply it to the source cells (Fig 1 panel 4), and iteratively repeat the process until convergence.

The final alignment function we learn is a composition of the transformation functions learned

at each iteration (Methods) (Fig 1 panels 5 and 6).

We used three datasets to test and compare two versions of SCIPR to prior alignment meth-

ods (Methods). See S1 Appendix section “scRNA-seq alignment benchmarking software and

data” for software settings of the related methods. These comparisons were performed by test-

ing the methods on several “alignment tasks”. An alignment task is defined by:

• A dataset (e.g. Pancreas)

• A source batch A within that dataset, which you would like to transform (e.g. inDrop1)

• A target batch B within that dataset, which you would like to transform A onto (e.g.

inDrop 3)

For example, an alignment task can be summarized with the notation: Pancreas:
inDrop1! inDrop3. In the comparisons we performed we fix the target within a dataset to

be the largest batch in that dataset. We define these tasks as pairwise alignments, but we note

that it is possible to use our method to align multiple batches using SCIPR (S11 Fig). We

scored the performance of the methods using local inverse Simpson’s Index (LISI) in which

higher integration LISI (iLISI) is better and lower cell-type LISI (cLISI) is better [42]

(Methods).

An affine global transformation function yields well-mixed alignments

We first evaluated the ability of SCIPR and other methods to integrate pairs of batches from

three different datasets. Results for 8 alignment tasks in three datasets are presented in Fig 2.

As the figure shows, for 7 of the 8 alignment tasks the two version of SCIPR ranked at the top.

SCIPR-mnn was the overall top performer ranking first on 4 tasks and 2nd on 2 whereas

SCIPR-gdy ranked first on 3 tasks and 2nd on 1. The only other method that performed well is

ScAlign which ranked first on 1 task and 2nd on 4. For example, for the CellBench alignment

tasks (first row of Fig 2), we see that SCIPR-mnn, which uses the MNN matching for the cell

pair assignment stage, has consistent better performance, and achieves high batch mixing

(1.70 and 1.76 median iLISI scores on CELseq2!10x and Dropseq!10x respectively) with

very little cell type mixing (1.00 median iLISI score on both CELseq2!10x and Dropseq!10x).

When looking at the same dataset, on the CELseq2!10x task the other methods such as ScA-

lign (iLISI: 1.00, cLISI: 1.00) or SeuratV3 (iLISI: 1.51, cLISI: 1.00) are also able to avoid cell

type mixing, but are not able to mix the batches as much as SCIPR (Fig 2). Full alignment

quantitative scores for these tasks and all others in the paper are listed in S7 Table. These quan-

titative metrics are also corroborated by a qualitative assessment of the resulting t-SNE embed-

dings (Fig 3). There we can see that both SCIPR-gdy and SCIPR-mnn (top two rows) mix the

batches well (1st and 3rd columns) compared to methods like MNN and ScAlign while suc-

cessfully keeping cell types separate (2nd and 4th columns). SeuratV3 also performs well. The

embeddings on the Pancreas dataset (S10 Fig) show that most methods result in embeddings

with these desirable properties on this dataset, including SCIPR.
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SCIPR robustly mixes batches with non-overlapping cell types

The comparisons presented above involved sources and target batches with the same set of

cells. However, in practice it is often unknown if both source and target indeed contain the

same cell types. To test the robustness of SCIPR and other methods for such realistic scenarios

we hold-out a complete cell type from the target set B in each of the alignment tasks from the

section “An affine global transformation function yields well-mixed alignments”. As the fig-

ures show, for these alignment tasks SCIPR is able to mix batches well, while keeping the

median cell type mixing (iLISI) score low, though with a longer tail (Fig 4 and S4, S5 Figs). For

example, for the CellBench: CELseq2!10x (H1975 cell type held-out from target) task, SCIPR-

mnn had median iLISI and cLISI scores of 1.63 and 1.02 respectively while the second best

method, SeuratV3, had iLIS and cLISI scores of 1.49 and 1.01 respectively (Fig 4). On the other

hand, for the task Pancreas: inDrop1!inDrop3 (acinar cell type held-out from target), SCIPR-

mnn achieves a higher median batch mixing score of iLISI = 1.69 compared to ScAlign’s score

of 1.57, but also mixes the cell types slightly more (SCIPR-mnn median cLISI score: 1.28, ScA-

lign median cLISI score:1.00) (S4 Fig).

Fig 2. Quantitative scoring of alignment methods on benchmark datasets. Each row of subplots are tasks from the same dataset, where

each column uses a different source batch (all are aligned to the same largest reference batch). The scores are iLISI (green, batch integration

score), and cLISI (yellow, cell type mixing score). In each subplot the methods are ordered from top to bottom in order of largest difference

(median iLISI − median cLISI) of scores. “None” means no alignment method is applied to the data. The center of each box is the median,

and whiskers represent 1.5 times the IQR past the low and high quartiles. Circle markers are placed on the medians and connected between

boxes with lines of the corresponding color to facilitate visual comparisons.

https://doi.org/10.1371/journal.pcbi.1007939.g002
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Fig 3. Embedding (t-SNE) visualization from alignment tasks on the CellBench dataset using various alignment

methods. Each row is a different alignment method (the bottom row,“None”, is with no alignment). The columns are

in two groups based on alignment task: the left two columns (a) pertain to aligning the CELseq2 batch onto the 10x

batch, the right two columns (b) are for aligning the Dropseq batch onto the 10x batch. The first and third columns are

colored by batch, and the second and fourth columns are colored by cell type.

https://doi.org/10.1371/journal.pcbi.1007939.g003
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SCIPR generalizes to unseen data

One of the advantages of SCIPR compared to most previous methods is the fact that it learns a

general transformation function that can be applied to additional data when it becomes avail-

able (Table 1). Such a function allows researchers to “fix” a specific setting rather than have all

results completely change when new data is introduced. To test the use of the learned transfor-

mation function for unseen cell types in the source dataset we repeated our analysis, this time

holding out a complete cell type from the source set in each alignment task. We next learned

the transformation based on the available data and then applied the learned function to the

held out data to evaluate the batch and cell type mixing. Results are presented in Fig 5, S6, S7

and S8 Figs. As the figures show, the transformation learned by SCIPR allows it to keep cell

types distinct, even for the unseen source cell type, while also being able to mix the batches of

unseen cell types. This is evident in the high median iLISI (1.69) and low median cLISI (1.04)

scores of SCIPR-gdy on the task PBMC:10x Chrom. (v2) A!10x Chrom. (v2) (CD4+ T cell
held-out from source), where the model is fit without seeing CD4+ T cells in the source set, but

is then used to transform the full source set in evaluation (S8 Fig). Fig 5 displays the aligned

results for the cell type not used in the learning. As the figure shows, for CD4+ and Cytotoxic

T cells SCIPR-gdy is able to mix the two batches even though it had never seen these in fitting.

SCIPR identifies biologically relevant genes

The above results demonstrate SCIPR’s ability to integrate batches quantitatively and qualita-

tively. Since SCIPR achieves these results by learning a transformation function that places dif-

ferent weights on different genes, we next asked whether the learned weights provide

Fig 4. Quantitative scoring of alignment methods on the CellBench dataset with a cell type held out from the target set. Each

row of subplots are alignment tasks with the same source batch, where each column uses a different cell type as a hold-out from the

target set (the 10x batch). Box plot computation and ordering of methods in each subplot is determined in the same fashion as in

Fig 2

https://doi.org/10.1371/journal.pcbi.1007939.g004
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information on the importance of specific genes for the set of cells being studied. Since SCIPR

aims to align specific pairs of cells (one from each batch), when it is successful it tends to focus

more strongly on cell type-specific genes. As we showed, for several datasets the method is

indeed correct in the assignments it identifies and for these, the set of genes it uses may be of

Fig 5. Embedding (t-SNE) visualization from the PBMC:10x Chrom. (v2) A!10x Chrom. (v2) task using SCIPR-gdy showing

generalizability to new cells. In each alignment task (rows), a different cell type is completely held-out from the source set. The model is

then fitted to align the source and the target, and this fitted model is then used to transform the full source set, including the held-out cell

type which the model did not see in the source set used for fitting. The first column (a) shows just the held-out cell type colored by batch,

after applying the fitted SCIPR-gdy model to align it. The second column (b) shows all of the data after applying the fitted model, colored by

cell type.

https://doi.org/10.1371/journal.pcbi.1007939.g005

PLOS COMPUTATIONAL BIOLOGY Iterative point set registration for aligning scRNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007939 October 27, 2020 13 / 21

https://doi.org/10.1371/journal.pcbi.1007939.g005
https://doi.org/10.1371/journal.pcbi.1007939


relevance for the cell types it aligns (Sections “An affine global transformation function yields

well-mixed alignments” and “SCIPR robustly mixes batches with non-overlapping cell types”).

To evaluate this idea we compared ranking genes based on their SCIPR coefficients to a base-

line that ranks them based on differential expression (DE) (S1 Appendix section “Differential

expression analysis” and S1 Appendix section “Selecting top genes from SCIPR models for

enrichment analysis”). Next we performed gene set enrichment analysis using the Gene Ontol-

ogy to identify the significant functions associated with top genes and test their relevance (S1

Appendix section “Gene set enrichment analysis”). The PBMC dataset, which is the largest,

was also the one with the most number of significant categories identified (S2 Table). When

comparing top ranked genes by SCIPR and DE for the PBMC: 10x Chrom. (v2) A 10x Chrom.

(v2) alignment task we observed that SCIPR genes significantly overlapped with much more

relevant terms when compared to DE genes for the same dataset (S3 and S4 Tables for SCIPR-

mnn and SCIPR-gdy respectively). For example, the top three categories for top ranked

SCIPR-mnn genes are “Defense response”, “Regulation of immune response”, and “Humoral

immune response” (all with adj. p-value 9.743e-9, S3 Table). These categories are very relevant

for blood cells given their immune system function. On the other hand, the top three catego-

ries recovered by top DE genes are much more generic and include “Cotranslational protein

targeting to membrane”, “Cellular amide metabolic process“, and “Organic cyclic compound

catabolic process” (S2 Table). We compared the enrichment results obtained from using top

ranked genes based on SCIPR to results obtained using highly variable genes (HVG). While

HVG’s do result in enrichment of relevant GO terms (S5 Table), the significance of enriched

relevant categories is lower when compared to genes ranked by SCIPR-mnn.

Discussion

We presented SCIPR which extends point set registration for the alignment of scRNA-Seq

data. SCIPR combines many of the desirable features of previous methods including the fact

that its unsupervised, generalizable, and keeps the original (gene space) representation. Analy-

sis of several datasets show that SCIPR successfully aligns scRNA-Seq data improving upon

other methods proposed for this task. When data is missing from either the source or the target

the transformation function learned by SCIPR can be used to accurately align it when it

becomes available. Finally, the coefficients learned by SCIPR provide valuable information on

the key genes related to the cells being analyzed.

Framing scRNA-seq alignment as a point set registration problem opens the door to apply-

ing many of the developments and advancements in that area to scRNA-seq alignment. Point

set registration is a mature area that has been widely used for more than two decades. As part

of this researchers looked at several different types of transformation functions, data filtration,

outlier handling, and association mapping, all of which may find applications in scRNA-seq

analysis.

When evaluating SCIPR and prior methods we used the local inverse Simpson’s Index

(LISI) to quantify both cell type mixing and batch mixing. This leads to two values for each

alignment task which can be combined for ranking the different methods by computing the

difference of the medians iLISI − cLISI. Such ranking places equal weight on both issues. How-

ever, this score may not tell the whole story since some methods may be much better at one

task vs. the other. For example, while SCIPR was ranked as the top method for most of the

comparisons we performed, it has a tendency of to sacrifice some cell type separation in order

to achieve greater batch mixing. Thus, depending on the user priorities between cell type and

batch mixing, different methods may be more attractive even if the combined score is lower

when compared to other methods.
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With regards to choosing between SCIPR-mnn and SCIPR-gdy, we generally recommend

the use of the MNN strategy which performs well and does not rely on hyper-parameters

related to the expected matching between the datasets (thus, requires less assumptions). How-

ever, in cases where the user has prior beliefs or expectations on what portion of the cells

should be matched between the two batches (for example, if s/he knows that some types are

missing in one sample and so the match proportion is not expected to be high) then we recom-

mend using the greedy algorithm, since such information can be incorporated using its hyper-

parameters and will thus lead to better results. We tested SCIPR using a set of highly variable

genes (see “Dataset selection” in Methods and S1 Appendix section “Data preprocessing and

filtration”). Previous methods also recommend using highly variable genes [19]. Using such

set limits the application of our alignment transformation to a rather small subset of genes,

and so may have implications for downstream analysis. We note that SCIPR can be run with

more genes, though we observe a modest decrease in performance when non-variable genes

are included (S12 Fig), only showing a slight decrease in alignment performance in some

cases. While the set of highly variable genes alone does result in enrichment for relevant terms

(S5 Table), the significance of this enrichment is not as strong as the results from our SCIPR-

mnn model weights analysis.

While SCIPR performed best in our analysis, there are a number of ways in which it can be

further improved. As mentioned above, SCIPR tends to weight batch mixing higher than cell

type separation. A possible way to overcome this would be to add a regularization term to the

transformation function to increase the weight of high scoring matches. Another option is to

explore the use of non-linear transformations with strong customized regularization. A poten-

tial drawback of SCIPR is the fact that it relies on affine transformations that do not handle

non-linear differences between batches. While this leads to a reduction in the number of

parameters that the method uses, and so reduces overfitting, it also means that the method

cannot handle non-linear changes which may occur between different batches.

SCIPR is implemented as a Python package, with documentation, installation instructions,

and source code available at https://scipr.readthedocs.io, and our benchmarking pipeline and

data used are available at https://github.com/AmirAlavi/sc-alignment-benchmarking (see S1

Appendix section “scRNA-seq alignment benchmarking software and data”).

Supporting information

S1 Fig. The distance matrix between cells in batches A and B. D 2 Rn×m where n = |A| and

m = |B| and Di,j is the distance between cells Ai and Bj. In our work, A is called the “source” set

and B is called the “target” set. We use the euclidean distance throughout our paper.

(PDF)

S2 Fig. A comparison of runtimes of a greedy matching algorithm (S1 Algorithm) com-

pared to a network flow-based approach for finding an optimal partial matching (Min

Cost Flow). For both algorithms, we generated random distances matrices with varying num-

bers of cells (also called nodes). In this simple case designed to test algorithm runtimes as a

funciton of input size, the distances were integers uniformly drawn from [0, 50]. The distance

matrices are square, representing the case when a source batch has the same number of cells as

the output batch, where the x-axis in the above plots is the number of cells in each batch. For

the greedy algorithm, we used the default parameters as discussed in the main body and in S1

Appendix section “Parameter settings for SCIPR experiments”. For the Min Cost Flow algo-

rithm, we started by constructing a bipartite graph where nodes in one set represented cells in

the source batch, and nodes in the other set represented cells in the target set. The directed

(from source to target) edge weights (costs) were set to the distances between the nodes as
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given by the randomly generate distance matrix. Then a “source” node was added and con-

nected to all of the nodes of the source cells, and a “sink” node was added and all of the nodes

of the target cells were connected to it. The demand of the source node was set to -0.5 × nodes

(the number of “units” of flow that this node wants to send, i.e. the number of pairings of cells

we want to assign), and the demand of the sink node was set to negative of this (the number of

“units” of flow that it wants to receive). Finally, the capacity of each edge in this directed net-

work was set to 1, and the the network simplex algorithm was used to find a solution. The

directed graph was constructed using the NetworkX python package and they network simplex

algorithm was run via the min_cost_flow function [43].

(PDF)

S3 Fig. Comparison of using a rigid transformation versus an affine transformation in the

SCIPR method. These alignment tasks are from the CellBench dataset, the smallest and some-

what easiest dataset. The two subplots use different source batches (both are aligned to the

same largest reference batch, 10x). The scores are iLISI (green, batch integration score), and

cLISI (orange, cell type mixing score). In each subplot the methods are ordered from top to

bottom in order of largest difference (median iLISI − median cLISI) of scores. The center of

each box is the median, and whiskers represent 1.5 times the IQR past the low and high quar-

tiles. Circle markers are placed on the medians and connected between boxes with lines of the

corresponding color to facilitate visual comparisons. We can see that even on this rather small

dataset, the rigid transformation functions are not sufficient to integrate the data well (low

iLISI scores), and we see a large gap in iLISI compared with the affine transformation func-

tions.

(PDF)

S4 Fig. Quantitative scoring of alignment methods on the Pancreas dataset with a cell type

held out from the target set. Each row of subplots are alignment tasks with the same source

batch, where each column uses a different cell type as a hold-out from the target set (the

inDrop3 batch). Box plot computation and ordering of methods in each subplot is determined

in the same fashion as in S3 Fig.

(PDF)

S5 Fig. Quantitative scoring of alignment methods on the PBMC dataset with a cell type

held out from the target set. Each row of subplots are alignment tasks with the same source

batch, where each column uses a different cell type as a hold-out from the target set (the 10x

Chrom. (v2) batch). Box plot computation and ordering of methods in each subplot is deter-

mined in the same fashion as in S3 Fig.

(PDF)

S6 Fig. Quantitative scoring of alignment methods on the CellBench dataset with a cell

type held out from the source set. Each row of subplots are alignment tasks with the same

source batch, where each column uses a different cell type as a hold-out from the source set.

The target set is 10x for all. In the first column, “None hidden”, no cells were hidden from the

source set. Box plot computation and ordering of methods in each subplot is determined in

the same fashion as in S3 Fig.

(PDF)

S7 Fig. Quantitative scoring of alignment methods on the Pancreas dataset with a cell type

held out from the source set. Each row of subplots are alignment tasks with the same source

batch, where each column uses a different cell type as a hold-out from the source set. The tar-

get set is inDrop3 for all. In the first column, “None hidden”, no cells were hidden from the

PLOS COMPUTATIONAL BIOLOGY Iterative point set registration for aligning scRNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007939 October 27, 2020 16 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007939.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007939.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007939.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007939.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007939.s007
https://doi.org/10.1371/journal.pcbi.1007939


source set. Box plot computation and ordering of methods in each subplot is determined in

the same fashion as in S3 Fig.

(PDF)

S8 Fig. Quantitative scoring of alignment methods on the PBMC dataset with a cell type

held out from the source set. Each row of subplots are alignment tasks with the same source

batch, where each column uses a different cell type as a hold-out from the source set. The tar-

get set is 10x (v2) for all. In the first column, “None hidden”, no cells were hidden from the

source set. Box plot computation and ordering of methods in each subplot is determined in

the same fashion as in S3 Fig.

(PDF)

S9 Fig. Convergence during fitting of SCIPR models. Each row of subplots are tasks from

the same dataset, where each column uses a different source batch (all are aligned to the same

largest reference batch, 10x for CellBench, inDrop3 for Pancreas, and 10x v2 for PBMC). The

values plotted are the mean distances between the selected pairs of points after each iteration

of the algorithm. We can see that both SCIPR-gdy and SCIPR-mnn do indeed converge to a

local optimum within the first few iterations. Fast convergence within the first few iterations is

expected for Iterative Closest Points-based algorithms [28]. This supports our choice to run

the SCIPR methods for 5 iterations in the experiments we present in our work.

(PDF)

S10 Fig. Embedding (t-SNE) visualization from alignment tasks on the Pancreas dataset

using various alignment methods. Each row is a different alignment method (the bottom

row,“None”, is with no alignment). The columns are in three groups based on alignment task:

the left two columns (a) pertain to aligning the inDrop1 batch onto the inDrop3 batch, the

middle two columns (b) are for aligning the inDrop2 batch onto the inDrop3 batch, and the

right two columns (c) are for aligning the inDrop4 batch onto the inDrop3 batch. The first,

third, and fifth columns are colored by batch, and the second, fourth, and sixth columns are

colored by cell type.

(PNG)

S11 Fig. Example of aligning multiple batches to a reference batch using SCIPR. To see

how SCIPR can be used to align multiple batches to a reference batch, we aligned each of the

inDrop1, inDrop2, and inDrop4 batches to the inDrop3 batch (the largest batch) in the Pan-

creas dataset. These alignments were done independently, as pairwise alignments, and visual-

ized together in the figure. In the subplots on the left, each point (cells) is colored by batch,

and on the right they are colored by cell type. This straightforward multiple alignment strategy

shows that it is possible to align many different batches to a single reference batch using

SCIPR which results in coherent cell type representations while mixing the batches well.

(PDF)

S12 Fig. Comparison of using highly variable genes versus additional random genes in

SCIPR. We compared using highly variable genes (as described in S1 Appendix “Data prepro-

cessing and filtration”), versus using additional genes, for SCIPR models on the PBMC dataset

(the largest dataset). Both our SCIPR-gdy and SCIPR-mnn models were run with either just

the highly variable genes (“-hvg” suffix) (there are 1466 in the PBMC dataset) or with the

highly variable genes and an equal number of randomly selected other genes (“-hvg+rnd” suf-

fix). The three subplots correspond to the three different alignment tasks (aligning a source

batch to a target batch) within the PBMC dataset. These quantitative scores show that SCIPR

still performs well, and is robust to the inclusion of even more genes that are not necessarily

PLOS COMPUTATIONAL BIOLOGY Iterative point set registration for aligning scRNA-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007939 October 27, 2020 17 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007939.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007939.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007939.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007939.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007939.s012
https://doi.org/10.1371/journal.pcbi.1007939


the most informative genes. Box plot computation and ordering of methods in each subplot is

determined in the same fashion as in S3 Fig.

(PDF)

S1 Table. Cell type and batch distributions for three scRNA-seq datasets we use for evalua-

tion. Cell type and batch distributions for three scRNA-seq datasets we use for evaluation.

Each row pertains to a batch, each column pertains to a cell type, and each value is the number

of cells for each row and column combination. Numbers here are after our preprocessing

described in S1 Appendix section “Data preprocessing and filtration”. The largest batch in

each dataset is bolded, which we use as our reference “target” batch in our alignment tasks.

(PDF)

S2 Table. Gene enrichment analysis of Differential Expression results.

(PDF)

S3 Table. Gene enrichment analysis of model weights from SCIPR-mnn.

(PDF)

S4 Table. Gene enrichment analysis of model weights from SCIPR-gdy.

(PDF)

S5 Table. Gene enrichment analysis of highly variable genes.

(PDF)

S6 Table. Runtimes of alignment methods.

(PDF)

S7 Table. Quantitative alignment scores from all alignment tasks in our work.

(XLSX)

S1 Appendix. Supporting methods. This appendix contains the details of supporting analysis

methods, including how we preprocess and filter data, conduct differential expression analysis,

discover top weighted genes in our SCIPR models, and conduct gene set enrichment analysis.

It contains additional details on computing LISI scores and computing the final affine trans-

formation from SCIPR models. It also includes details of our software pipeline and settings for

related methods.

(PDF)

S1 Algorithm. Greedy pair assignment algorithm.

(PDF)
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