
RESEARCH ARTICLE

A pre-training and self-training approach for

biomedical named entity recognition

Shang GaoID
1*, Olivera Kotevska2, Alexandre SorokineID

3, J. Blair ChristianID
1*

1 Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United

States of America, 2 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak

Ridge, TN, United States of America, 3 Geospatial Science and Human Security Division, Oak Ridge National

Laboratory, Oak Ridge, TN, United States of America

* gaos@ornl.gov (SG); christianjb@ornl.gov (JBC)

Abstract

Named entity recognition (NER) is a key component of many scientific literature mining

tasks, such as information retrieval, information extraction, and question answering; how-

ever, many modern approaches require large amounts of labeled training data in order to be

effective. This severely limits the effectiveness of NER models in applications where expert

annotations are difficult and expensive to obtain. In this work, we explore the effectiveness

of transfer learning and semi-supervised self-training to improve the performance of NER

models in biomedical settings with very limited labeled data (250-2000 labeled samples).

We first pre-train a BiLSTM-CRF and a BERT model on a very large general biomedical

NER corpus such as MedMentions or Semantic Medline, and then we fine-tune the model

on a more specific target NER task that has very limited training data; finally, we apply semi-

supervised self-training using unlabeled data to further boost model performance. We show

that in NER tasks that focus on common biomedical entity types such as those in the Unified

Medical Language System (UMLS), combining transfer learning with self-training enables a

NER model such as a BiLSTM-CRF or BERT to obtain similar performance with the same

model trained on 3x-8x the amount of labeled data. We further show that our approach can

also boost performance in a low-resource application where entities types are more rare

and not specifically covered in UMLS.

Introduction

Named entity recognition (NER) is a critical component for many downstream applications,

such as information retrieval, information extraction, and question answering. NER is espe-

cially important in the domain of biomedical literature mining, where it is becoming more

difficult for individuals to keep up with the sheer volume of new research being published.

Building effective NER approaches that can effectively identify biomedical concepts such as

diseases, chemicals, and proteins can aid researchers in finding and identifying relevant

research and speed up the process of scientific discovery.
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Existing NER tools can be broken down into two broad categories: rule-based methods and

machine learning methods [1–4]. Rule-based methods require human experts to manually

hand-craft specific rules to identify different types of named entities—examples include term-

matching with an existing concept database such as the Unified Medical Language System

(UMLS) [5, 6] or pattern matching based on part-of-speech and sentence structure [7, 8]. In

practice, rule-based methods require expensive expert knowledge to develop and tend to work

only within a very limited domain on which the rules were developed. Furthermore, in the

domain of biomedical literature, rule-based approaches often fail to adapt to novel concepts

and vocabulary that are characteristic of new scientific publications.

On the other hand, machine learning approaches automatically learn patterns for identify-

ing named entities using a large corpus of labeled training data. In general, machine learning

approaches tend to be more flexible than rule-based approaches; however, they require large

volumes of word-level annotations which are expensive and difficult to obtain in biomedical

settings [9]. The generalizability and accuracy of machine learning approaches, especially in

the case of newer deep learning models, are heavily dependent on the amount of labeled data

available. In biomedical NER, annotated data is often limited to only a particular type of entity

such as chemicals or genes; as a result, existing machine learning NER tools can be limited in

scope in that they can only identify a very limited set of entity types.

Developing effective biomedical NER systems for a new application area can be difficult if

there is very limited annotated training data, as obtaining gold standard biomedical annota-

tions often requires expensive expert knowledge. In this work, we address this challenge by uti-

lizing a combination of transfer learning, in which we first pre-train a model using a large

annotated NER corpus from an adjacent domain, and semi-supervised learning, in which we

generate pseudo-labels on unlabeled data from the target domain to improve the performance

of our NER model. Using a base NER model such as the popular Bidirectional Long Short

Term Memory Conditional Random Field (BiLSTM-CRF) [10] or state-of-the-art Bidirec-

tional Encoder Representations from Transformers (BERT) [11], we show that the combina-

tion of transfer learning and semi-supervised learning can significantly reduce the amount of

labeled data required to obtain strong performance. Our method obtains F1 scores comparable

to a fully supervised model trained on 3x-8x the amount of labeled data when evaluated on

eight standard biomedical NER benchmarks. To our knowledge, there does not exist any pre-

vious work that thoroughly examines the cumulative effect of transfer learning and semi-

supervised learning in the biomedical NER space. Our contributions are as follows:

• We evaluate the benefits of pre-training on three different corpora for biomedical named

entity recognition using two common NER approaches—BiLSTM-CRF and BERT—and

eight standard biomedical NER datasets covering common biomedical entity types such as

chemicals, genes, and diseases.

• We explore the benefits of semi-supervised self-training with different amounts of labeled

data using the BiLSTM-CRF and BERT on the same eight standard biomedical NER

datasets.

• We show that by combining transfer learning with self-training, a NER model such as a

BiLSTM-CRF or BERT can obtain similar performance to a fully supervised model while

using only 12%-30% of the total available training data.

• We show that semi-supervised self-training can propagate errors and lower the F1 score

when initial model performance is low, and that transfer learning can be critical in low data

settings (250-500 labeled samples) to get the initial model performance to a level where

semi-supervised learning can be effective.
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• We evaluate the effectiveness of pre-training on UMLS entity types and then applying self-

training on a downstream NER task where the entities of interest are not the same entity

types as those covered in UMLS; we show that these methods can still improve performance.

Related work

Methods for named entity recognition. Traditional NER approaches generally utilized

manually crafted expert rules and heuristics and to identify entities of interest [12–18], such as

persons, locations, and organizations; these types of rule-based approaches are still in use

today in domain areas such as medicine where labeled training data is difficult to obtain [8, 19,

20]. Recent work has shown that supervised machine learning approaches, especially deep

neural networks, achieve superior performance on various NER tasks [1, 2, 21]. The

BiLSTM-CRF architecture is extremely popular in NER applications due to its strong perfor-

mance on a wide range of sequence tagging tasks [10, 22–24]. More recently, BERT has shown

state-of-the-art performance across a wide range of natural language processing tasks includ-

ing named entity recognition [11, 25, 26]. Existing NER work utilizing BiLSTM-CRF and

BERT-based models often focus on supervised applications that often require tens of thou-

sands or more manually annotated sentences. In this work, we extend these two popular

approaches to biomedical NER settings with very few labeled examples by incorporating trans-

fer learning and semi-supervised techniques.

Transfer learning in NER. In transfer learning, a model that is trained on one task is then

retrained on and applied to a different related task; knowledge gained when training on the

first task may boost performance on the second task, especially when labeled training data is

scarce for the second task [27]. A common example is downloading an image classifier that is

already trained on the very large ImageNet dataset and then fine-tuning it on a specific image

classification task of interest—this often achieves better performance than training on the

downstream task only. Transfer learning is highly effective across a wide range of different

applications in image recognition and natural language processing [28–31].

In this study, we build upon previous work that explores how to effectively leverage transfer

learning for biomedical NER. [32] showed that pre-training a BiLSTM-CRF on a silver-stan-

dard corpus of 50K abstracts, tagged for biomedical entities by automated tools rather than

human experts, can boost performance on downstream biomedical NER tasks that have fewer

than 6K training samples. Similarly, [33] showed that pre-training a BiLSTM-CRF model on a

silver standard corpus of 5M sentences from PubMed abstracts, tagged using a trained CRF

model rather than human experts, boosts performance on downstream biomedical NER tasks

for different entity types. Other work, including [34–38], explore other variations of transfer

learning and come to similar conclusions that transfer learning can significantly improve per-

formance on downstream NER tasks. We extend these previous works by (1) comparing the

effectiveness of three NER pre-training corpora of differing size and quality and (2) incorpo-

rating semi-supervised learning after transfer learning to further improve the performance of

our NER approaches.

In the context of BERT, it can be argued that any application that utilizes BERT also utilizes

transfer learning—BERT is pre-trained on a very large corpus of unlabeled text using masked-

language-modeling or a similar pre-training task and then fine-tuned on a downstream appli-

cation [11]. Several previous studies have simply taken BERT models pre-trained on different

corpora and then applied them to various downstream NER tasks [39–41]. In our work, we

first take a BERT model that has been pre-trained on biomedical abstracts and then further

pre-train it on a NER task (as opposed to a generic language modeling task); we evaluate
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if this second round of pre-training boosts performance on downstream biomedical NER

applications.

Semi-supervised learning in NER. In semi-supervised learning, a machine learning

model is trained using both labeled and unlabeled data—the model is trained using pseudo-

labels or other patterns from the unlabeled data, which can provide a performance boost espe-

cially in applications where labeled data is limited [42]. There are many different types of

semi-supervised learning, but a simple example is to train a classifier on the labeled data and

then use it to predict on the unlabeled data—samples with high prediction confidence are

assumed to be labeled correctly and used to expand the labeled training set. Like with transfer

learning, semi-supervised learning has been widely and successfully applied in a range of dif-

ferent applications [43–46].

Several previous works [47–49] have successfully applied semi-supervised methods in the

context of NER. These methods generally involve using a combination of existing predictive

models, feature similarity metrics, and heuristics to generate NER pseudo-labels on an unla-

beled dataset; the pseudo-labels with the highest confidence are then added to the original

training data and used to train an improved NER model. In this work, we use an extremely

simple semi-supervised technique—self-training—in combination with transfer learning and

show that this potent combination can significantly improve the performance of NER models

in biomedical settings with very few labeled training examples, especially when the entities of

interest overlap with those covered in the pre-training dataset.

Materials and methods

Problem description and proposed solution

In this work, we address the standard NER task in which we have a corpus of text segments,

typically at the sentence level, in which each text segment may contain one or more named

entities. Each named entity can consist of one or more consecutive words. Given an unanno-

tated text segment T consisting of words w0, w1, . . ., wl−1, wl and containing a set of named

entities E = {e0, e1, . . ., en−1, en} where each entity corresponds with one or more consecutive

words, a model M must correctly identify the start and end words of each named entity within

E. A commonly used method to frame this problem is the BIO annotation scheme, in which

each word wi in T is tagged as either B (first word of a named entity), I (non-first word belong-

ing to a named entity), or O (does not belong to a named entity). This annotation scheme

allows for easy parsing of the positions of the entities in E, especially among entities that share

neighboring word boundaries. Thus, the NER task can be framed as a sequence tagging task in

which each word wi in T is treated as a three-class classification problem.

Whereas previous works in NER sequence tagging often focus on the supervised setting in

which there are thousands or tens of thousands of annotated training examples, we specifically

focus on settings where (1) there are limited annotated training examples in the target domain

(between 250 and 2000 labeled sentences in our case), i.e., the train dataset, (2) there is access

to unannotated text segments within the same target domain, i.e., the unsupervised dataset,

and (3) there exist one or more corpora of annotated training data from a neighboring or

related domain, i.e., the pre-training dataset.

To address the challenges associated with limited training data within the target domain,

we first pre-train a model on the annotated data from the pre-training dataset and then use the

limited annotated data from the train dataset to further fine-tune the model. Finally, we apply

semi-supervised learning on the remaining unannotated data in the unsupervised dataset to

further boost the performance of the model. Our overall workflow is illustrated in Fig 1, and

we explain each step in greater detail in the following subsections.
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NER models

For our NER models, we utilize a BiLSTM-CRF, which is a widely used architecture for

sequence-tagging tasks, and BERT, which is a relatively new architecture that is state-of-the-

art or close to state-of-the-art in many NER tasks including biomedical NER.

For our BiLSTM-CRF model, we utilize publicly available Word2Vec embeddings of

dimension size 200 that are pre-trained on PubMed and PMC texts. Because our word embed-

dings are trained on all of PubMed and PMC, our word embedding matrix contains approxi-

mately 2.3 million unique words [50]; however, our pre-training and NER datasets only use a

small fraction of this total vocabulary. Therefore, we freeze the word embeddings during train-

ing (rather than initializing them as trainable parameters) to reduce overfitting and improve

the generalizability of our BiLSTM-CRF.

Our BiLSTM-CRF model architecture consists of two bidirectional LSTM layers with 300

units each, followed by a CRF classification layer. All training is performed using the Adam

optimizer with batch size 128 and learning rate 1e − 4. We note that while recent work intro-

duces more complex sequence tagging architectures, such as incorporating character-level

inputs [51] and convolutional neural networks (CNNs) [52], we kept our BiLSTM-CRF

model fairly simple to show that our approach works with both simple and state-of-the-art

models.

For our BERT model, we utilize the pre-trained WordPiece vocabulary and model weights

from BlueBERT Base [53], which is the BERT Base model pre-trained on PubMed abstracts

and MIMIC III clinical notes, as this model has shown superior performance on biomedical

and medical NER tasks compared to other BERT-based models such as BioBERT [40]. We

note this version utilizes an uncased vocabulary. For additional information about the archi-

tecture of BERT, we refer readers to previous work that describes BERT thoroughly [54–58].

We utilize the standard token classification setup for BERT, in which a sequence of input

tokens is processed by the BERT model, and then each output token is passed to a dense linear

layer followed by a softmax classification layer that assigns labels. We note that BERT utilizes

the WordPiece tokenizer that breaks up long words into subword tokens; however, all our

ground truth labels for NER tagging are at the word level rather than the subword level. Fol-

lowing previous work on applying BERT for NER [59], during training and inference, we only

use the label from the first subword token associated with each word. All models are imple-

mented using the Huggingface Transformers library [60], and training is performed using the

Adam optimizer with batch size 32 and learning rate 5e − 5.

Fig 1. NER workflow used for our experiments.

https://doi.org/10.1371/journal.pone.0246310.g001
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As a final baseline, we include the performance of two out-of-the-box tools which are popu-

lar resources for performing biomedical NER—scispaCy [61] and MetaMap [62]. ScispaCy is a

deep-learning-based approach trained on the MedMentions dataset, while MetaMap is a rule-

based approach that utilizes a manually curated dictionary. Because these two tools can per-

form NER without requiring any additional labeled training data, any method that utilizes

supervised training on labeled data should at least outperform these two tools to be considered

practically useful.

Transfer learning

To alleviate the limitations associated with a small number of labeled examples, we evaluate

the effects of transfer learning in which we first pre-train our models on a large NER dataset

from a related domain and then fine-tune the model weights on the target NER dataset. For

our pre-training datasets, we utilize Semantic Medline (available online at url https://skr3.nlm.

nih.gov/SemMedDB/), which consists of approximately 28M PubMed abstracts that are

automatically annotated for all UMLS entities using the rule/dictionary-based MetaMap tool

[63, 64], and MedMentions (available online at url https://github.com/chanzuckerberg/

MedMentions), which consists of approximately 4K abstracts manually annotated for UMLS

entities by human experts [65]. For our pre-training datasets, we utilize sentence-level inputs

annotated using word-level BIO labels without entity type. We generate three different pre-

training datasets—�100K annotated sentences randomly sampled from Semantic Medline,

�1M annotated sentences randomly sampled from Semantic Medline, and all�50K sentences

from the MedMentions dataset. Detailed dataset descriptions are available in Table 1.

For each of the pre-training datasets, we use 80/20 splitting to create training and validation

sets. For the BiLSTM-CRF, we train on the training set and validate on the validation set after

each epoch, stopping training when validation exact-F1 stops improving for five consecutive

epochs. For BlueBERT, we use the same setup for the MedMentions dataset; however, we

observed that using this setup on Semantic Medline dataset causes BlueBERT to overfit and sig-

nificantly reduces performance on downstream tasks—this is likely because (1) the BERT

model has 340M learnable parameters and can learn extremely nuanced patterns and (2) the

labels in Semantic Medline are more prone to errors because they are annotated by a rule-based

method. Therefore, we limit the training to a single epoch on both Semantic Medline datasets.

Supervised fine-tuning

Once the model has been pre-trained on one of the pre-training datasets, we fine-tune it using

the target NER dataset. In our experimental setup, we assume that only a fraction of sentences

within the target NER dataset has annotations. For example, in a dataset with 10K total sen-

tences, only 500 sentences may have gold-standard annotations.

We use 80/20 splitting on the annotated subset of the dataset to create a train and validation

set. We initialize the model using the weights obtained from the pre-training step, and then

train on the train set, validating on the validation set after every epoch. Training stops when

validation exact-F1 stops improving for ten consecutive epochs.

Table 1. Detailed information about each of our pre-training datasets.

Name Entity Types Num Sentences Num Entities Entity Words/Total Words

SemMed 100K All UMLS, Rule-Based Annotations 95,607 234,807 .2696

SemMed 1M All UMLS, Rule-Based Annotations 953,589 2,284,983 .2729

MedMentions All UMLS, Human Expert Annotations 47,722 321,899 .4138

https://doi.org/10.1371/journal.pone.0246310.t001
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Semi-supervised learning

We use a simple semi-supervised method—self-training—to further boost performance by uti-

lizing the unlabeled portion of each target NER dataset. After the supervised fine-tuning step,

we use the model to predict labels on each unannotated sentence in the target dataset, hereon

referred to as the unsupervised set. For each sentence in the unsupervised set, we measure the

average prediction confidence across all tokens within that sentence. Sentences whose average

confidence meets a defined confidence threshold are then moved from the unsupervised set

and added to the training set, using the predicted pseudo-labels as the ground truth labels.

We then repeat the supervised fine-tuning step by initializing a new model using the weights

obtained from the pre-training step and then training on the enlarged training set (original

training set plus high confidence sentences from the unsupervised set); however, we note that

we retain the original validation set to ensure that only gold-standard labels are used for valida-

tion. Once the model has been trained, we once again apply self-training, predicting on the

unsupervised set and moving high-confidence sentences into the train set. We repeat this pro-

cess until no more sentences in the unsupervised set meet the required confidence threshold.

In our experiments, we set the confidence threshold to 99.75% average confidence across all

tokens in a sentence to move that sentence from the unsupervised set to the train set; we dis-

cuss the choice of optimal confidence threshold in our Discussion section. For any given sen-

tence, we obtain the average confidence from the BiLSTM-CRF by calculating the log-

likelihood of the sequence of predicted labels (using the forward pass of the CRF) and then

dividing by the number of words in the sentence. To obtain the average confidence for a given

sentence from BERT, we collect the softmax score of each predicted label in the sequence and

then average the scores.

NER datasets

To evaluate the effectiveness of our methodology, we test the performance of our approach on

eight commonly used biomedical NER datasets that cover different types of biomedical enti-

ties—BC2GM, BC4CHEMD, BC5CDR-chem, BC5CDR-disease, JNLPBA, NCBI-disease, Lin-

naeus, and S800. For all datasets, each data sample is composed of a sentence with word-level

tokens X = (w1, . . ., wn) and associated word-level BIO annotations Y = (y1, . . ., yn). We note

that while the datasets cover different entity types, within each dataset, entities are not anno-

tated for type. Table 2 shows detailed descriptions of each dataset and how we split them into

Table 2. Detailed information about each of our NER datasets.

Name Entity

Types

Train + Unsuperv.

Sentences

Train + Unsuperv.

Entities

Train + Unsupervised Entity

Words/Total Words

Test

Sentences

Test

Entities

Test Entity Words/

Total Words

BC2GM Gene/

Protein

15093 18257 .1050 5038 6325 .1053

BC4CHEMD Drug/

Chem

61321 58964 .0728 26364 25346 .0716

BC5CDR-

chem

Drug/

Chem

9141 10550 .0603 4797 5385 .0563

BC5CDR-

disease

Disease 9141 8427 .0597 4797 4424 .0574

JNLPBA Gene/

Protein

18546 40753 .2181 3856 6241 .1647

NCBI-disease Disease 6347 5921 .0822 940 960 .0836

Linnaeus Species 16013 2824 .0116 7142 1431 .0136

S800 Species 6563 2939 .0398 1630 766 .0428

https://doi.org/10.1371/journal.pone.0246310.t002
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train, unsupervised, and test sets. Each dataset is publicly available and can be downloaded

from https://github.com/dmis-lab/biobert.

These eight NER datasets cover common biomedical entity types that are often extracted

for various applications. Thus, these entity types are generally included within the UMLS

metathesarus, and as some of the entities in these NER datasets may be covered within the pre-

training datasets. In Table 3, we measure the percentage of unique entities in each NER dataset

(train, dev, and test) that also appear at least once as labeled entities in the pre-training data-

sets. In our experiments, we evaluate the relationship between the amount of entity overlap

and the effectiveness of transfer learning.

Evaluation metrics

We adapt the entity-level evaluation metrics from the SemEval 2013 task 9.1 [66, 67]. For each

task, we measure both exact precision, recall, and F1 as well as partial precision, recall, and F1.

The exact metrics give credit only if the NER model correctly predicts the exact word boundaries

for a given entity, while the partial metrics give partial credit if a NER model manages to predict

part of an entity. Because our datasets are not annotated for entity types, we do not incorporate

entity type into our evaluation. The calculations for each metric are described in Eqs 1–4:

Possible ¼ Correctþ Incorrectþ PartialþMissing ð1Þ

Actual ¼ Correctþ Incorrectþ Partialþ Spurious ð2Þ

Exact Precision ¼
Correct
Actual

Exact Recall ¼
Correct
Possible

Exact F1 ¼
2 � Exact Precision � Exact Recall
Exact Precisionþ Exact Recall

ð3Þ

Partial Precision ¼
Correctþ 0:5� Partial

Actual

Partial Recall ¼
Correctþ 0:5� Partial

Possible

Partial F1 ¼
2 � Partial Precision � Partial Recall
Partial Precisionþ Partial Recall

ð4Þ

In the equations above, “Correct” refers to entities where the predicted boundaries exactly

match the ground truth boundaries, “Partial” refers to entities where the predicted boundaries

overlap but do not exactly match with the ground truth boundaries, “Missing” refers to entities

that are in the ground truth labels but missed by the NER model, and “Spurious” refers to

Table 3. Percent of unique entities in our NER datasets that also appear at least once as labeled entities in each of our pre-training datasets.

BC2GM BC4 CHEMD BC5CDR chem BC5CDR disease JNLPBA NCBI disease Linneaus S800

100K SemMed 9.20% 9.55% 24.81% 53.90% 18.38% 45.40% 31.52% 13.57%

1M SemMed 12.45% 17.20% 36.53% 67.67% 23.35% 54.50% 41.25% 22.21%

MedMentions 10.48% 10.42% 26.77% 52.21% 26.38% 44.72% 33.07% 16.45%

https://doi.org/10.1371/journal.pone.0246310.t003
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entities predicted by the NER model but not actually in the ground truth labels. We note that

“Incorrect” is used for incorrect entity types and is not applicable in our datasets.

Results

Comparing different pre-training corpora

A critical part of transfer learning is selecting an appropriate corpus on which to pre-train our

models. In our study, we consider three different corpora to use for pre-training—�100K ran-

dom sentences from SemMed,�1M random sentences from SemMed, and the full MedMen-

tions dataset.

In our first set of experiments, we evaluate the benefits of pre-training in settings where no

labeled training data is available in the target domain. In Table 4 (see S1 Table for partial met-

rics), we show the performance of the BiLSTM-CRF and BlueBERT when pre-trained on each

of the three different pre-training corpora and then directly applied to each of our target NER

datasets without any fine-tuning. We also include the performance of MetaMap (2018 version)

and scispaCy as performance baselines, as neither of these two popular NER tools requires fine-

tuning for use. Our results show that when no fine-tuning on the downstream dataset is used, it

is difficult to distinguish the effectiveness of pre-training on different corpora; in many cases,

the popular MetaMap and scispaCy tools have comparable or better precision and recall than

our pre-trained models. The ambiguity of these results suggests that if no labeled training sam-

ples are available in the downstream target dataset, there is no guarantee that pre-training a cus-

tom model for biomedical NER will work any better than simply using MetaMap or scispaCy.

Table 4. Exact precision, recall, and F1 score of the BiLSTM-CRF and BlueBERT on each of our target datasets when pre-trained on different corpora without fine-

tuning.

BC2GM BC4 CHEMD BC5CDR chem BC5CDR disease JNLPBA NCBI disease Linneaus S800

MetaMap (2018)

EP: .0672 EP: .0896 EP: .1725 EP: .1230 EP: .0731 EP: .0924 EP: .0370 EP: .0464

ER: .2903 ER: .5045 ER: .7257 ER: .6299 ER: .2743 ER: .4731 ER: .6457 ER: .4720

EF: .1092 EF: .1522 EF: .2788 EF: .2058 EF: .1154 EF: .1546 EF: .0701 EF: .0844

scispaCy

EP: .0729 EP: .0627 EP: .1088 EP: .0814 EP: .0630 EP: .0787 EP: .0221 EP: .0287

ER: .5025 EP: .6045 EP: .7853 EP: .7141 EP: .3792 EP: .6090 EP: .6806 EP: .5039

EF: .1273 EP: .1137 EP: .1911 EP: .1461 EP: .1081 EP: .1395 EP: .1429 EP: .0544

BiLSTM-CRF EF: .0780 EP: .1078 EP: .1960 EP: .1553 EP: .0841 EP: .1108 EP: .0440 EP: .0427

Pretrain 100K SemMed EF: .2496 EP: .4549 EP: .7015 EP: .6770 EP: .2221 EP: .4604 EP: .5500 EP: .3081

No FineTune EF: .1189 EP: .1744 EP: .3063 EP: .2527 EP: .1220 EP: .1786 EP: .0815 EP: .0750

BiLSTM-CRF EF: .0761 EP: .1044 EP: .1930 EP: .1503 EP: .0970 EP: .1108 EP: .0426 EP: .0494

Pretrain 1M SemMed EF: .2553 EP: .4523 EP: .7015 EP: .6674 EP: .2718 EP: .4881 EP: .5584 EP: .3799

No FineTune EF: .1172 EP: .1697 EP: .3030 EP: .2454 EP: .1430 EP: .1806 EP: .0792 EP: .0875

BiLSTM-CRF EF: .1107 EP: .0709 EP: .1182 EP: .0970 EP: .1448 EP: .1026 EP: .0271 EP: .0355

Pretrain MedMentions EF: .6114 EP: .5525 EP: .7288 EP: .7267 EP: .6589 EP: .6616 EP: .6730 EP: .5290

No FineTune EF: .1874 EP: .1256 EP: .2034 EP: .1711 EP: .2375 EP: .1776 EP: .0521 EP: .0666

BiLSTM-CRF EF: .0659 EP: .1101 EP: .1920 EP: .1703 EP: .0920 EP: .1302 EP: .0499 EP: .0496

Pretrain 100K SemMed EF: .2022 EP: .4504 EP: .7099 EP: .7659 EP: .2552 EP: .5336 EP: .5996 EP: .3486

No FineTune EF: .0994 EP: .1770 EP: .3022 EP: .2787 EP: .1353 EP: .2094 EP: .0921 EP: .0868

BiLSTM-CRF EF: .0688 EP: .1017 EP: .1653 EP: .1603 EP: .1059 EP: .1201 EP: .0452 EP: .0530

Pretrain 1M SemMed EF: .2167 EP: .4029 EP: .5585 EP: .6586 EP: .2774 EP: .4901 EP: .5625 EP: .3893

No FineTune EF: .1045 EP: .1624 EP: .2551 EP: .2579 EP: .1533 EP: .1929 EP: .0836 EP: .0934

BiLSTM-CRF EF: .0667 EP: .1053 EP: .1753 EP: .1678 EP: .1143 EP: .1324 EP: .0444 EP: .0545

Pretrain MedMentions EF: .2109 EP: .4292 EP: .6144 EP: .7150 EP: .3125 EP: .5551 EP: .5535 EP: .3956

No FineTune EF: .1013 EP: .1692 EP: .2727 EP: .2718 EP: .1674 EP: .2138 EP: .0822 EP: .0959

https://doi.org/10.1371/journal.pone.0246310.t004
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In our next set of experiments, we include limited labeled training data from the target

domain and then re-evaluate the effects pre-training. In Table 5 (see S2 Table for partial met-

rics), we show the performance of the BiLSTM-CRF and BlueBERT when pre-trained on

each of the three different pre-training corpora and then fine-tuned on 1000 labeled sentences

(800 train, 200 validation) from each target dataset. We also include the performance of the

BiLSTM-CRF and BlueBERT directly trained on 1000 labeled sentences without any pre-train-

ing for comparison. In these experiments, the benefit of transfer learning becomes much

clearer—all methods perform much better than the scispaCy and MetaMap baselines. We see

that for the BiLSTM-CRF, pre-training on any of the three datasets results in better perfor-

mance in both precision and recall than no pre-training. Of the three different pre-training

corpora, pre-training on 1M sentences from SemMed gives the best overall performance. This

suggests that for the BiLSTM-CRF model (and other similar models utilizing Word2Vec

embeddings), it is most beneficial to pre-train on very large corpora, as the model is exposed

to more useful vocabulary patterns and NER information.

On the other hand, for BlueBERT, the results between the different pre-training corpora

are more mixed, and in some cases the base BlueBERT model (without any further pre-train-

ing) yields the strongest results. We expect that this is because the base BlueBERT model is

already pre-trained using the masked-language-modeling task on all of Pubmed, so it may

have already learned information useful for downstream NER. Our results show that further

pre-training an existing BERT model such as BlueBERT on a large NER dataset is helpful for

Table 5. Exact precision, recall, and F1 score of the BiLSTM-CRF and BlueBERT on each of our target datasets when pre-trained on different corpora and fine-tun-

ing on 1000 labeled sentences (800 train, 200 validation).

BC2GM BC4 CHEMD BC5CDR chem BC5CDR disease JNLPBA NCBI disease Linneaus S800

BiLSTM-CRF EP: .3087 EP: .4181 EP: .7427 EP: .4267 EP: .4711 EP: .5699 EP: .2480 EP: .0089

No Pretrain ER: .2408 ER: .4246 ER: .7271 ER: .4532 ER: .5300 ER: .5501 ER: .0447 ER: .0253

FineTune 1000 EF: .2706 EF: .4213 EF: .7349 EF: .4395 EF: .4989 EF: .5598 EF: .0758 EF: .0132

BiLSTM-CRF EP: .3739 EP: .5037 EP: .7458 EP: .6844 EP: .5667 EP: .6923 EP: .6424 EP: .6018

Pretrain MedMentions ER: .4527 ER: .4417 ER: .7889 ER: .6784 ER: .6860 ER: .6821 ER: .2199 ER: .3667

FineTune 1000 EF: .4095 EF: .4707 EF: .7667 EF: .6814 EF: .6207 EF: .6872 EF: .3277 EF: .4557

BiLSTM-CRF EP: .5740 EP: .6344 EP: .8098 EP: .6704 EP: .5662 EP: .7006 EP: .6759 EP: .6046

Pretrain 100K SemMed ER: .5488 ER: .5469 ER: .7916 ER: .7057 ER: .6675 ER: .6292 ER: .2874 ER: .4200

FineTune 1000 EF: .5611 EF: .5874 EF: .8006 EF: .6876 EF: .6127 EF: .6630 EF: .4033 EF: .4957

BiLSTM-CRF EP: .6584 EP: .6731 EP: .8415 EP: .7304 EP: .5914 EP: .7804 EP: .4801 EP: .6697

Pretrain 1M SemMed ER: .6157 ER: .5860 ER: .8332 ER: .7265 ER: .7046 ER: .7566 ER: .3270 ER: .4907

FineTune 1000 EF: .6363 EF: .6265 EF: .8373 EF: .7284 EF: .6432 EF: .7683 EF: .3890 EF: .5664

BlueBERT Base EP: .6178 EP: .7244 EP: .8404 EP: .7448 EP: .5502 EP: .7645 EP: .7446 EP: .5185

No Pretrain ER: .6925 ER: .6509 ER: .8493 ER: .7783 ER: .7470 ER: .8126 ER: .3850 ER: .4915

FineTune 1000 EF: .6531 EF: .6857 EF: .8449 EF: .7612 EF: .6337 EF: .7878 EF: .5076 EF: .5047

BlueBERT Base EP: .6480 EP: .6745 EP: .7788 EP: .6802 EP: .5958 EP: .7738 EP: .6325 EP: .6207

Pretrain MedMentions ER: .7274 ER: .7087 ER: .8779 ER: .7929 ER: .7795 ER: .8435 ER: .6737 ER: .4753

FineTune 1000 EF: .6854 EF: .6912 EF: .8254 EF: .7323 EF: .6754 EF: .8071 EF: .6525 EF: .5383

BlueBERT Base EP: .6439 EP: .7593 EP: .8332 EP: .6939 EP: .5939 EP: .7953 EP: .8151 EP: .5531

Pretrain 100K SemMed ER: .7044 ER: .6249 ER: .8380 ER: .8053 ER: .7469 ER: .8152 ER: .4682 ER: .6099

FineTune 1000 EF: .6728 EF: .6856 EF: .8356 EF: .7454 EF: .6617 EF: .8051 EF: .5948 EF: .5801

BlueBERT Base EP: .6338 EP: .7689 EP: .7637 EP: .7019 EP: .6067 EP: .7430 EP: .8143 EP: .5265

Pretrain 1M SemMed ER: .7005 ER: .6031 ER: .8906 ER: .8015 ER: .7400 ER: .8235 ER: .4780 ER: .6190

FineTune 1000 EF: .6655 EF: .6760 EF: .8223 EF: .7484 EF: .6668 EF: .7812 EF: .6024 EF: .5690

https://doi.org/10.1371/journal.pone.0246310.t005

PLOS ONE A pre-training and self-training approach for biomedical named entity recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0246310 February 9, 2021 10 / 23

https://doi.org/10.1371/journal.pone.0246310.t005
https://doi.org/10.1371/journal.pone.0246310


some but not all downstream NER tasks. Pre-training BlueBERT on MedMentions resulted in

the highest overall performance across the most downstream NER datasets. This may be

because MedMentions, while smaller than the two SemMed corpora, is hand-labeled by

humans and thus the labels are far more accurate; with an extremely powerful model such as

BlueBERT that can learn extremely nuanced and subtle patterns, the quality of the labels may

be more important than the quantity.

When we compare the overall improvement from pre-training with the entity overlap

between the pre-training datasets and the target NER datasets shown in Table 3, we observe

no clear relationship. For example, BC5CDR-disease has the largest overlap with the pre-

training datasets. However, when comparing the improvement from pre-training using the

BiLSTM-CRF, the magnitude of improvement is similar to that in BC2GM, which has the

smallest amount of overlap. Furthermore, none of the pre-training datasets improved perfor-

mance on BC5CDR-disease for BlueBERT. As another example, S800 has a very low overlap

with the pre-training datasets, yet the magnitude of improvement from pre-training is far

larger than in other datasets with more overlap. This indicates that low entity overlap in the

pre-training dataset does not necessarily mean that transfer learning will not give a significant

performance boost, and vice versa.

Effects of transfer and semi-supervised learning

In Table 6 (see S3 and S4 Tables for partial metrics), we show the effects of transfer learning

and semi-supervised learning on various NER datasets given different amounts of labeled

training data. For all BiLSTM-CRF experiments, we pre-train the model on 1M sentences

because it gave the overall strongest performance in Table 5. Likewise, for BlueBERT, we pre-

train on MedMentions because it gave the overall strongest performance in Table 5. For both

models, we also include the performance of a fully supervised version (trained on all available

sentences in the train and unsupervised sets of each dataset, see Table 2 for the size of each

dataset) without any pre-training for comparison.

When examining our BiLSTM-CRF results, we see that in general, more labeled data results

in better performance in both transfer learning and semi-supervised learning. Compared to

transfer learning without the self-training, the self-training step almost always provides an

additional boost to performance; this performance boost is especially noticeable when there

are few labeled training samples. In five of our eight NER datasets, combining transfer learning

with self-training using 2000 labeled sentences (approximately 12%-30% of the total available

labeled data depending on the dataset) yields similar or better performance than a fully super-

vised model trained on the full dataset.

We observe similar trends in our BlueBERT results. Increasing the amount of labeled data

also increases the performance of both transfer and semi-supervised learning. Incorporating

self-training on the unlabeled data provides a boost in F1 score on all but one dataset and

training size (the only exception being BC4CHEMD with 250 labeled sentences); this differ-

ence is especially noticeable when the amount of labeled data is small. In five of our eight NER

datasets, combining transfer learning with self-training using 2000 labeled sentences yields

within 0.03 F1 score of fine-tuning BlueBERT on the full dataset. As expected, given the same

training and data conditions, BlueBERT obtains notably better performance scores than the

BiLSTM-CRF.

Our results show that in biomedical NER settings with small amounts of labeled training

data, combining transfer learning and semi-supervised learning can boost precision and recall

for both simple NER models such as a word-level BiLSTM-CRF and for more complex, state-

of-the-art NER models such as BERT. We note that our experiments focus on downstream
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Table 6. Exact precision, recall, and F1 score of the BiLSTM-CRF and BlueBERT on each of our target datasets when fine-tuning on different amounts of labeled

sentences, with and without semi-supervised self-training. A fully supervised version is included for comparison. For all sets of training data, 80% of the available data is

used for training and 20% of the available data is used for validation.

BC2GM BC4 CHEMD BC5CDR chem BC5CDR disease JNLPBA NCBI disease Linneaus S800

BiLSTM-CRF EP: .4699 EP: .4890 EP: .7281 EP: .5929 EP: .4851 EP: .6678 EP: .0556 EP: .2255

Pretrain 1M SemMed ER: .3493 ER: .3887 ER: .7615 ER: .6654 ER: .6315 ER: .6072 ER: .4655 ER: .1816

FineTune 250 EF: .4007 EF: .4331 EF: .7444 EF: .6270 EF: .5487 EF: .6361 EF: .0994 EF: .2012

BiLSTM-CRF EP: .6452 EP: .6481 EP: .7624 EP: .7497 EP: .5973 EP: .7053 EP: .1768 EP: .7749

Pretrain 1M SemMed ER: .4612 ER: .4357 ER: .8107 ER: .5032 ER: .6485 ER: .6234 ER: .5814 ER: .0975

FineTune 250 + SelfTrain EF: .5379 EF: .5211 EF: .7858 EF: .6022 EF: .6219 EF: .6618 EF: .2712 EF: .1724

BiLSTM-CRF EP: .4946 EP: .6258 EP: .8091 EP: .6564 EP: .5462 EP: .7314 EP: .4608 EP: .6183

Pretrain 1M SemMed ER: .4162 ER: .5584 ER: .7915 ER: .6890 ER: .6743 ER: .6751 ER: .3358 ER: .4309

FineTune 500 EF: .4520 EF: .5902 EF: .8002 EF: .6723 EF: .6035 EF: .7021 EF: .3885 EF: .5078

BiLSTM-CRF EP: .6159 EP: .6513 EP: .8161 EP: .7076 EP: .6017 EP: .7581 EP: .2578 EP: .7562

Pretrain 1M SemMed ER: .5155 ER: .6019 ER: .8185 ER: .6680 ER: .6870 ER: .6902 ER: .5902 ER: .4088

FineTune 500 + SelfTrain EF: .5612 EF: .6256 EF: .8173 EF: .6872 EF: .6415 EF: .7226 EF: .3589 EF: .5307

BiLSTM-CRF EP: .6584 EP: .6731 EP: .8415 EP: .7304 EP: .5914 EP: .7804 EP: .4801 EP: .6697

Pretrain 1M SemMed ER: .6157 ER: .5860 ER: .8332 ER: .7265 ER: .7049 ER: .7566 ER: .3270 ER: .4907

FineTune 1000 EF: .6363 EF: .6265 EF: .8373 EF: .7284 EF: .6432 EF: .7683 EF: .3890 EF: .5664

BiLSTM-CRF EP: .6879 EP: .7649 EP: .8520 EP: .7454 EP: .6083 EP: .7919 EP: .7928 EP: .7386

Pretrain 1M SemMed ER: .6691 ER: .6140 ER: .8466 ER: .7267 ER: .7133 ER: .7819 ER: .2889 ER: .4328

FineTune 1000 + SelfTrain EF: .6784 EF: .6812 EF: .8493 EF: .7359 EF: .6566 EF: .7869 EF: .4234 EF: .5458

BiLSTM-CRF EP: .6666 EP: .7216 EP: .8746 EP: .7650 EP: .6210 EP: .8130 EP: .7285 EP: .6785

Pretrain 1M SemMed ER: .6552 ER: .6280 ER: .8612 ER: .7750 ER: .7193 ER: .8019 ER: .4897 ER: .6596

FineTune 2000 EF: .6608 EF: .6716 EF: .8678 EF: .7700 EF: .6665 EF: .8074 EF: .5857 EF: .6689

BiLSTM-CRF EP: .7208 EP: .7766 EP: .8810 EP: .7779 EP: .6311 EP: .8117 EP: .8653 EP: .7251

Pretrain 1M SemMed ER: .7173 ER: .6629 ER: .8723 ER: .7713 ER: .7250 ER: .8040 ER: .4663 ER: .6769

FineTune 2000 + SelfTrain EF: .7190 EF: .7153 EF: .8766 EF: .7746 EF: .6748 EF: .8078 EF: .6060 EF: .7001

BiLSTM-CRF EP: .7039 EP: .8665 EP: .8926 EP: .7609 EP: .6769 EP: .7764 EP: .7974 EP: .5774

No Pretrain ER: .7068 ER: .8534 ER: .8833 ER: .7772 ER: .7586 ER: .7723 ER: .6408 ER: .6079

Fully Supervised EF: .7053 EF: .8599 EF: .8879 EF: .7690 EF: .7154 EF: .7743 EF: .7106 EF: .5923

BlueBERT Base EP: .4946 EP: .3698 EP: .7042 EP: .5829 EP: .5057 EP: .6322 EP: .4690 EP: .4368

Pretrain MedMentions ER: .6051 ER: .5349 ER: .8296 ER: .6741 ER: .6632 ER: .7116 ER: .5339 ER: .2953

FineTune 250 EF: .5443 EF: .4373 EF: .7618 EF: .6252 EF: .5738 EF: .6696 EF: .4993 EF: .3524

BlueBERT Base EP: .5969 EP: .6897 EP: .7929 EP: .6937 EP: .6065 EP: .7752 EP: .5728 EP: .5941

Pretrain MedMentions ER: .6436 ER: .3088 ER: .8378 ER: .6801 ER: .7395 ER: .7254 ER: .4892 ER: .3635

FineTune 250 + SelfTrain EF: .6194 EF: .4266 EF: .8147 EF: .6868 EF: .6664 EF: .7495 EF: .5277 EF: .4510

BlueBERT Base EP: .5955 EP: .6267 EP: .7524 EP: .6183 EP: .5621 EP: .7188 EP: .5224 EP: .5115

Pretrain MedMentions ER: .6762 ER: .6461 ER: .8386 ER: .7982 ER: .7431 ER: .7762 ER: .5290 ER: .4654

FineTune 500 EF: .6333 EF: .6362 EF: .7932 EF: .6968 EF: .6400 EF: .7464 EF: .5257 EF: .4874

BlueBERT Base EP: .6670 EP: .7817 EP: .8636 EP: .7767 EP: .6578 EP: .8042 EP: .7442 EP: .6822

Pretrain MedMentions ER: .7086 ER: .6265 ER: .8554 ER: .7877 ER: .7841 ER: .7892 ER: .4717 ER: .4565

FineTune 500 + SelfTrain EF: .6872 EF: .6955 EF: .8595 EF: .7822 EF: .7154 EF: .7966 EF: .5774 EF: .5470

BlueBERT Base EP: .6407 EP: .6612 EP: .8237 EP: .6935 EP: .5955 EP: .7664 EP: .6757 EP: .5942

Pretrain MedMentions ER: .7040 ER: .7160 ER: .8755 ER: .8290 ER: .7798 ER: .8466 ER: .6436 ER: .4831

FineTune 1000 EF: .6709 EF: .6875 EF: .8488 EF: .7552 EF: .6753 EF: .8045 EF: .6593 EF: .5330

BlueBERT Base EP: .7381 EP: .7702 EP: .8495 EP: .7623 EP: .6462 EP: .8426 EP: .8091 EP: .6894

Pretrain MedMentions ER: .7205 ER: .7021 ER: .8866 ER: .8201 ER: .8061 ER: .8637 ER: .6932 ER: .4746

FineTune 1000 + SelfTrain EF: .7292 EF: .7346 EF: .8676 EF: .7901 EF: .7174 EF: .8530 EF: .7467 EF: .5622

BlueBERT Base EP: .7097 EP: .7245 EP: .8985 EP: .8114 EP: .6439 EP: .8044 EP: .7225 EP: .6412

(Continued)
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NER applications with common biomedical entity types that overlap with the UMLS entity

types covered in the pre-training datasets; we explore the effectiveness of these methods on a

low-resource dataset with rare entity types in our Discussion section.

Training time

We measured the approximate training times for each phase of our training methodology to

give potential users a rough estimate of the associated computation requirements. All time

measurements were performed using a single Tesla V100 GPU. For the BiLSTM-CRF, the pre-

training step takes approximately one day for SemMed 1M; the fine-tuning step usually takes

less than five minutes when using 1000 labeled sentences; and the semi-supervised step takes

approximately one hour for the smallest dataset (NCBI-disease) to approximately sixteen

hours for the largest dataset (BC4CHEMD). For BlueBERT, the pre-training step takes approx-

imately one hour for MedMentions; the fine-tuning step usually takes less than ten minutes

when using 1000 labeled sentences, and the semi-supervised step takes approximately three

hours for the smallest dataset (NCBI-disease) to approximately two days for the largest dataset

(BC4CHEMD).

Application on low-resource datasets

One potential limitation of our study is that our pre-training datasets—SemMed and Med-

Mentions—are labeled for UMLS entities and therefore may cover some of the target entities

in our downstream test datasets. Thus, it is unclear how well transfer learning by pre-training

on SemMed or MedMentions will help on downstream biomedical NER tasks where the target

entity types are not covered by UMLS. To further explore this, we evaluate the effect of transfer

learning and self-training using the 2018 Text Analysis Conference Systematic Review Infor-

mation Extraction task (TAC SRIE) [68].

The TAC SRIE dataset (available online at https://tac.nist.gov/2018/SRIE/data.html) con-

sists of the “Material and Methods” section from 100 scientific articles covering experiments

where animals were exposed to environmental toxins and other environmental factors. Each

text section is annotated by human toxicology experts for words and entities that describe the

experimental design of the study; these include exposure (variable being tested, vehicle of

delivery, purity of exposure, verification of exposure), animal group (control group, sample

size, species, sex), dose group (dose amount, dose unit, dose frequency, dose duration, dose

duration units, time of first dose, time of last time, time units), and endpoints (effect of dose,

unit of measurement, time of measurement). We refer readers to [68] for more details about

the entity types and the dataset. We note that the entity types annotated in TAC SRIE are

Table 6. (Continued)

BC2GM BC4 CHEMD BC5CDR chem BC5CDR disease JNLPBA NCBI disease Linneaus S800

Pretrain MedMentions ER: .7345 ER: .7540 ER: .8694 ER: .7856 ER: .7663 ER: .8703 ER: .6296 ER: .6554

FineTune 2000 EF: .7219 EF: .7389 EF: .8837 EF: .7983 EF: .6998 EF: .8361 EF: .6729 EF: .6482

BlueBERT Base EP: .7613 EP: .7854 EP: .8903 EP: .8040 EP: .6755 EP: .8460 EP: .8745 EP: .6887

Pretrain MedMentions ER: .7524 ER: .7524 ER: .9114 ER: .8308 ER: .8144 ER: .8583 ER: .5891 ER: .6797

FineTune 2000 + SelfTrain EF: .7568 EF: .7686 EF: .9007 EF: .8172 EF: .7385 EF: .8521 EF: .7040 EF: .6841

BlueBERT Base EP: .7940 EP: .8765 EP: .9113 EP: .8325 EP: .6932 EP: .8534 EP: .9136 EP: .6756

No Pretrain ER: .8175 ER: .8912 ER: .9248 ER: .8481 ER: .8015 ER: .8755 ER: .7904 ER: .7249

Fully Supervised EF: .8056 EF: .8838 EF: .9180 EF: .8402 EF: .7434 EF: .8643 EF: .8475 EF: .6994

https://doi.org/10.1371/journal.pone.0246310.t006
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generally not within the entity types covered by UMLS and thus are likely to appear under dif-

ferent contexts than the entities from our pre-training datasets. The TAC SRIE dataset also

includes “Material and Methods” sections from 344 additional articles that do not include any

annotations. These articles are intended for evaluation, but the labels are not publicly available.

For our experiment, we utilize these 344 articles as our unlabeled set for self-training.

For our evaluation, we utilize two versions of the TAC SRIE dataset. In the first version we

include all annotations and entity types provided in the dataset. In the second version, we

exclude annotations from the “species” and “sex” entity types; we exclude “species” because

this entity type is most likely to overlap with UMLS and therefore the pre-training sets, and

we exclude “sex” because this entity type is usually a simple keyword search for “male” or

“female”. We provide a summary of our TAC SRIE datasets in Table 7. We use 80/10/10 split-

ting on the labeled set to create train/val/test sets, and we use the same experimental setup as

our main experiments where we pre-train our models, then fine-tune on the labeled set, and

finally apply self-training on the unlabeled set. We note that TAC SRIE includes fine-grained

entity type labels for each named entity; however, for our evaluation we do not predict specific

entity types and only predict BIO annotations for entity or non-entity.

Table 8 shows the performance of the BiLSTM-CRF and BlueBERT on the TAC SRIE data-

sets with and without pre-training and self-training. For the BiLSTM-CRF, we see that pre-

Table 7. Detailed information about the TAC SRIE dataset.

Num Articles Num Sentences Num Entities Entity Words/Total Words

Labeled (All) 100 7993 15265 .1607

Labeled (No Species/Sex) 100 7993 13029 .1501

Unlabeled 344 31115 n/a n/a

https://doi.org/10.1371/journal.pone.0246310.t007

Table 8. Exact precision, recall, and F1 score of the BiLSTM-CRF and BlueBERT on the TAC SRIE datasets. We

show the effect of including pre-training and including semi-supervised self-training.

TAC SRIE TAC SRIE

All Labels No Species/Sex

BiLSTM-CRF EP: .4629 EP: .3779

No Pretrain ER: .4497 ER: .3489

FineTune EF: .4562 EF: .3628

BiLSTM-CRF EP: .5842 EP: .5327

Pretrain 1M SemMed ER: .5282 ER: .4458

FineTune EF: .5548 EF: .4854

BiLSTM-CRF EP: .6036 EP: .5237

Pretrain 1M SemMed ER: .5254 ER: .4646

FineTune + SelfTrain EF: .5618 EF: .4924

BlueBERT Base EP: .6228 EP: .5797

No Pretrain ER: .6228 ER: .5934

FineTune EF: .6228 EF: .5864

BlueBERT Base EP: .6055 EP: .5784

Pretrain MedMentions ER: .6327 ER: .5910

FineTune EF: .6188 EF: .5846

BlueBERT Base EP: .6889 EP: .6459

No Pretrain ER: .6428 ER: .6166

FineTune + SelfTrain EF: .6650 EF: .6309

https://doi.org/10.1371/journal.pone.0246310.t008
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training on 1M sentences from SemMed provides a large boost in precision and recall for both

the full dataset and the dataset without species and sex annotations. However, the gain from

self-training is very small and inconsistent. We expect that this is because the initial model per-

formance prior to self-training is not high enough that self-training will propagate more

knowledge than errors—we explore this further in our Discussion section.

On the other hand, we see that pre-training on MedMentions is not particularly helpful for

BlueBERT compared to the base BlueBERT. This is not particularly surprising; we showed in

our previous experiments that since BlueBERT is already pre-trained using masked-language-

modeling, further pre-training using an NER dataset such as MedMentions sometimes but not

always provides an additional performance boost. Unlike with the BiLSTM-CRF, self-training

gives a noticeable boost in performance for BlueBERT. We expect that this is because the initial

model performance prior to self-training is strong enough such that self-training can propa-

gate more knowledge than errors.

Our results suggest that pre-training on UMLS entities and then self-training can be benefi-

cial for downstream biomedical NER tasks even if they do not focus specifically on common

UMLS entities. However, a more detailed study using a wider variety of low-resource biomedi-

cal NER tasks may be needed to establish the full scope of the benefits and limitations of our

proposed methods in the context of low-resource settings.

Discussion

Self-training failure analysis

Based on our results in Table 6, we observe a general trend that utilizing semi-supervised self-

training improves the overall F1 scores of the models, especially when there is a small amount

of labeled data. However, in rare cases such as the BiLSTM-CRF on S800 with 250 initial

labeled sentences, the overall F1 score drops significantly; multiple repeat runs showed the

same behavior. One possible explanation for this behavior is that self-training propagates both

knowledge and errors—a model that is highly confident when it is wrong will propagate bad

labels during the self-training phase, thereby harming the performance of the final model.

Therefore, when the model has an initial low performance before the self-training phase, self-

training may not be as effective.

To better understand this phenomenon, we show the performance of the BiLSTM-CRF

after each iteration of self-training under three different scenarios—S800 with 250 initial

labeled sentences, Linnaeus with 250 initial labeled sentences, and BC2GM with 1000 initial

labeled sentences (Fig 2). Linnaeus and S800 with 250 initial samples were chosen because the

BiLSTM-CRF had the lowest F1 scores on these two datasets prior to self-training. In the S800

scenario, the performance of the model during the course of self-training is highly volatile. We

observe that precision has a noticeable increase over time, especially in the early iterations;

however, recall, which is already low to begin with, decreases over time causing the overall F1

score to be highly variable across the different iterations. Self-training on Linnaeus does not

show this same behavior; precision, recall, and F1 score all show an initial increase and then

hold at a fairly steady level through the remainder of the self-training process. Lastly, the self-

training progress on BC2GM is representative of the typical self-training progression that we

observed in most of the scenarios in this study—there are small/moderate gains in precision,

recall, and F1 score over the course of self-training with occasional volatility caused by the

inherent stochasticity associated with training deep learning models.

A common practice in self-training and other forms of semi-supervised learning is to con-

tinually iterate the semi-supervised method until no more samples meet the confidence thresh-

old or some similar stopping criteria is met. However, our analysis shows that this practice
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may not always yield higher performance, especially when the initial model has low perfor-

mance. An alternative method, such as using validation score on a dedicated set of gold stan-

dard labels, may help safeguard against situations where self-training results in lower overall

performance.

Effect of transfer learning on self-training

As we have previously shown, semi-supervised learning can propagate both knowledge and

errors; thus, semi-supervised approaches such as self-learning can be unreliable if the initial

model has low performance. In settings with very few labeled examples, transfer learning can

be critical in boosting initial model performance to levels where semi-supervised learning can

provide a reliable boost. To demonstrate this effect, we analyzed the performance of self-train-

ing on the BC2GM dataset with and without transfer learning using both the BiLSTM-CRF

and BlueBERT (Table 9).

For the BiLSTM-CRF, we observe that for all data sizes and all training scenarios, the pre-

trained BiLSTM-CRF performs far better than the BiLSTM-CRF without pre-training. We

note that when using the BiLSTM-CRF with no pre-training and 250 labeled sentences, no

samples met the confidence threshold required to move data from the unsupervised set to the

train set; therefore, self-training could not even be utilized. Compared to the pre-trained

BiLSTM-CRF, the BiLSTM-CRF without pre-training also showed far greater instability in

performance throughout self-training—performance often peaked in the early iterations of

self-training and then slowly dropped in the later iterations. We observe a similar trend in the

BlueBERT experiments in that for all data sizes and training scenarios, BlueBERT Base has

lower F1 scores than BlueBERT Base with a second round of pre-training on MedMentions;

however, the difference in performance is much smaller than in the BiLSTM-CRF. This is

expected—as we showed in Table 5, BlueBERT Base already has strong performance in NER

tasks because the base model is already pre-trained, and the second round of pre-training

Fig 2. Performance of the BiLSTM-CRF after each iteration of self-training for three scenarios: S800 with 250

initial labeled sentences, Linnaeus with 250 initial labeled sentences, and BC2GM with 1000 initial labeled

sentences. For each scenario, we also show the percentage of total available data (train + unsupervised) added to the

training set after each iteration of self-training.

https://doi.org/10.1371/journal.pone.0246310.g002
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using an NER-specific dataset is not guaranteed to always provide an additional performance

boost.

These results show that transfer learning can be a critical tool in biomedical NER settings

with very few labeled examples. When labeled data is extremely scarce, transfer learning may

be required to bring the model up to a level of performance where semi-supervised learning

can then be effectively applied. As shown in our experiments, the combination of transfer

learning and semi-supervised learning can be a potent tool in improving performance in bio-

medical NER compared to a baseline model that uses neither, especially in situations where

there are very few labeled sentences.

Choosing the right confidence threshold for self-training

The selection of what confidence threshold to use for self-training can have a notable impact

on the final performance of the NER model. For simplicity and consistency, we used 99.75%

confidence as the threshold across all of our experiments—during the hyperparameter tuning

phase, we observed that this confidence threshold returned generally strong results on most of

the datasets. However, we note that this threshold is not guaranteed to be optimal under all

settings.

In our experiments, we observed three general trends. (1) First, lower confidence thresholds

require fewer iterations of self-training because each iteration adds more samples from the

unlabeled set and therefore samples from the unlabeled set are used up more quickly. We

noticed that for some datasets, extremely high thresholds also require fewer iterations of self-

Table 9. Performance of the BiLSTM-CRF and BlueBERT on the BC2GM dataset with and without transfer learning.

BiLSTM-CRF Pretrained 1M MetaMap BiLSTM-CRF No Pretrain BlueBERT Base + Pretrain MedMentions BlueBERT Base

BC2GM

Finetune 250

EP: .4699 EP: .0219 EP: .4946 EP: .4650

ER: .3493 ER: .2424 ER: .6051 ER: .6424

EF: .4007 EF: .0403 EF: .5443 EF: .5395

BC2GM EP: .6452 EP: .0219 EP: .5969 EP: .5218

Finetune 250 ER: .4612 ER: .2424 ER: .6436 ER: .6536

+ Self Train EF: .5379 EF: .0403 EF: .6194 EF: .5803

BC2GM

Finetune 500

EP: .4946 EP: .2423 EP: .5955 EP: .5711

ER: .4162 ER: .1641 ER: .6762 ER: .6594

EF: .4520 EF: .1957 EF: .6333 EF: .6121

BC2GM EP: .6159 EP: .4114 EP: .6670 EP: .6334

Finetune 500 ER: .5155 ER: .2072 ER: .7086 ER: .6852

+ Self Train EF: .5612 EF: .2756 EF: .6872 EF: .6583

BC2GM

Finetune 1000

EP: .6584 EP: .3376 EP: .6407 EP: .6178

ER: .6157 ER: .3461 ER: .7040 ER: .6925

EF: .6363 EF: .3418 EF: .6709 EF: .6531

BC2GM EP: .6899 EP: .4802 EP: .7381 EP: .7008

Finetune 1000 ER: .6691 ER: .3643 ER: .7205 ER: .6977

+ Self Train EF: .6793 EF: .4143 EF: .7292 EF: .6993

BC2GM

Finetune 2000

EP: .6666 EP: .4769 EP: .7097 EP: .6851

ER: .6552 ER: .4680 ER: .7345 ER: .7536

EF: .6608 EF: .4724 EF: .7219 EF: .7177

BC2GM EP: .7208 EP: .5042 EP: .7613 EP: .7324

Finetune 2000 ER: .7173 ER: .5084 ER: .7524 ER: .7600

+ Self Train EF: .7190 EF: .5063 EF: .7568 EF: .7460

https://doi.org/10.1371/journal.pone.0246310.t009
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training because after a number of initial iterations, no more samples from the unlabeled set

make it pass the threshold. (2) Second, too low or too high of a confidence threshold results in

lower performance in terms of overall F-score; the optimal range for the confidence threshold

varies by dataset. Finally, (3) the specific behavior of how different confidence thresholds affect

precision, recall, and F-score is dependent on the dataset and model.

In Table 10, we show how different confidence thresholds affect self-training using the

BiLSTM-CRF (pre-trained on SemMed 1M) on S800 with 250 labeled sentences and on

BC2GM with 1000 labeled sentences. On S800, we observe that lower thresholds improve

recall at the expense of precision, whereas higher thresholds improve precision at the expense

of recall. On BC2GM, this trend is much weaker, and we see that when the confidence thresh-

old is set too low both precision and recall drop. In both datasets, setting the confidence

threshold too high or too low causes the overall F-score to reduce; furthermore, the confidence

threshold that produces the highest over F-score is not the same between the two datasets.

From these results, we see that it is difficult to define a universal “best” confidence threshold

that will work well for all situations. Instead, users will likely need to tune the confidence

threshold as a hyperparameter based on the needs of the specific application.

Conclusion

In this work, we evaluated the effectiveness of combining transfer learning with semi-super-

vised learning to perform biomedical NER in applications with limited amounts of labeled

training data and that focus on common biomedical entities such as those covered in UMLS.

We used two different base models—a BiLSTM-CRF and BlueBERT—and evaluated on eight

different standard biomedical NER datasets covering different types of common biomedical

entities. For each dataset, we generated scenarios with different amounts of available labeled

data—250, 500, 1000, and 2000 labeled sentences.

For each model, we first evaluated the effect of pre-training on three different corpora—�

100K sentences from SemMed,�1M sentences from SemMed, and all�50K sentences from

MedMentions. We found that for the BiLSTM-CRF model, pre-training on 1M sentences

Table 10. We evaluate the BiLSTM-CRF pre-trained on SemMed1M on S800 with 250 labeled sentences and BC2GM with 1000 labeled sentences using different

confidence thresholds for self-training. We report exact precision, recall, and F1 score as well as the number of self-training iterations run before no more samples from

the unlabeled set meet the confidence threshold.

Confidence Threshold S800 (250 labeled) Score S800 (250 labeled) Iterations BC2GM (1000 labeled) Score BC2GM (1000 labeled) Iterations

0.9 EP: .4199 EP: .6331

ER: .1575 3 ER: .6504 6

EF: .2291 EF: .6417

0.95 EP: .5022 EP: .6611

ER: .1495 5 ER: .6761 13

EF: .2305 EF: .6685

0.99 EP: .6316 EP: .6818

ER: .1122 8 ER: .6773 27

EF: .1905 EF: .6795

0.9975 EP: .7749 EP: .6899

ER: .0975 10 ER: .6691 25

EF: .1724 EF: .6793

0.999 EP: .6854 EP: .6954

ER: .0697 18 ER: .6468 18

EF: .1265 EF: .6702

https://doi.org/10.1371/journal.pone.0246310.t010
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from SemMed provided the largest boost in performance. Since BlueBERT is already pre-

trained, the effect of the second round of pre-training was less consistent. Overall, further pre-

training of BlueBERT on MedMentions gave the best results.

Next, we evaluated the effect of incorporating semi-supervised self-training into each

model. For both the BiLSTM-CRF and BlueBERT, we found that in almost all scenarios, self-

training gave a boost to the final F1 scores; this boost was especially large in scenarios with

very few labeled sentences (250 and 500 initial labeled sentences). Because self-training can

propagate both knowledge and errors, in rare cases where the model performance was very

low before self-training was applied, self-training had inconsistent results and sometimes low-

ered the F1 score. In our analysis, we showed that transfer learning is critical in scenarios with

very few labeled sentences to bring the model performance up to levels where self-training can

be effective.

One limitation of our study is that our experiments focused on downstream NER tasks with

common entity types that are covered by UMLS. As a result, the UMLS entities annotated in

our pre-training datasets may overlap with the entities in the downstream NER tasks. There-

fore, it is unclear how much pre-training and self-training will help in downstream NER tasks

that utilize entity types not covered in UMLS. To help address this limitation, we showed that

pre-training and self-training can still boost performance when applied to TAC SRIE, a low-

resource dataset where the goal is to extract entities from toxicology papers that are related to

experimental procedures; the entity types of interest in TAC SRIE are generally not covered

within the entity types from UMLS. However, we note that a broader study utilizing a wider

range of different types of low-resource NER datasets is required to establish the effectiveness

of our methods in low-resource settings.

In this work, we utilized self-training for our semi-supervised method, which is an

extremely simple method. We expect that more sophisticated semi-supervised methods, such

as co-training or tri-training using models pre-trained on different corpora, may provide bet-

ter performance. Future work also includes evaluating the effect of transfer learning and semi-

supervised learning on datasets where predicting entity type is part of the NER task. The code

used for our experiments is available online at https://code.ornl.gov/biomedner/biomedner.

Supporting information

S1 Table. Exact and partial precision, recall, and F1 score of the BiLSTM-CRF and Blue-

BERT on each of our target datasets when pretrained on different corpora without fine

tuning.

(TIF)

S2 Table. Exact and partial precision, recall, and F1 score of the BiLSTM-CRF and Blue-

BERT on each of our target datasets when pretrained on different corpora and fine tuning

on 1000 labeled samples (800 train, 200 validation).

(TIF)

S3 Table. Exact and partial precision, recall, and F1 score of the BiLSTM-CRF on each of

our target datasets when fine tuning on different amounts of labeled data, with and with-

out semi-supervised self-training. A fully supervised version is included for comparison.

For all sets of training data, 80% of the available data is used for training and 20% of the avail-

able data is used for validation.

(TIF)

S4 Table. Exact and partial precision, recall, and F1 score of BlueBERT on each of our tar-

get datasets when fine tuning on different amounts of labeled data, with and without semi-
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supervised self-training. A fully supervised version is included for comparison. For all sets

of training data, 80% of the available data is used for training and 20% of the available data is

used for validation.

(TIF)
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