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Abstract

Oscillations are observed at various frequency bands in continuous-valued neural record-

ings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter,

and analysis of spike-field coherence reveals that spiking of single neurons often occurs at

certain phases of the global oscillation. Oscillatory modulation has been examined in rela-

tion to continuous-valued oscillatory signals, and independently from the spike train alone,

but behavior or stimulus triggered firing-rate modulation, spiking sparseness, presence of

slow modulation not locked to stimuli and irregular oscillations with large variability in oscil-

latory periods, present challenges to searching for temporal structures present in the spike

train. In order to study oscillatory modulation in real data collected under a variety of experi-

mental conditions, we describe a flexible point-process framework we call the Latent Oscil-

latory Spike Train (LOST) model to decompose the instantaneous firing rate in biologically

and behaviorally relevant factors: spiking refractoriness, event-locked firing rate non-statio-

narity, and trial-to-trial variability accounted for by baseline offset and a stochastic oscillatory

modulation. We also extend the LOST model to accommodate changes in the modulatory

structure over the duration of the experiment, and thereby discover trial-to-trial variability in

the spike-field coherence of a rat primary motor cortical neuron to the LFP theta rhythm.

Because LOST incorporates a latent stochastic auto-regressive term, LOST is able to detect

oscillations when the firing rate is low, the modulation is weak, and when the modulating

oscillation has a broad spectral peak.

Author summary

Oscillatory modulation of neural activity in the brain is widely observed under conditions

associated with a variety of cognitive tasks and mental states. Within individual neurons,

oscillations may be uncovered in the moment-to-moment variation in neural firing rate.

This, however, is often challenging because many factors may affect fluctuations in neural

firing rate and, in addition, neurons fire irregular sets of action potentials, or spike trains,

due to an unknown combination of meaningful signals and extraneous noise. We have

devised a statistical Latent Oscillatory Spike Train (LOST) model with accompanying
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model-fitting technology, that is able to detect subtle oscillations in spike trains by taking

into account both spiking noise and temporal variation in the oscillation itself. The

method couples two techniques developed for other purposes in the literature on Bayesian

analysis. Using data simulated from theoretical neurons and real data recorded from corti-

cal motor neurons, we demonstrate the method’s ability to track changes in the modula-

tory structure of the oscillation across experimental trials.

Introduction

Neural oscillations have generated considerable interest for their roles in cognition and as

indicators for disease [1–14]. Electroencephalograms (EEGs) and local field potential (LFPs)

recordings have revealed transient oscillations in many cortical and subcortical structures, to

which neurons both near and far from the LFP recording site show phase preferences in spik-

ing. Groups of neurons that are locked to a common oscillation, and are therefore active in

tightly confined temporal windows, may define a cell assembly whose synchronous spiking

could select and activate afferent structures [15–17]. Such transient cell assemblies may form

and disband as objects are attended to in the visual scene [3, 6–8, 11], as preparation for move-

ments are made [2, 13], or during choice points for reward [9]. Prominent slow oscillations

are observed as patients undergo anesthesia [10], and exhibit changes in dynamics during tran-

sitions in unconscious brain state [14]. Furthermore, strong oscillatory signals are prominent

in neurological disorders such as Parkinson’s disease, and can be used to characterize patho-

physiology and its relation to behavior [12, 18, 19]. The oscillatory structure of individual neu-

rons can thus provide insight into the dynamics of cognitive processing and motor planning,

and their implementation in health and disease. However, identifying oscillations in neural

spike trains, particularly within individual experimental trials, can be challenging because they

occur in conjunction with both non-oscillatory fluctuations in neural firing rate and extrane-

ous noise. To tease apart multiple factors that affect spiking activity, statisticians have sug-

gested the use of point process models together with modern regression methods associated

with generalized linear model (GLM) technology [20, 21]. In this paper we develop a method

that can find oscillations in spike trains even when the signal is comparatively weak, and can

track changes in oscillatory behavior across trials.

The starting point for our approach is the observation by Smith and Brown [22] that, for

many purposes, evolving neural firing rates can be described using state-space models imbed-

ded in point processes. We modify the models used by Smith and Brown, replacing their first-

order autoregressive processes with higher-order processes [23] that can fit oscillations found

in spiking neurons. This requires careful attention to the form of the higher-order autoregres-

sive process. We take advantage of a Bayesian time-series decomposition introduced by Huerta

and West [24], using prior probability distributions to constrain the fit so that it has appropri-

ate power spectral content. We also use a Gibbs sampling method developed recently in a dif-

ferent context [25] to compute posterior distributions efficiently.

Our approach is superficially related to that of Allcroft et al. [26], who used autoregressive

moving average models to estimate spectral content from censored data, but their method

does not accommodate easily the special situation we face with spiking neurons, including his-

tory effects that can account for hard and soft refractory periods. Point process models

employing the GLM framework [21, 27] have been employed to explain the spiking behavior

by taking into account spiking refractoriness, behavioral and stimulus-induced non-stationari-

ties, and spiking of neighboring neurons [20]. A series of investigations [12, 18, 19] have
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added long-term history effects to capture oscillation in the history dependence and have also

used a state-space smoothing algorithm to track changes in the oscillatory dynamics over time.

Eden et al used a long history to capture both, but as we shall see, LOST can better capture the

irregularities present in realistic biological oscillations. Our approach is based on what we call

the Latent Oscillatory Spike Train (LOST) model, which not only includes terms to describe

the spiking refractoriness, event (behavior or stimulus)-locked effects, and trial-to-trial vari-

ability in firing rate, but also explicitly models the dynamics of the modulating oscillation itself.

However, the latent state cannot capture the discontinuous change in the spiking probability

that occurs after every spike, which the aforementioned GLM models do well in characterizing,

so we utilize a short-term spiking history to capture the refractory period, while also introduc-

ing the latent state to model the oscillatory dynamics.

Oscillatory structure is often considerably degraded when it is observed as a spike train. On

the one hand, if the firing rate is low, or the oscillatory modulation is weak, noise associated

with erratic spiking will dominate. On the other hand, even if the modulation is strong and the

firing rate is high, the oscillatory signal may itself be unsteady, with substantial variation in

period from cycle to cycle. LOST accommodates both spiking noise and oscillatory variation

by imbedding into the point process intensity function a latent auto-regressive process, and

then imposing a suitable soft constraint (in the form of a prior probability distribution) on the

oscillatory dynamics. We provide details of the model, along with the posterior sampling

scheme and a discussion on how to interpret the posterior samples, and study its effectiveness

with leaky integrate-and-fire neural simulations. We then demonstrate the ability of the LOST

framework to find interesting trial-to-trial variation in motor cortical neuron during a lever-

pulling task.

Model

We seek to extract the underlying oscillation from the binary (M ×N) matrix y representing

the binned spiking data from a single neuron duringM repetitions of identical behavior or

stimulus presentations of time duration N. Because the spiking times are different for each

trial, even though the behavior or stimulus are identical, we construct a probabilistic model of

the spiking.

A point process models the probability of observing a spike at time t. The conditional inten-

sity function (CIF) completely specifies the point process, and is defined as

l½tjY;HðtÞ� ¼ lim
Dt!0

P½Nðt þ DtÞ � NðtÞ ¼ 1jY;HðtÞ�
Dt

; ð1Þ

where P[�|�] is a conditional probability conditioned on the past spiking history H(t) and

model parameters Θ [21], making the point process CIF a spike history-dependent generaliza-

tion of a general inhomogeneous Poisson process. We discretize the problem, and note that λ
[t|H(t)]Δt is the approximate binary probability of observing a single spike in a small time

interval Δt. In the discrete time representation, the likelihood of the spike train is then

expressed as a product of conditionally independent Bernoulli events

P½yjY;HðtÞ� ¼
YMN

mn

p½ymn ¼ 1jY;HðtÞ�ymnp½ymn ¼ 0jY;HðtÞ�1� ymn ð2Þ

The binary spiking probability is expressed as a sigmoidal function of a sum of several predic-

tors, including a history term λR, modeling the refractoriness following a spike. In the simplest

case, the predictors will be the shared trial-average effect (TAE) f = βTα, with β being the (Kβ ×
N) matrix of the Kβ B-spline basis vectors and α the Kα weights, the history term λR = HT v,
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with H being the (KH ×N) matrix of the KH B-spline basis vectors and v the KH weights, the

M-dimensional trial-specific baseline offset vector μ, and a time-dependent latent oscillational

modulation x. The TAE is closely related to the peristimulus time histogram (PSTH) often

employed in neuroscience. Together, the binary spiking probability for trialm at time n is

pðymnjxmn;Hn;l;YÞ ¼
ðexmnþmmþfnþlRlðm;nÞ Þ

ymn

1þ exmnþmmþfnþlRlðm;nÞ
; ð3aÞ

xmn ¼
Xp

j¼1

Fjxm;n� j þ �mn; ð3bÞ

where lðm; nÞ � n � Lðm; nÞ 2 Z�0, where L(m, n) is the last spike time before time n of the

mth trial. From the data, we infer the parameters and the latent oscillation x, which is an

AR(p) process, the F1:p the p AR coefficients and �mn a Gaussian random variable *N(0, σ2),

where σ2 is the innovation variance. In what follows, we will often refer to the latent oscillation

as simply oscillation. We also note that the inferred x may be spectrally broad, or have a very

small amplitude, and may not be represent a signal that would commonly be called an

oscillation.

The simplest oscillating AR model is of order 2 with complex eigenvalues, and may be a

good model for a low dimensional oscillatory dynamical system. However fitting a model to

noisy observed data utilizes noisy lagged values. The implied model for such a time series is an

ARMA process, and an AR(2) would fail to capture all the structure in the observed data [24],

so we approximate the ARMA process with a higher-order AR(p) process.

The spectra of AR(p) models is closely related to its p = 2C + R roots of the characteristic

polynomial of F1:p, or equivalently to the eigenvalues of the matrix F in Eq 6. The time-series

decomposition [24] approach restricts the AR(p) to those with C imaginary AR(2) components

and R real AR(1) components, ie only models that can accommodate the spectral features we

believe are present in the data. We work through the rest of the paper using a generic structure

that has proven to be a generally reasonable component structure (C = 4 and R = 1) for a wide

range of simulation parameters and for real data, though model order and component struc-

ture can also be inferred from the data.

Model fitting

Gibbs sampling [28] and data augmentation [29, 30] are used to infer the model parameters

Θ = [F1:p, σ2, α, μ, v] and the oscillation x. The spike history and TAE are functions of time rel-

ative to the last spike of an event or behavior, respectively, and they are estimated by parame-

terizing a subset of continuous functions with splines. The estimation requires us to choose a

set of basis splines, which we choose heuristically, using some prior belief about their general

shape to choose the knot locations. In the current work, the number and locations of the knots

are not found with the Gibbs sampling procedure, so we briefly describe how they are deter-

mined before we describe the Gibbs sampling procedure.

Short-term spike history λR. Neurons typically have a refractory period following an

action potential, when sodium channels in the membrane become inactive and spiking is

strongly suppressed. As the channels reactivate, the neuron may experience a period of

rebound excitation, where spiking probability becomes enhanced, before returning to some

baseline level. This effect can be modeled by a modulation of probability since the last spike.

We employ cubic splines to express the refractory modulation function, with knots placed

where we would like to constrain function values, where we believe the function reaches
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extremum values, and places in between. The interspike interval (ISI) histogram reflects com-

bined effects of both the spiking history and oscillation, but at the smaller intervals, the refrac-

tory inhibition and rebound excitation are rapidly changing, possibly from 0 to well over 1,

while a biologically plausible oscillation varies over a more limited range of values centered

around 1. The shape of the ISI histogram for smaller intervals should reflect the refractory

modulation function more than the oscillation, so we place history spline knots based on fea-

tures of the ISI near 0. In the case the ISI histogram has a minimum at 0 followed by a maxima,

we place knots at t = Δ, one knot at the first maxima, one knot at the mean of the ISIs, and

knots at the 70th and 80th percentiles of the ISI distribution. We further have knots at the 97th

and at 100ms set to 0, constraining the asymptotic value of the history function. Further, if the

bins of the ISI at time Δ are empty, we set v0 = −6 to prevent it from taking unconstrained neg-

ative values. If the histogram at 0 is the maximum value, we leave v0 unconstrained.

TAE spline basis β. To represent a smooth, arbitrary-shaped curve, we use the piecewise

cubic B-spline as basis functions. Choosing the appropriate number and locations of basis

functions is vital to represent the curve well, and too many points will result in overfitting. We

determine the number and locations prior to the Gibbs procedure, by assuming that the shape

of the TAE f in Eq (3a) is similar to the empirical PSTH. We randomly vary the number and

locations of the spline knots β and find a set which minimizes the squared error with the

PSTH under the constraint that no more than 9 knots are to be used for the data presented in

this paper. The shape of the PSTH can be used as a guide to guess the rough number of knots

necessary, and the constraint can be changed accordingly for the spike train under

investigation.

Posterior simulation. We now introduce the posterior distribution, from which the con-

ditional posteriors necessary for Gibbs sampling, and the generating distributions necessary

for data augmentation, are derived. Our model is a state-space model with a point-process

observable, and a latent oscillation evolving as an AR(p)-process. The posterior distribution of

the parameters Θ is

pðYjyÞ / pðYÞ
Z

pðy;xjYÞdx ¼ pðYÞ
Z

pðyjx;YÞpðxjYÞdx ð4Þ

For the AR(p) model, p(x|Θ) does not have a simple expression. However, if x were a Markov

process, then p(x|Θ) could be expressed recursively in terms of the initial probability at

time 0. AR(p) can be made a Markov process if we define a new (N ×M × p) matrix X, where

X mn = (xm,n−1, . . ., x m,n−p)T. Eq (3b) is then

Xmn ¼ FXm;n� 1 þ ϵmn; ð5Þ

where

F ¼

F1 F2 . . . Fp� 1 Fp

1 0 . . . 0 0

..

. ..
. ..

. ..
. ..

.

0 0 . . . 1 0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; and ϵmn ¼

�mn

0

..

.

0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: ð6Þ

(N ×M) matrix x is the oscillation we would like to infer, and likely corresponds to oscillations
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of the membrane potential due to oscillating synaptic inputs [31, 32]. Eq (4) then becomes

pðYjyÞ / pðYÞ
Z

X

YM

m¼1

YN

n¼0

pðymnjxmn;Hn;l;YÞ
YN

n0¼1

pðXmn0 jXm;n0 � 1;YÞpðXm0jYÞdX

" #

: ð7Þ

Conditional posteriors and data augmentation for Gibbs sampling

We jointly sample model parameters and latent states from the joint posterior distribution,

Eq (4), using Gibbs sampling with data augmentation. The conditional posterior distribu-

tion can be read off from the full joint posterior distribution by considering all parameters

fixed, except the parameter whose conditional posterior we are interested in. Our problem

deviates from the standard Gibbs sampling by the missing data x in Eq (4), and we utilize the

data augmentation strategy [29, 30], a scheme of simplifying analysis by augmenting the

observed data with missing values, to generate samples of X from the predictive distribution

p(X|y, Θ) in between sampling parameters from the standard conditional posteriors. Even

with samples of X in hand, the posterior distribution does not yield conditional posteriors

that can be sampled easily. The recently developed Pólya-Gamma data augmentation

scheme [25] allows sampling from simple Gaussian conditional posteriors at the cost of

introducing theM × Nmatrix of Pólya-Gamma variables ω through the following identity

for the spike probability:

pðymnjY;Hn;l; xmnÞ ¼
ðexmnþmmþlRlðm;nÞþfnÞ

ymn

1þ exmnþmmþlRlðm;nÞþfn
¼

1

2
ekmnðxmnþfnþmmþlRlðm;nÞÞ�

Z 1

0

e
� omn

ðxmn þ fn þ mm þ l
R
lðm;nÞÞ

2

2 PGðomnjb ¼ 1; z ¼ 0Þdomn

/

Z 1

0

N xmn þ fn þ mm þ l
R
lðm;nÞ

kmn
omn

�
�
�
� ;

1

omn

� �

PGðomnjb ¼ 1; z ¼ 0Þdomn

ð8Þ

where PG(ωmn|b = 1, z = 0) is the Pólya-Gamma distribution with parameters b = 1 and

z = 0, and κ � y � 1

2
.

With the introduction of the Pólya-Gamma variables, the joint posterior Eq (4) becomes

pðYjyÞ / pðYÞ
Z

X

"
YM

m¼1

YN

n0¼1

pðXmn0 jXm;n0 � 1;YÞpðXm0jYÞ�

YN

n¼0

Z 1

0

Nðxmn þ fn þ mm þ l
R
lðm;nÞ

kmn
omn

�
�
�
� ;

1

omn
ÞPGðomnjb ¼ 1; z ¼ 0Þdomn

#

dX;

ð9Þ

from which we derive the conditional posteriors for the parameters and the predictive distri-

butions for the augmented variables. We refer to the set of augmented variables as V+ = {X, ω},

and denote by Θ\x to be the set of all parameters except parameter x.
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Sampling μ. The conditional posterior of μ * N (Mμ, Sμ) is a multivariate Gaussian, and

if we constrain μ such that
PM

m mm ¼ 0, and set m1 ¼ �
PM

m¼2
mm, it becomes

pðμjYnμ;VþÞ / exp
XM;N

m>1;n

�
omn

2
ðxmn þ mm þ fn þ l

R
lðm;nÞÞ �

kmn
omn

� �2
(

�
XN

n

o1n

2
x1n �

XM

m0>1

mm0 þ fn þ O1n

 !

�
k1n

o1n

" #2

�
1

2
ðμ � μμÞ

TD� 1

μ ðμ � μμÞ

)

¼ exp �
1

2
Qμ

� �

;

ð10Þ

where Omn �
kmn
omn
� xmn � fn � l

R
lðm;nÞ. The covariance can be read off from the quadratic term,

Σ� 1

μ ¼

P
nðo1n þ o2nÞ

P
n o1n :::

P
n o1n

P
o1n

P
nðo1n þ o3nÞ :::

P
n o1n

..

. ..
. ..

. ..
.

P
n o1n

P
n o1n :::

P
nðo1n þ oMnÞ

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ð11Þ

The mean Mμ is at the minimum of Qμ, which can be found by setting
@Qμ
@μ ¼ 0, or Σ� 1

μ Mμ ¼ g,

where gi = ∑n ω1nO1n − ωinOin.
Sampling v. v are the vector spline weights for the spike history, and {IH} = {1, . . ., KH} its

component indices. We impose our prior belief about the timescale and shape of the spike his-

tory term by keeping some of the knots fixed, while re-weighting the remaining ones. The

indices of the fixed ones we denote {If} and the adjustable one {Ia}, with {If} [ {Ia} = {IH} and

{If} \ {Ia} = ;. We use the shorthand notations a to be the vector comprised of components

{Ia} of v, and {Ia} = {a(1), a(2), . . .a(|{Ia}|)}, its numerical values. Then the conditional posterior

of a * N (Ma, Sa) is a multivariate Gaussian. Defining Omn �
kmn
omn
� xmn � fn � mm

� �
, it is

pðajYnv;VþÞ / exp �
XM

m

XN

n

omn

2
ðl

R
lðm;nÞ � OmnÞ

2
þ . . .

( )

�
1

2
ðv � μvÞ

TD� 1ðv � μvÞ

" #

¼
XM

m

XN

n

�
omn

2

XKH

j

Hlðm;nÞ;jvj � Omn

 !2( )

�
1

2

X

j

v2
j � 2vjmvj þ mvj

s2
vj

¼ exp �
1

2
Qa

� �

:

ð12Þ

The mean Ma of the adjustable knots is the solution of the set of linear equations whose ith
equation, i 2 {Ia} is

X

j2fIag

2
XM

m

XN

n

omnHlðm;nÞ;jHlðm;nÞ;i þ
dji

s2
vj

 !

vj ¼

¼ 2
XM

m

XN

n

omnHlðm;nÞ;i þ
mvi
s2
vi

 !

� 2
X

j2fIf g

XM

m

XN

n

omnHlðm;nÞ;jHlðm;nÞ;i þ
dji

s2
vj

 !

vj
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The covariance can be read off from the quadratic term, and is

Σ� 1

a ¼

P
mnomnH2

lðm;nÞ;að1Þ þ
1

s2
vað1Þ

P
mnomnHlðm;nÞ;að1ÞHlðm;nÞ;að2Þ . . .

P
mnomnHlðm;nÞ;að1ÞHlðm;nÞ;að2Þ

P
mnomnH2

lðm;nÞ;að2Þ þ
1

s2
vað2Þ

. . .

..

. ..
. . .

.

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

ð13Þ

Sampling α. The conditional posterior of α * N (Mα, Sα) is multivariate Gaussian,

pðαjYnα;VþÞ / exp
XM;N

m6¼1;n

�
omn

2
ðxmn þ mm þ fn þ l

R
lðm;nÞÞ �

kmn
omn

� �2
(

ð14Þ

By rearranging, we can easily calculate the mean and variance of the conditionals for α. If n or

m is kept fixed in the sum, this is a quadratic form ofM or N-dim vectors with a diagonal

covariance matrix, and α * N (M, S), For α,

Mα ¼ μα þDαβðβ
TDαβþWÞ� 1

ðO � βTμαÞ
X� 1

α
¼ βW� 1βT þD� 1

α

W� 1 ¼
X

m

W� 1

m ; where ðW� 1

m Þnn ¼ omn

O ¼W
X

m

W� 1

m Om; where ðOmÞn ¼
kmn
omn
� xmn � l

R
lðm;nÞ � mm

� �

:

ð15Þ

μα and Dα are prior mean and covariances for α. Aside from the smoothness imposed by the

restriction to the number of knots, we have no prior knowledge about the offsets and knot

weights, so we set the means to 0 and the covariances to be broad.

Sampling σ2. The conditional posterior distribution of the innovation variance is

pðs2jYns2 ;X;ωÞ /
1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p

� �MðN� 1Þ

exp �
1

2s2

X

mn

½xmn � ðFXm;n� 1Þ1�
2

 !

; ð16Þ

and is in the form of an inverse Gamma distribution. We choose a conjugate inverse Gaussian

prior with parameters ασ2 and βσ2, and sample as

s2 � IG s2jas2 þ
MðN � 1Þ þ 2

2
; bs2 þ

1

2

X

mn

½xmn � ðFXm;n� 1Þ1�
2

" #

ð17Þ

As with the offset and spline weights, we have no apriori knowledge about an appropriate

range of values for σ2. In order to minimize the effect of the prior, we choose a small values for

ασ2 (relative to the amount of data), and βσ2, so that small values of σ2 can also be sampled.

Sampling F1:p. Without further assumptions on the latent dynamics [33], the conditional

posterior is a simple multivariate normal distribution. However, for application to spiking

data, this naive approach often does not produce desired results for two main reasons. First,

the constrained sampling of the coefficients to the stationary regime is inefficient, due to the

nontrivial shape of the surface of the stationary manifold [24]. Second, our observations are

noisy and sparse, and maximum likelihood using a flat prior may not find a state with an
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oscillatory character. The component decomposition [24] approach addresses both of these

concerns, and allows us to specifically search for models with an oscillatory character through

the imposition of an informative prior.

We seek to sample

pðF1:pjYnF1:p
;VþÞ / exp �

1

2s2

X

mn

½xmn � ðFXm;n� 1Þ1�
2

 !

pðF1:pÞ; ð18Þ

with the prior p(F1:p) a structural prior which restricts sampling of F1:p to the subspace of coef-

ficients for which the process is stationary and its characteristic polynomial has R real roots

and C pairs of imaginary roots. For what follows, we drop the pairs qualifier when referring to

one of the pairs of imaginary roots. Instead of sampling the entire F1:p at once, we sample one

of the C imaginary or R real roots at a time while keeping the rest of the roots fixed, via Markov

Chain Monte Carlo (MCMC) as follows.

The residuals of the AR(p) process are uncorrelated Gaussians, but leaving out one of the

roots results in residuals that are correlated. We now outline the case when sampling an imagi-

nary root. Here, we consider the correlated residual to be an AR(2) process. Ignoring the trial

index, xn is related to the p lagged values xn−1, . . .xn−p through the AR coefficients and an inno-

vation variance. Utilizing the backshift operator, B̂xn ¼ xn� 1, eq (3b) can be written as a poly-

nomial in B̂, and the polynomial as a product of its R real roots αj, j 2 {1, . . ., R} and C pairs of

complex roots gj; g
�
j , j 2 {1, . . ., C}.

With the roots calculated, the AR process, Eq (3b), can be represented as

�n ¼
YR

r

ð1 � arB̂Þ
YC

c

ð1 � gcB̂Þð1 � g�c B̂Þ

" #

xn: ð19Þ

The coefficient for B̂i, i 2 {1, . . ., p}, is Fi. Regrouping the terms, we rewrite the residuals when

the contribution of the jth complex root is removed, to obtain a new time series ωjn:

wjn ¼ ð1 � gjB̂Þ
� 1
ð1 � g�j B̂Þ

� 1
�n ¼

YR

r

ð1 � arB̂Þ
YC

c6¼j

ð1 � gcB̂Þð1 � g�c B̂Þxn: ð20Þ

This equation tells us how to obtain the ωjn, and that we are treating that time series as an AR

(2). We note that given a timeseries x m and some F1:p, we could calculate the residual �, and

this would be the same series of N numbers had we first obtained the w j, and then calculated

the N �n ¼ ð1 � gjB̂Þð1 � g�j B̂Þwjn.
Given that its eigenvalues gj; g

�
j have corresponding angle 2π/λj and modulus rj, which con-

trol the frequency and the steadiness of the oscillation when these parameters are used to gen-

erate a time series. Using Vieta’s formula [34], the AR(2) coefficients �1 ¼ � ðgj þ g�j Þ and

�2 ¼ gjg
�
j are related to the frequency and modulus as 2rj cos(2π/λj) and � r2

j , and

�j1; �j2 � N h;
H� 1

s2

� �

ð21Þ
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where

H� 1

j ¼ DT
j Dj;

hj ¼ HjD
T
j w0j;

DT
j ¼

wj0 wj1 . . . wj;N� 1

wj� 1 wj0 . . . wj;N� 2

0

@

1

A

w0Tj ¼ ðwj1 wj2 . . . wjN Þ

ð22Þ

The stationary regime is defined by rj� 1, so in sampling from the conditional posterior, we

must restrict the sampling to regions bounded by the curves

�
2

j1

4
þ �j2 ¼ 0; �j2 ¼ � 1 ð23Þ

This boundary describes a truncated 2-variate normal distribution.

When the root in question is real, we remove its contribution to obtain the correlated resid-

uals

ujn ¼ ð1 � ajB̂Þ
� 1
�n ¼

YR

r 6¼j

ð1 � arB̂Þ
YC

c

ð1 � gcB̂Þð1 � g�c B̂Þxn: ð24Þ

The real roots are can be sampled from a truncated univariate normal with meanmj and vari-

anceMj

mj ¼

PN
n¼1
ujnuj;n� 1

PN
n¼1
u2
j;n� 1

; Mj ¼
s2

PN
n¼1
u2
j;n� 1

ð25Þ

We further assume a simple informative, uniformly distributed prior of [0.97, 1] for the

modulus of the slowest root. Large modulus roots are spectrally peaked, and correspond to

oscillations with a relatively well-defined frequency. Our choice of a prior on the modulus is

similar to adding regularization terms to the likelihood to address concerns about overfitting

when data is limited, an alternative avenue recently investigated by Buesing et al [35], although

this requires the structured decomposition of the AR model, which would be difficult to

express in terms of regularization functions.

The latent oscillation: X data augmentation. The predictive distribution for X can be

read off from Eq (4), and is

X �
YM

m

YN

n¼0

N xmn þ fn þ mm þ l
R
lðm;nÞj

kmn
omn

;
1

omn

� �
YN

n0¼1

pðXmn0 jXm;n0 � 1;YÞpðXm0jYÞ

" #

ð26Þ

Themnth observation, which through augmentation by the Pólya-Gamma variables, is no lon-

ger the spikes, but a continuous variable tmn ¼ kmn=omn � fn � mm � l
R
lðm;nÞ with observation

noise rmn = 1/ωmn. We generate a sample of X given observation t and fixed Θ by employing

the FFBS (Forward-filter backward-sample) algorithm [30]. Briefly, FFBS is a recursive algo-

rithm with the same forward filtering step as the Kalman Filter, but on the backward step,

instead of obtaining the mean from the smoothing density, we obtain realizable sample paths

of the latent state from the smoothing density. TheM trials are independent, so for the sake of

simple notation, we drop the trial indexm in what follows. Forward filtering is done by
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recursive application of a prediction and filtering step.

prediction filter

X̂m;njn� 1 ¼ FX̂m;n� 1jn� 1 X̂m;njn ¼ X̂m;njn� 1 þ Kmnðtmn � HX̂m;njn� 1Þ

V̂m;njn� 1 ¼ FV̂m;n� 1jn� 1FT þ Q V̂m;njn ¼ ðI � KmnHÞV̂m;njn� 1

ð27Þ

with

Q ¼

s2

0

..

.

0 . . .

0

0

B
B
B
B
B
@

1

C
C
C
C
C
A

; H ¼ 1 0 . . .ð Þ ð28Þ

and the Kalman gain, Kmn ¼ V̂m;njn� 1HT HV̂m;njn� 1HT þ rmn
� �� 1

. The prediction mean is

straightforward given the structure of F, while the prediction covariance is

V̂m;njn� 1 ¼

X

ij
Fi V̂m;n� 1jn� 1

� �

ij
Fj þ s2

X

i
Fi V̂m;n� 1jn� 1

� �

i;1...p� 1

X

i
Fi V̂m;n� 1jn� 1

� �

1...p� 1;i
V̂m;n� 1jn� 1

� �

1...p� 1;1...p� 1

0

B
B
@

1

C
C
A ð29Þ

The Kalman gain becomes

Kmn ¼
1

V̂m;njn� 1

� �

11
þ rmn

V̂m;njn� 1

� �

11

..

.

V̂m;njn� 1

� �

p1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

; ð30Þ

while filter mean is X̂m;njn ¼ X̂m;n� 1jn þ Kmn½tmn � X̂m;njn� 1

� �

11
� and covariance is

V̂m;njn

� �

ij
¼ V̂m;njn� 1

� �

ij
�

V̂m;njn� 1

� �

1i
V̂m;njn� 1

� �

1j

V̂m;njn� 1

� �

11
þ rmn

ð31Þ

FFBS requires starting values X̂m;0j0 and V̂m;0j0 for the recursion, for which we choose 0 and

a reasonably broad, diagonal covariance, respectively. The inferred oscillation in the begin of

the trials will be of poorer quality, but improves quickly after enough spikes are observed.

After the last time point is reached, the latent state is sampled backwards in time. The smooth-

ing distribution can be written

pðXm;1...Njtm;1...N;YÞ / pðXN jtm;1...N;YÞ
YN� 1

n¼0

pðXmnjXm;nþ1; tm;1...n;YÞ; ð32Þ

the first term a normal distribution about X̂m;NjN with covariance V̂m;NjN , and the term under

the product written in terms of known distributions

pðXmnjXm;nþ1; tm;1...n;YÞ / pðXm;nþ1jXmn;YÞpðXmnjtm;1...n;YÞ; ð33Þ
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which is a product of the transition density, which is a normal distribution with mean Fxmn

and variance Q, and a filter density with mean X̂m;njn and variance V̂m;njn. Defining

A � V̂m;njnF
T FV̂m;njnF

T þ Q
� �� 1

, the sampling distribution of X m,n is a multivariate normal

with mean and covariance given by

X̂m;njN ¼ I � AFð ÞX̂m;njn þ AXm;nþ1

V̂m;njN ¼ I � AFð ÞV̂m;njn:
ð34Þ

Xm,n+1 is the previously-sampled laten state Q can be expressed as an outer product of a col-

umn vector u = (σ, 0, 0, . . .) with itself, uuT. Using the Sherman-Morrison formula [36] for the

rank-1 update of an inverse matrix, the moments of the backward-sampling densities may be

written as

X̂m;njN ¼

ðXm;nþ1Þ2

..

.

ðXm;nþ1Þp� 1

Fs �
s2ðF� 1

pi Þ
2
½FsðV

� 1

m;njnÞpp þ
Xp� 1

i¼1
ðXm;nþ1Þiþ1

ðV� 1

m;njnÞpi �
Xp

i
ðV� 1

m;njnÞpi X̂m;njn

� �

i
�

1þ s2ðV� 1

m;njnÞppðF
� 1Þ

2

p1

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

ð35Þ

V̂m;njN ¼
1

1þ s2ðV� 1

m;njnÞppðF
� 1Þ

2

p1

0
0

..

.

0 . . . s2ðF� 1Þ
2

p1

0

B
B
B
@

1

C
C
C
A

ð36Þ

where Fs �
Xp

i¼1
ðF� 1ÞpiðXm;nþ1Þi. The AR(p) model with the extended state-space is only

partly dynamic [30], with rank (Q) = 1< p, and the computations necessary for the FFBS

equations are much less than would be necessary for a full-rank model, as can be seen from the

calculations of various moments presented in this section.

Pólya-Gamma data augmentation. The predictive distribution for ωmn, the term under

the integral marginalizing out ωmn in Eq (8), is the general PG(ωmn|b = 1, z 6¼ 0) distribution,

obtained by an exponential tilting of the PG(ωmn|b = 1, z = 0) distribution [25]:

omn � PG omnj1;cmnð Þ ¼ 2� 1ekcmne
�

omncmn

2 PG omnj1; 0ð Þ;
ð37Þ

with cmn ¼ xmn þ fn þ mm þ l
R
l m;nð Þ

. This is sampled using the rejection sampler described in

Polson et al [25].

Inferring additional latent structures. Oscillations temporally structure the spike train,

but it is possible that these oscillations do not occur uniformly throughout all trials. The LOST

model allows inferring additional structure present in the neural data, such as modulation of

oscillatory strength within a trial, or trends in modulation strength across trials. In the simula-

tion studies, we consider an example where the spike train is significantly modulated in only a

fraction of the trials, and demonstrate that the LOST model is able to identify these trials. We

also apply this to real data to show the LOST model can predict, using only spike train data,

which trials are strongly modulated to a theta rhythm in the LFP, and which are not. For these
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applications, we assume the modulation strength takes on 2 distinct values. We fix the modula-

tion strength of unmodulated trials to s0 = 0.1, and parameterize the modulation strength of

the modulated trials, s1. We introduce the latent indicator variable Z, which is an (M × 2)

matrix where, for example, Zm = (1, 0) if themth trial is an unmodulated trial, and also the

parameter mixture weights π, a 2 component column vector whose components sum to 1. The

likelihood is then

pðyjYÞ ¼
Z

X

Y

m

X

Zm

pðym;ZmjXm;YÞpðXmjYÞdX

¼

Z

X

Y

m

X

Zm

Y

j

½pjpjðym; jXm;YÞ�
ZmjpðXmjYÞdX

¼

Z

X

Y

m

X

Zm

Y

j

pj

Y

n

Berðymn; jxmn;Zmj;YÞ

" #Zmj

pðXmjYÞdX

¼

Z

X

Y

m

X

Zm

Y

j

pj �
Y

n

Z

N sjxmn þ fn þ mm þ l
R
lðm;nÞj

kmn
omn

;
1

omn

� �

pðomnÞdomn

" #Zmj

pðXmjYÞdX

ð38Þ

DefineML to be allm such that Zm = (1, 0) andMH to be allm such that Zm = (0, 1). The likeli-

hood contribution to the conditional posterior for s1 is Gaussian, s1 � N s1j B2A ;
1

2A

� �
, where

A �
X

m2ML ;n

omnx2
mn

2
B �

X

m2ML;n

omnxmn
kmn
omn
� fn � mm � l

R
l m;nð Þ

� �

: ð39Þ

For the prior distribution for s1, we use p s1ð Þ ¼ N s1jms1 s2
s1

� �
, where ms1 ¼ s0, and a large vari-

ance s2
s1

, because we have no prior belief about what s1 should be. The data augmentation of X

analogous to Eq (26) is carried out by replacing themnth observation and noise by

tmn !
kmn=omn � fn � mm � l

R
l m;nð ÞY

j
szmnj

rmn !
1

omn

Y

j
szmjj

� �2
: ð40Þ

The Pólya-Gamma data augmentation analogous to Eq (37) is carried out by replacing the

mnth ψmn by

cmn !
Y

j

sZmjj xmn þ fn þ mm þ l
R
l m;nð Þ

: ð41Þ

The data augmentation for Zmj is done by generating from a 2-category multinomial distribu-

tion. The probability of themth trial being in the jth category is proportional

pðZmj ¼ 1jY; VþÞ / pj

Y

n

esjxmnþfnþmmþlRl m;nð Þ

� �ymn

1þ esjxmnþfnþmmþlRl m;nð Þ

ð42Þ

The π are sampled from a Dirichlet distribution

π � Dir aπ;0 þ
X

m2ML

Zm1; aπ;1 þ
X

m2MH

Zm2

 !

: ð43Þ

We set the vector απ = (1, 1).
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Numerical computation

Gibbs samplding was implemented in the Python programming language using the Numpy,

SciPy, Matplotlib, StatsModels, and Patsy toolboxes. Numerical routines were written in

C/C++ and Cython. Software for the Gibbs sampler and a Python wrapper for the Pólya-

Gamma routine based on the original code by Jesse Windle, available at https://github.com/

jwindle, is available at https://github.com/AraiKensuke/PP-AR and https://github.com/

AraiKensuke/pyPG, respectively.

Results

To illustrate how the LOST model can infer latent oscillations under a variety of realistic con-

ditions, we simulated biologically plausible oscillations, and spike trains modulated with these

oscillations using either a simple inhomogeneous renewal process, or the leaky integrate-and-

fire (LIF) neuron model. Further, we describe another point process method to infer the CIF,

the GLM method, for comparison with the LOST model.

Simulated oscillations and spike trains

The stochastic oscillation for themth trial wm is generated by first generating a stochastic

phase tm and stochastic amplitude Am as

tm;nþ1 ¼ tmn þ Dt 1þ
xmn
Cx

� �

wmn ¼ 1þ
Amn
CA

sin 2pntmnð Þ: ð44Þ

where ξm and Am are generated by AR(1) processes, and tm0 2 [0, 1] a uniform random num-

ber. These are then used to generate the irregular oscillation Cξ and CA control the size of devi-

ation from uniformity, while the timescale of the AR(1) processes controls the timescale of

variation of amplitude and phase in the oscillation. AR(1)s with timescales on the order of the

oscillation period T = 1/ν produce fluctuations that causes considerable variability of period

and amplitude in w, which we quantify with the oscillator irregularity, the oscillatory coeffi-

cient of variation (OCV) of the instantaneous periods T of oscillation, defined as the ratio of

the standard deviation to the mean of time intervals between phase 0 crossings of an oscillatory

signal. Fig 1 shows 2 example oscillations generated by this procedure, their OCVs and their

power spectral densities. Irregular oscillations have a higher OCV and a less peaked spectral

density.

To generate spikes, we employ an inhomogeneous renewal process or the LIF model, driven

by a stochastic model of oscillation to modulate the firing of spikes. For the inhomogeneous

renewal process, for each trialm and time n, if for a uniform random number rmn 2 [0, 1],

rmn < Dt emmþwmnþlGl m;nð Þ

� �
, we generated a spike, with l

G
l m;nð Þ

the user-defined ground truth

refractory history function. For the LIF model, spikes were generated using

DVmn ¼ �
Vmn

t
þ fn þ mm þ wmn þ wmn

� �

Dt; ð45Þ

where the Gaussian random variable wmn � N 0; s2
b

� �
represents irregular arrival times of affer-

ent spikes, τ = 0.2 the membrane time constant, μm a baseline DC current and s2
b ¼ 210 the

amplitude of background fluctuation. Spikes are elicited when Vmn� 1 passes the threshold

value of 1, which then causes a reset to Vm,n+1 = 0. LIF have a refractory period that depends

on the model parameters, and therefore the CIF naturally is dependent on the last spike time.
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LIF neuron with stimulus-triggered change in firing rate. We demonstrate the basic

operation of LOST and the inference of the TAE, spike history and oscillation. In the follow-

ing, we monitor a small subset of the full joint posterior parameters: the modulus r, frequency

2π/λ of the lowest AR(2) component, and the latent state amplitude defined by its standard

deviation. Samples of trial offsets or the TAE knots approach their stationary distribution val-

ues much more quickly than these parameters representative of the latent state, so monitoring

this smaller subset suffices for determining when the posterior LOST draws from has reached

its stationary distribution. Fig 2A shows a clear oscillation being inferred, as the parameters

show little uncertainty. We took the mean of the last 2000 iterations to calculate the means in

Fig 2B, and the oscillation in Fig 2C. In most of the following figures, we use the convention

that cyan represents sampled values themselves, their distribution or 5-95% intervals of the

sampled values. Red lines represent means of sampled values, and black lines represent ground

truth values.

Model identifiability and interpreting the results of LOST. Oscillations and post-spike

refractory periods both add temporal structure to spike trains. Because they are presumably

separate biological mechanisms and modify the spike train in distinct ways, we model them

separately using the latent state and the spike history term. Without imposing constraints on

Fig 1. Regular and irregular oscillations. A) LOST infers (red) the oscillatory modulation (black), if any, underlying the spikes (vertical

ticks) in a spike train, using only the spiking data. The oscillation amplitude stabilizes after the first few spikes are observed. B) We refer to

spectrally narrow (wide) oscillations as regular (irregular), shown by the blue (pink) oscillation with OCV = 0.02 (0.22). The correlation

between the current and past phase decays slowly (quickly) as a function of lag in regular (irregular) oscillations.

https://doi.org/10.1371/journal.pcbi.1005596.g001
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these two terms, the latent state and spike history cannot, in principle be separated. LOST

imposes constraints on the latent state and spike history according to our prior beliefs about

their properties. The knot locations impose a strong prior on the shapes the spike history can

take, so misplacing the knots may strongly affect the inferred latent state, presenting a signifi-

cant difficulty in interpreting the results. We therefore investigate how mis-specifying the his-

tory affects LOST in Fig 3, which shows typical results from mis-specifying the spike history

with two simulated datasets. The datasets are spike trains generated by a renewal process, Fig

3A with and Fig 3F without oscillatory modulation.

For the first spike train, the standard spline knot locations allows the successful inference of

an oscillation and the history, Fig 3B, as the frequency, modulus and amplitude conditional

posteriors are all very certain. The use of a fixed, flat history results in a flat latent state, Fig 3C,

as the pronounced silences immediately following spikes are increasingly unlikely under spike

train models with the latent state alone, which tends to increase the firing rate immediately fol-

lowing a spike. The latent states take large amplitudes near the spiking frequency of 40Hz

when a temporally-compressed version of the ground truth spike history is used, Fig 3D.

While the frequency has certainty, the modulus and amplitudes in contrast have large uncer-

tainty, lowering our confidence that this latent state represents an oscillatory modulation. It is

likely that a wide range of latent model parameters are nearly interchangeable, leading to a

widening of the posterior in the direction of the AR parameters. Stretching the spike history,

Fig 3E, results in a similar inferred latent state as Fig 3B, so a mis-specified history does not

always lead to spurious results. We analyzed the second spike train 3 times with LOST, twice

with an adjustable spike history term but with different history knot locations, and once with a

fixed spike history term set to the ground truth, and Fig 3G–3I show samples from their

respective posteriors. Fig 3G uses knots chosen by changing the default knot finder parame-

ters, and the amplitudes do not go to 0 while the uncertainty in AR parameters remain high.

Fig 3H uses the fixed ground truth history, and the amplitude approaches 0, as it does in Fig 3I

Fig 2. LIF neuron with stimulus-triggered change in firing rate. Phase inference for simulated LIF neuron driven by irregular oscillation with an

average firing rate of 40Hz and a 15Hz modulating oscillation with OCV of 0.13. 60 trials of 1 second duration were used for LOST. A) Samples of the

representative AR parameters. B) Top, samples of the TAE (cyan), the mean (red), and the empirical PSTH used to initialize TAE knot locations

(green), and bottom, samples (cyan) of the spike history and mean (red). C) Example of inferred latent oscillation. The RL of the inferred oscillation is

0.65 ± 0.02, while the spike train has an R of 0.22 ± 0.01 with the ground truth oscillation.

https://doi.org/10.1371/journal.pcbi.1005596.g002
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where knots were placed farther out than in Fig 3G, and the amplitude also approaches 0. We

conclude that if the post-spike inhibition is not well characterized, the inference of an oscilla-

tion will most likely fail. If the inhibition is well characterized but the rest of the history is not,

we find either that an oscillation will still be inferred successfully, or that the posterior will be

broad in some of the directions of the AR parameters, making it difficult to conclusively deter-

mine that the latent state represents an oscillation.

We now look at spike trains without oscillational modulation, but generated with various

post-spike refractory profiles to check that certain refractory profiles are not confounded as

oscillations. Fig 4A–4D and 4E–4H are spike trains with average firing rate around 34Hz and

60Hz, respectively. In all cases except Fig 4C and 4F, the latent state amplitude approaches 0 as

expected. For Fig 4C and 4F, the amplitude does not approach 0 but fluctuates widely along

with the other parameters. In these cases, the large uncertainty in the AR parameters suggests

the results of LOST are ambiguous, and we refrain from drawing a conclusion. We find that a

reasonable rule of thumb in assessing how much uncertainty is “too much” is that frequency

2π/λ has a standard deviation of around 10% of its mean or less, and that modulus r have a

standard deviation of under 0.005. Typically, we also find slow trends over a few thousand

Gibbs iterations in the sampled values is commonly observed, consistent with the view that the

parameters are nearly interchangeable over a fairly broad region of parameter space and the

Gibbs sampler then performs a near random walk over the parameters. A latent state with a

Fig 3. Interaction of spike history and latent state. Two inhomogeneous, history dependent spike trains, with first spike train A) generated with

stochastic oscillational modulation at 10Hz and OCV at 0.18, and spiking at 40Hz, and the second spike train F) without modulation, spiking at 60Hz.

Gibbs samples from 4 (3) separate LOST for first (second) spike train in B-E (G-I). In B-E and G-I, we show the 3 representative sampled quantities,

frequency and modulus of the slowest root and the amplitude of the inferred latent state on the left, and the ISI distribution and spike history term on the

right. The ground truth, sampled mean and 5-95% intervals of the sampled spike history term plotted in black, red and cyan, respectively. The

differences between the different LOST runs is in how spike history knots were chosen, or if a fixed spike history function was used. For the first spike

train A, B uses the standard knot choices, C uses a constant history set to 0 and D, a fixed spike history set to a time-compressed ground-truth history.

For the second spike train, G uses the standard knot choice, H the ground truth and I the standard knots moved farther out in time. For the first spike

train, misspecification of the history may lead to a false inference of a flat latent state, a latent state with high uncertainty in its parameters or the correct

latent state. For the second spike train, a misspecified history can lead to a latent state with significant amplitude but with uncertain parameters, making

the inference inconclusive.

https://doi.org/10.1371/journal.pcbi.1005596.g003
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large amplitude does not necessarily signify the successful inference of an oscillation, and the

uncertainty in the model parameters of the oscillation must also be taken in account in decid-

ing whether to reject the hypothesis that there is an oscillation modulating the spiking. The

amplitude of the latent state can inform us of how large the modulation is surrounding the

mean firing rate. A latent state amplitude of 0.15 equates to a peak-to-peak fluctuation of

about 30% of the average firing rate (for low firing rates < 100Hz), which is quite small a fluc-

tuation considering only a few spikes may be observable for an oscillational cycle, so we use a

latent state amplitude of 0.15 as a rule of thumb for when to consider the latent state as practi-

cally flat.

Through our examples, we found that the latent state can partially compensate an incor-

rectly specified spike history, as long as the short-term inhibition is reasonably well character-

ized by the spike history, or the post-spike inhibition is not too pronounced or long. In the

absence of oscillational modulation in the data, this causes the latent state to take on significant

amplitude, but the AR parameters themselves also have large uncertainty, making it difficult to

conclude that the latent state represents an oscillation. However, in one limiting case, even

with a mischaracterized spike history, LOST infers a clear oscillation. A nearly periodic spike

train in Fig 5A is shown analyzed with LOST using the adjustable spike history term, Fig 5B

and a fixed but modified ground truth spike history term, Fig 5C. When the misspecified his-

tory is used, the latent state takes large amplitudes with the posterior distribution of AR param-

eters having little uncertainty. The frequency of oscillation is nearly the same as the spiking

frequency, 62Hz. In the limit of nearly periodic spikes, it may be difficult to conclude what par-

ticular combination of latent state and spike history underlies the highly regular spiking.

A flat latent state may signify a lack of oscillatory modulation or a spike history term that

poorly captures the post-spike inhibition, or it may also signify that there is not enough data to

infer an oscillation. Two spike trains with oscillatory modulation and different refractory pro-

files are shown in Fig 6A and 6E, with differing amount of trials used in LOST analysis, Fig

6B–6D and 6F–6H. When there is insufficient data to detect an oscillation, the latent state

Fig 4. Spike trains without oscillatory modulation. Simulated spike trains at 34Hz (A-D) and 60Hz (E-H), with 4 types of post-spike refractory

profiles. Each panel shows Gibbs samples on left and on the right, an example spike train at the top, and the ISI histogram and spike history function as

in Fig 1. The expected output of LOST is a nearly flat latent state, which is the case in A, B, D, E, G, H, accompanied by large variability in the other

sampled parameters. In C and F, the amplitude of the latent state does not approach 0, but rather continues to fluctuate while taking larger values.

https://doi.org/10.1371/journal.pcbi.1005596.g004
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amplitude approaches 0, Fig 6B and 6F. In general, the uncertainty in the parameters of the

oscillation will decrease as more trials and data are used, Fig 6C, 6D, 6G and 6H, as expected.

Model comparison. We compare the LOST model to another point process model whose

CIF is a general linear model (GLM) of past spiking history [12, 18]. Briefly, the CIF for trialm

Fig 5. A) limiting case where models are not identifiable. The spike train in A is nearly periodic, but generated without an

oscillatory modulation. When using the standard knots, the latent state amplitude approaches 0, B, but when we use a fixed

history that is very different than the ground truth, C, the sampled parameters appear to be very certain, and an oscillation at

62Hz, nearly the spiking frequency, 64hz, is inferred. For cases where the spike train itself is nearly periodic, the spike train may

be described equally well with various combinations of spike histories and an oscillation at the spiking frequency.

https://doi.org/10.1371/journal.pcbi.1005596.g005

Fig 6. Effect of data size on posterior samples. 2 simulations of spike train with spiking around 60Hz, modulated with a 20Hz oscillation with OCV

around 0.14 and 1 second long trials, but with different refractory period profiles, A and E. Layout of the figures is the same as in Fig 3, but with B-D and

F-G showing different number of trials used, B) 8, C) 15 trials, and D) 40 for spike train in A and F) 5, G) 60 and H) 80 trials for spike train in E. For the

smallest number of trials, the posterior is noticeably more variable, but the amplitude of the latent state approaches 0, meaning the latent state is almost

decoupled from the spiking. We can see that the posterior narrows as more trials are used.

https://doi.org/10.1371/journal.pcbi.1005596.g006
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time n is written

l m; njHm;n

� �
¼ exp

XS

i¼1

�aiym;n� i þ
XO

j¼1

�bjCmj

 !

; Cmj ¼
XSþ1ð Þj� 1

k¼Nj

ym;n� k; ð46Þ

and this is easily fit to obtain the �a and �b coefficients. The �a models the short-term refractory

self-history and �b encapsulates longer-term oscillatory self-history. This model does not take

into account the dynamics of oscillation. Rather the spiking activity up to S(O + 1) steps in the

past uniquely determine the firing probability at the present, in contrast to our model. We fit

the model several times with different initial conditions and values of S and L, using the python

function statsmodels.api.GLM, and compare their goodness of fit via the time-rescaling

theorem [37], and find the best combination of S and O. We then calculate the CIF from that

model. Interpreting the fluctuating CIF as an oscillation, we extract the instantaneous phases,

and compare to the phases inferred by the LOST model. The GLM model does not separate

out the contribution of the short-term refractory self-history and the longer-term oscillatory

self-history to the CIF, so we attempted to extract the oscillatory contribution by low-pass fil-

tering the obtained CIF. We refer to this method of inference as GLM hereafter.

We compare the quality of inference of different models by comparing the resultant

length of their inference with the ground truth. The resultant length (RL) L is calculated as

LeiFL ¼ 1

N

PN
i e

i �j � cjð Þ, where the ψ (ϕ) are the ground truth (inferred) phases, and is the cir-

cular equivalent to the mean squared error (MSE) of the ground truth and inferred phase.

We also use another simple measure of characterizing the strength of oscillatory modulation,

the spike phase (SP) histogram and its circular statistic R, calculated as ReiF ¼ 1

N

PN
n¼1
ei2p�tn ,

where tn is the time of the nth spike. Here R characterizes non-uniformity in the distribution

of �tn . While they are calculated in a similar fashion, the RL directly compares the inferred

phase with the ground truth or LFP, while the SP Rmeasures the uniformity of the probabil-

ity of spiking with respect to ground truth or LFP phase. We caution that a result L< R does

not mean that the LOST model performed inference poorly. SP histogram detects modula-

tion, but knowledge that spiking occurs at preferred phases does not also mean we know

how to assign instantaneous phases given the spikes in a spike train. The error on Rs and Ls

is calculated by bootstrap sampling with replacement of trials.

Comparison to other models of oscillation. Comparison of the LOST model with the

GLM model illustrates how point process noise and oscillatory irregularity pose challenges to

inferring an oscillation from a spike train, and how explicitly modeling the dynamics of the

oscillation using a latent state with a point process observation model, improves inference

when posed with these challenges. Fig 7A and 7B show the dependence of RL on how much

spike history is used in the GLM (bottom right), and the history weights b when 180, 480 or

720ms of history is used. The oscillation OCVs were 0.02 and 0.2 for Fig 7A and 7B, respec-

tively. Temporal phase relationship is preserved for large time lags, as can be seen in the clear

periodicity of the history weights b in Fig 7A, and the GLM model performs as well as the

LOST model when long history dependence is used. Shorter history degrades the performance

of the GLM model, because we are not averaging out the spiking noise as much when shorter

history is used. However, Fig 7B shows that when the oscillation is irregular, the phase infor-

mation quickly dissipates, as seen by the lack of periodicity in b at longer lags. Consequently,

the spiking noise cannot be averaged out using long history, but rather spikes with large lag

contribute only noise as the oscillational irregularity washes out the phase relationship for lon-

ger lags. The LOST model suffers less because it models the statistics of the irregularity in oscil-

lation, the observable of the latent oscillation has a point-process observation model that takes
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into account spiking noise, and also because the inferred oscillation is conditioned on all the

spikes in the trial, Fig 7C.

AR order. Huerta [24] describes a reversible jump MCMC procedure to choose an appro-

priate AR model strucure. We did not implement this due to the complexity of implementa-

tion and the relatively high computational cost of the current algorithm. Nonetheless, we

investigate the effect of varying the AR order for phase inference with the LOST model. In Fig

7D, we used 4 sets of data with increasing firing rates, and compared the RLs of inference with

different AR orders, and the accompanying RL from inference using GLM. The data sets them-

selves are generated with an oscillation of 10Hz using the LIF model, with OCVs of around

0.2, and have mean firing rates of 11Hz, 15Hz, 21Hz and 33Hz. 140, 130, 100, and 90 trials of

1.2 seconds duration were used in the fitting of the data. The model order comparison in Fig

7D shows that including more components usually resulted in a better inference of instanta-

neous phase, but qualitatively, even few components can pick out the oscillatory structure

present in the spike train. This suggests that a model with the correct order, while important

for optimal inference, can still infer valuable information if a sub-optimal order is chosen. For

the rest of the paper, we keep the model structure to 4C + 1R, unless otherwise stated, as it

seems to provide a good compromise between good inference and reasonable computation

times.

Fig 7. Comparison with other models of spiking and the AR order. Spiking noise and oscillation irregularity affect the quality of phase inference. A,

B) Clockwise from top, spike train (ticks) produced by the regular oscillation plotted above, the resultant lengths when oscillation inferred using 3

different history lengths using GLM along with the RL from LOST inference of same data, and the history weights b (dashed red) and their confidence

intervals (purple) for GLM using history length 720ms. Modulating oscillations have OCV = 0.02 and 0.2 in A) and B), respectively. C) Sample CIF

inference of data shown in A) using LOST (top trace), and GLM (bottom trace), with black line the duplicated ground truth CIFs. For GLM, the dashed

(solid) line is the inference obtained from using 720ms (180ms) of spiking history. D) Comparison of how different AR orders for the LOST model affect

inference performance for irregular oscillations.

https://doi.org/10.1371/journal.pcbi.1005596.g007
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Presence of additional, slower fluctuation. Periods of prolonged silence, followed by

prolonged periods of elevated firing rates are often visibly apparent in spike trains [38]. The

timescales of these readily visible features are much slower than those characterizing faster

neuronal oscillations thought to be relevant to cortical processing. In this example, we seek to

demonstrate that the LOST model will give us useful inference of the faster oscillation in the

presence of these slow modulations. We generated data with the offset, instead of being con-

stant throughout a trial, to be a randomly generated square wave with a given duty cycle, and

state duration generated from an exponential distribution with a minimum duration of 100

ms. Because the square wave is different in each trial, the overall PSTHs are flat. The spike

train in Fig 8 have mean firing rates of 22Hz, a 20Hz oscillatory modulation with OCV = 0.27,

with 200 trials used, and a duty cycle of 50% for the slow square wave. The resultant length was

L = 0.25 ± 0.01. To analyze the data, we begin by inferring the slow time modulation using an

AR(1) model as our latent model. We choose an AR(1) model, as we don’t expect very much

structure in the slow latent state, and also because the time scale of the square waves relative to

the duration of each trial ensures that any potential slow oscillatory structure would only be

partially sampled, that considering additional structure in the AR is unnecessary. Although an

AR(1) model is not the correct model describing these square waves, we are able to roughly

infer the shape of the square waves, Fig 8 top.

We account for the slower fluctuation by modifying the CIF, Eq 3a to include the inferred

slow fluctuation as a known signal Imn,

p ymn ¼ 1jxmn;Hn;l;Y
� �

¼
exmnþmmþfnþlRl m;nð Þ

þImn

1þ exmnþmmþfnþlRl m;nð Þ
þImn

: ð47Þ

After incorporating this known signal, we are able to infer the phases of the faster oscillation.

Without including this step, the oscillatory AR(p) model would infer the slower fluctuation as

in Fig 8 top, but inclusion of this known signal allows the faster oscillation to be inferred, Fig 8

bottom.

Neural data often contains more structure than the data analyst is aware of or suspects, and

if on initial analysis with the standard LOST the analyst finds a much slower timescale latent

state than expected, chances are the user has discovered a real but unknown feature of the

data, and that the user may want to infer this slow latent state using an AR(1) as described in

this section, and include this signal as a known signal in a second run of LOST to discover the

higher-frequency modulation expected.

Mixture of modulated and non-modulated trials. Here we show an example where addi-

tional, discrete latent structures beside the oscillation, are present in the data. We motivate this

extension to LOST as recent work has shown that brain states during sensory processing and

behavior undergo discrete state transitions [39, 40], and because the authors have suspected

(unpublished) that the motor cortical neurons analyzed in the Data Analysis section, also

exhibit discrete transitions from trial to trial. Fig 9 shows results from 3 simulated spike trains,

where 0% (Fig 9A), 25% (Fig 9B) or 40% (Fig 9C) of the of the trials are weakly modulated,

and the rest strongly modulated. The mean firing rate for all 3 of the spiketrains are 36Hz,

modulated with a 20Hz modulation with OCVs of 0.32. 80 trials were analyzed, each of dura-

tion 1.2 seconds.

The LOST model successfully infers the existence of 2 subsets of trials whose modulation

strengths are very different in Fig 9B and 9C, and correctly infers that all trials are modulated

by similar strengths in Fig 9A. To infer the modulation state, weak or strong, we compiled the

posterior mean of the indicators hZm1i for all trialsm. Trials that are strongly modulated tend

to have small values of hZm1i. The mixture coefficient π provides a straightforward threshold
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Fig 8. Spike train modulated with fast oscillation and a slower square-wave fluctuation. For a sample

trial, top shows inferred, square-wave modulation of spiking (black) and the inferred latent state (red). Bottom

shows inference of faster rhythm by taking the slow signal shown above to be a known signal, and re-running

LOST.

https://doi.org/10.1371/journal.pcbi.1005596.g008

Fig 9. Mixture of modulated and non-modulated trials. A), B), C) 0%, 25% and 40% of the trials are weakly modulated. Left shows

posterior distribution of π1 and the black line is the ground truth value, red line is the mode of the marginal posterior. Right shows inferred

modulation state, weak or strong, for each of the 80 trials. Black dots are ground truth, red dots are inferred state. Below them are indicators

(+−) of whether inferred matches ground truth.

https://doi.org/10.1371/journal.pcbi.1005596.g009
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for hZm1i for categorization into weak or strong trials. We choose the threshold to beMp�
1
,

where p�
1

is the posterior mode of π1. The trials whose hZm1i are larger than the threshold are

deemed weakly modulated trials. As can be seen in Fig 9B and 9C, the LOST model categorizes

a significant fraction, > 80%, of trials correctly, and also infers the mixture weights close to the

true values. We note that in inferring the value of π1, we did not take the mean as we do for

most other parameters due to its bounded nature and the bias this confers when π1 is at or

near 0, but rather take the mode of the posterior.

Data analysis

We analyze neurons from M1 of rat performing a self-paced lever push-hold-pull task [13, 41]

that have been found to be significantly modulated to the theta rhythm in the LFP. These 2

neurons were recorded on separate electrodes, with “neuron 1” in Figs 10 and 11 recorded and

spike sorted from a tetrode on a siliconprobe, and “neuron 2” recorded using juxtacellular

(cell-attached) recording, where the spike trains did not need to be sorted. Both neurons were

located in layer 1/2, and “neuron 2” identified morphologically as an interneuron, while “neu-

ron 1” is likely to be an interneuron based on spike shape. We identified trials by selecting

lever hold periods lasting more than 1 second followed by a large-amplitude pull, and analyzed

the 1.2 second period encompassing the hold-pull period.

Slow fluctuations. Fig 10A shows that the spike trains appear to have long periods of low

firing rate, interspersed with periods of higher firing within a trial, creating noticeable holes in

the spike train. Applying the LOST model using an AR(1) latent state first picks up a latent

state that follows these slow fluctuations to the firing rate, but with the faster oscillatory modu-

lation absent. Fig 10B and 10C bottom show the power spectrum for the fluctuation I we infer

for each neuron, and find that both are slow, in the 1-2Hz range. Interestingly, this slow fluctu-

ation is weakly correlated between the neurons, p< 6 × 10−3, bootstrap test.

Shared theta oscillations. Next, we account for the faster fluctuation by including the

slow fluctuation I into the CIF as described in Eq 47. After incorporating this known signal,

we are able to infer the phases, Fig 11 for both neurons. The power spectral density of the

inferred latent oscillation are similar, with a peak around 7-8Hz, Fig 11A and 11B bottom.

Igarashi et al [13] found significant modulation to the LFP theta of these neurons using SP his-

tograms, but did not find direct evidence of simultaneous modulation of the neurons from the

spike-spike cross-correlation function, Fig 11D. In contrast, the oscillatory cross-correlation

function of the independently inferred oscillations shown in Fig 11C, clearly shows evidence

of simultaneous modulation of the neurons to a shared oscillation.

Weakly and strongly modulated trials to LFP theta in a single neuron. In the previous

section, we treated all trials of neuron 1 as equally modulated and inferred a theta modulation

in its spike train. Using a simple model to fit often results in finding an oscillation, as we did

for neuron 1, but it may be that there is further structure that can be discovered by using a

more complicated parametric model. Here, we analyze neuron 1 using the mixture model, and

find a significant difference in the strength of oscillatory modulation between trials. Following

the procedure described for the mixture model, we find that about 85% of the trials (H, pink)

have a much stronger modulation, Fig 12A right, than the remaining trials (L, blue), Fig 12C

top.

We emphasize this classification was made using only the spike trains. The PSTHs con-

structed separately from L trials and H trials show no significant difference Fig 12B left, so the

L and H trials being detected do not reflect a difference in temporal trial-locked firing rate, or

in the baseline firing rate. Since the classification into L and H reflects a dichotomous change

in the structure of oscillatory modulation, we expect to find a similar change in the relationship
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between the spike train and the LFP theta. It is possible that the L and H trials are indicative of

absence or presence of the global LFP theta, that L trials show weak modulation because there

is no modulating drive in those trials. The autocorrelation function of the high-pass filtered

(above 1Hz) LFP constructed separately for the L trials and H trials, showed similar oscillatory

structure, Fig 12B center. Further, the amplitude of the theta-band LFP in L trials and H trials

also show no significant difference, Fig 12C, so global theta seems to be a reliable and perpetual

presence. However, in Fig 12D, when we construct 2 separate LFP theta SP histograms, SPL

and SPH, we find that SPL is significantly more uniform than SPH, with RL = 0.06 ± 0.01 and

RH = 0.16 ± 0.01, bootstrap test p< 7 × 10−4. Thus it appears that this neuron intermittently

participates in the perpetual theta rhythmicity, resulting in distinct subsets of trials, some

being weakly modulated and others being strongly modulated.

Discussion

We have defined the LOST model, together with accompanying posterior simulation technol-

ogy, in order to detect the presence of oscillatory firing-rate modulation in a spike train, and

Fig 10. Two simultaneously-recorded motor cortical neurons: Slow fluctuations in firing rate for

neuron 1 and 2. A) rasters from sample trials for the two neurons. There are noticeable holes in the rasters of

the neuron 1, and neuron 2 also appears to have a similar slower fluctuation that is less noticeable. B, C) the

PSTHs for the two neurons (top) show they both increase their activity around the time of PULL onset (0ms),

and power spectral density of latent state show slow fluctuations on the order of 1-2 Hz. Correlation coefficient

at 0 lag for the slow fluctuations inferred from neuron 1 and 2 are weakly correlated, with a correlation

coefficient 0.15, p < 1 × 10−3, boot strap test.

https://doi.org/10.1371/journal.pcbi.1005596.g010
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infer its phase of oscillation in the presence of a variety of non-stationarities in firing rate that

are present in experimental data. Previous methods have assessed the oscillatory content in

spike trains by comparing the spiking to a known oscillatory signal like a band-passed LFP

[42, 43], by detecting oscillation directly from the spike train [12, 18, 44–46], or by point

Fig 11. Two simultaneously-recorded motor cortical neurons: Simultaneous inference of theta oscillations using inferred

slow fluctuation from Fig 10 as a known signal. A) SP histograms for neurons 1 and 2 with circular statistics R = 0.13 ± 0.01 and

0.08 ± 0.01. B) power spectral densities of inferred oscillation for the 2 neurons showing power in the theta range. C) The cross-

correlation function of the inferred latent oscillations of the two neurons, grey traces from when trials shuffled. D) The spike-spike

cross correlation function shows very little oscillatory structure.

https://doi.org/10.1371/journal.pcbi.1005596.g011
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process regression using the oscillatory signal as a covariate [47]. The LOST model not only

detects oscillatory modulation from the spike train itself, but does so in the presence of both

spiking noise and oscillatory irregularity, and also allows extensions to inferring additional

latent structure, such as non-stationarities in the modulational strength across trials. In addi-

tion, LOST is able to separately account for modulational signals of different frequency band,

which has proven to be vital in the analysis of real spike trains. Structural priors on the latent

state dynamics together with explicit consideration of spiking noise and oscillatory irregularity

allows LOST to uncover oscillatory structure even when the firing rate is low, the modulation

weak or when the oscillation is irregular, compared to methods that directly regressed the spik-

ing probability on the raw spiking history itself without an intermediary latent state [12, 18,

19]. LOST uses the intermediary latent state to addresses the irregularity characteristic of neu-

ral oscillations. Another approach to modeling the spectral features of time series using Gauss-

ian processes has recently been developed by Wilson et al [48], where different classes of

covariance kernels, the SE and SM, respectively, model non-oscillatory and oscillatory struc-

tures, analogous to the real and imaginary roots of the characteristic polynomials. It would be

interesting to compare the two approaches in future work.

The increased sensitivity and flexibility in specifying latent structures, should allow LOST

to be used in investigating the role of oscillations in cognitive functions in the cortex. Investi-

gators are increasingly interested in characterizing the change in neural responses to time-

Fig 12. Motor cortical neuron (neuron 1, Figs 10 and 11) shows changing relationship to LFP theta oscillation in different trials. A) The

posterior distributions of the mixture weight of the weakly modulated L trials, and relative modulation strength of the strongly modulated H trials. B)

PSTHL (blue) and PSTHH (pink) overlap one another, showing no difference in average firing rate. C) LFP theta amplitudes calculated for all L and H

trials on a per trial basis. Difference between cumulative distributions of per trial LFP theta amplitude not significant, p < 0.78, 2 sample KS-test. D)

Top, the 33 (187) trials classified as weakly (strongly) modulated trials, blue (pink) dots, top. Bottom, the SP histogram calculated from L (H) trials, left

(right). Inference of modulation strength using the spike train alone corresponds to the modulation strength to LFP theta. Circular statistics RL =

0.06 ± 0.01 and RH = 0.16 ± 0.01 are significantly different, bootstrap test p < 7 × 10−4.

https://doi.org/10.1371/journal.pcbi.1005596.g012
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varying stimulus or behavior [49, 50]. Theta and gamma oscillations in hippocampus change

their coupling structure and prevalence during learning and memory acquisition [51, 52]. The

inclusion of trial-specific structure independently of the LFP in the LOST model may also

allow detection of increased recruitment of a given neuron into cell assemblies during periods

when oscillations in the LFP are changing. Further, the variability of the timing and presence

of oscillations in the LFP seen in many areas of the cortex and hippocampus [2, 13, 53], sug-

gests oscillatory modulation in single neurons may likewise exhibit finer structure on a per-

trial basis. Use of the LOST model in the analysis of such systems may reveal richer dynamics

of recruitment into cell assemblies, and a better understanding of the role of single neurons in

cognition.
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