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Cardiovascular disease is the main disease that affects human life span. In recent

years, the disease has been increasingly addressed at the molecular levels, for example,

pseudogenes are now known to be involved in the pathogenesis and development

of cardiovascular diseases. Pseudogenes are non-coding homologs of protein-coding

genes and were once called “junk gene.” Since they are highly homologous to

their functional parental genes, it is somewhat difficult to distinguish them. With the

development of sequencing technology and bioinformatics, pseudogenes have become

readily identifiable. Recent studies indicate that pseudogenes are closely related to

cardiovascular diseases. This review provides an overview of pseudogenes and their

roles in the pathogenesis of cardiovascular diseases. This new knowledge adds to our

understanding of cardiovascular disease at the molecular level and will help develop new

biomarkers and therapeutic approaches designed to prevent and treat the disease.
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INTRODUCTION

Cardiovascular diseases (CVDs) are the leading cause of death, taking an about 18 million
lives globally every year (Goradel et al., 2018). CVDs are composed of coronary heart disease,
cerebrovascular disease, rheumatic heart disease as well as other related conditions. A better
understanding of CVDs at the molecular level is particularly important to develop preventive and
therapeutic strategies. In this regard, tremendous effects have been made toward the elucidation
of molecular mechanisms underlying various CVDs (Uchida and Dimmeler, 2015; Li S. et al.,
2018). For example, expression of long non-coding RNAs (lncRNAs) has been detected under
normal physiological conditions and in disease states, some lncRNAs are found to regulate acute
myocardial infarction (such as Novlnc6) (Uchida and Dimmeler, 2015) and acute heart failure
[such as Mhrt (Zhang et al., 2019), H19 (Greco et al., 2016), and growth arrest specific 5 (Wang
G. et al., 2019)], and gene transcripts such as MALAT1 and Tie-1-AS are found to control the
growth and functions of blood vessels (Uchida and Dimmeler, 2015). Recently, Spinraza (a novel
antisense oligonucleotide therapy) is approved by FDA to treat spinal muscular atrophy resulted
from pseudogene SMN2, in which the antisense oligonucleotide is used to increase SMN2 exon 7
inclusion, thus increasing levels of survival motor neuron (SMN) protein (Chiriboga, 2017; Paton,
2017; Berciano et al., 2020). This is an excellent example of how our understanding of molecular
mechanism of pseudogene has been translated to important therapeutic solution.

Pseudogene was first identified in 1977 (Jacq et al., 1977), and generally refers to non-functional
DNA sequences derived from non-sense or frameshift mutations on protein coding regions of
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ancient functional genes. Therefore, it has high sequence
homolog with the parental gene but does not encode any specific
protein or peptide. Most pseudogenes in the human genome
have not been characterized for biological functions. For a long
time, they have been considered as “junk gene” as a result
of ongoing evolution. However, data obtained during the past
decade have indicated that this interpretation of the usefulness

of pseudogenes is not entirely correct, and many pseudogenes

have important biological and genetic functions (Jacq et al.,

1977; Jingsi et al., 2015; Xie et al., 2019; Cheetham et al., 2020).
With the advances in sequencing technology, more and more

pseudogenes were identified (Dong et al., 2016). In the review, we
address the classification, identification and role of pseudogenes

in the pathogenesis of CVDs with emphasis on the mechanisms

underlying gene expression regulation by pseudogenes.

CLASSIFICATION OF PSEUDOGENES

Pseudogenes were originally defined as non-functional genomic

DNA sequences that are initially derived from genes. Therefore,

it is assumed that various kinds of gene mutations occurred to

generate pseudogenes are selectively neutral and the mutated

genes are able to transmit to the next generations (Balakirev
and Ayala, 2003). Generally speaking, pseudogenes are highly
homologous with DNA sequences of ancestral functional genes
but cannot be translated into protein due to the lack of critical

FIGURE 1 | Molecular mechanism of pseudogene formation.

regulatory elements such as promoters or the presence of
premature stop codons resulted from frameshift mutations. They
can be divided into non-processed or processed pseudogenes
(Figure 1) (Milligan et al., 2016; Maranda et al., 2019). Non-
processed pseudogenes are mainly derived from functional genes
by processes such as unequal crossing over events during cell
division. In these events, the homologous sequences are not
paired precisely, a sequence is deleted in one strand and replaced
with a duplication from its sister chromatid in mitosis or from
its homologous chromosome during meiosis. They generally
contain a promoter and other regulatory sequence elements such
as enhancers and an intact or partial exon-intron structure.
Unitary pseudogenes are a class of unprocessed pseudogenes
that do not have functional counterparts in the genome (Zhang
et al., 2010) and can be identified by analyzing the global
inventory of orthologs between the human genome and its
mammalian relatives (Zhang et al., 2010). On the other hand,
processed pseudogenes result from the insertion of reversely-
transcribed and mature RNA molecule (intron-less cDNA) into
the genome, and the abundance of processed pseudogenes are
therefore positively related to the expression level of genes from
which the RNA molecules are derived (McDonell and Drouin,
2012). They usually do not have introns but a poly-A tail as
cDNA sequences (Weiner et al., 1986) and are preferentially
located in regions of low recombination rates in the human
genome (Liu et al., 2010). They may be formed as a result of
somatic reactivation of retrotransposons occurring during cancer
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development (Cooke et al., 2014). Different from processed
pseudogenes, the presence of genetic structures in non-processed
pseudogenes, such as exon-intron structures, may provide clues
to trace the origin of these genes through bioinformatics
analysis. Evolutionally, processed pseudogenes are derived from
functional homologs and have distinct genetic features stemming
from point mutations, deletions, and insertions. Once formed,
pseudogenes can be inherited and transmitted to offspring and
generate secondary pseudogenes through evolution.

IDENTIFICATION OF PSEUDOGENE

With the development of computer technology, bioinformatics,
and especially sequencing technology, the whole genome
sequences of many species have been sequenced and published.
Pseudogenes are being identified through sequence alignment
and genome-wide transcriptomic and proteomic studies
(Xu and Zhang, 2016). Using RNA sequencing (RNA-seq),
new transcriptomes are becoming available quickly. The
transcriptomes can be assessed to discover pseudogenes using
bioinformatics tools to search, compare, and screen relevant
genomic databases and proteomic databases, and estimate
the types and abundance of pseudogenes. Several tools are
currently available for the identification of pseudogenes, such
as PseudoPipe (Zhang et al., 2006) (http://www.pseudogene.
org/pseudopipe/), Pseudofinder (https://github.com/filip-
husnik/pseudo-finder), Retrofinder, and REtrotransposed Gene
EXPlorer (Regexp) (Molineris et al., 2010). PseudoPipe is a
computational pipeline based on homology to screen and search
a mammalian genome. It can identify both non-processed and
processed pseudogene sequences. In this program, the sequences
of candidate pseudogene sequences are compared with protein
sequences to remove annotated gene sequences and repetitive
redundant sequences, generating clusters of genes from a
unique parent. Pseudogenes are also grouped based on their
homology, intron-exon structures, and presence of stop codons
and frameshifts in the sequences (Zhang et al., 2006). Different
from PseudoPipe, Pseudofinder is designed to detect pseudogene
candidates from bacterial and archaeal genomes.

Despite purposes and procedures, all these methods depend
on genomic, transcriptomic and proteomic data, and are very
efficient for species with expressed sequence tags (EST) or
proteomic data. However, they are not effective for species
whose information is not available or organisms lacking large
EST collections. REGEXP was developed to systematically
identify retrotransposition events. This method, unlike other
existing approaches, does not depend on a prior knowledge
of mRNA sequences. Using this pipeline, 2,288 processed
pseudogenes have been identified in the human genome
(Molineris et al., 2010). Recently, several new approaches have
been developed to identify pseudogenes from various sources.
For examples, competing endogenous RNAs (ceRNAs) networks
are explored to link pseudogenes and circular RNAs (circRNAs)
to identify pseudogenes, which also provide significant insights
into gene regulatory network with implication of human
diseases (Li et al., 2018a). In addition, a computational

pipeline (CIRCpseudo) has been developed to identify potential
pseudogenes derived from circRNAs based on the feature that a
circRNA-derived pseudogene would have an exon-exon junction
in a reversed orientation (Dong et al., 2016). After searching
the mouse and human reference genomes, 42 pseudogenes
originated from circRFWD2 in mouse and 24 circRNA-derived
pseudogenes in human were identified (Dong et al., 2016).
Several databases have been developed to provide information
about the transcriptional regulation, expression, functions, and
mechanisms of pseudogenes as well as their roles in biological
processes and diseases (Khelifi et al., 2005; Zheng et al., 2018). In
addition, circRNAs have also been implicated in many diseases,
including tumor and heart disease (Kalyana-Sundaram et al.,
2012; Wang et al., 2016; Li et al., 2018b).

FUNCTION OF PSEUDOGENE

Pseudogenes cannot be translated into proteins, so they were
once considered to be “dead genes” or “junk genes.” Although
intensive efforts and studies have been made to elucidate and
understand the function of pseudogenes, their biological and
genetic roles still remain largely unknown. However, during the
past decades, functional studies of pseudogenes have evolved
from the initial discovery of single pseudogene to the modes
and mechanisms of parental gene regulation by pseudogenes.
It is found that pseudogenes regulate parental genes mainly
via their transcripts. Expressed pseudogenes may be transcribed
to form antisense RNAs, which may complement with the
transcripts of parental genes to generate double strands or
complemented stands, leading to change in expression of parent
genes or resulting in destabilization of mRNA from the parental
genes. For example, in an insertion-generated mouse mutant
having polycystic kidneys and exhibiting bone deformity, the
introduced transgene was found to have inserted in the vicinity
of an expressed pseudogene Makorin1, termed Makorin1-p1.
This transgenic insertion decreased the transcription level of
Makorin1-p1, leading to destabilization of cellular Makorin1
mRNA (Hirotsune et al., 2003). Pseudogenes may form
endogenous small interfering (SI) RNAs, when the double
strand RNAs between pseudogene transcripts and their parent
transcripts or repetitive sequences of pseudogene are sliced
by endonuclease. These siRNAs may control and regulate the
expression of their parental genes through mechanisms such
as RNA interference (Abedini et al., 2018). For instance, it
was found that many endogenous siRNAs (endo-siRNAs) are
usually produced and formed from RNAs such as double-
stranded RNAs generated by hybridization of transcripts spliced
from genes that can code protein to antisense transcripts from
homologous pseudogenes. Endo-siRNAs can interact with Piwi
(P-element-induced wimpy testis)-interacting RNAs to repress
the movement of transposable genetic elements (Tam et al.,
2008). In addition, the competitive endogenous RNA (ceRNA)
may compete with miRNA generated by pseudogenes for target
genes to regulate the expression of target genes (Thomson and
Dinger, 2016). For example, pseudogene RNAs can function as
“sponge” to competitively bind miRNAs, leading to release or
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TABLE 1 | Pseudogenes and circRNAs identified in cardiovascular disease.

Disease Pseudogene/circRNA Function Mechanism References

Atherosclerosis APOOP1 Increasing low-density lipoprotein

cholesterol

Montasser et al., 2018

CLRX.1/NOD24 (NLRP2P) Impairing NF-κB p65 transactivation Porter et al., 2014

Lp(a)-like 2 Elevating serum lipid Wu et al., 2019; Chen et al., 2020

RPL38 processed pseudogene Dang et al., 2017; Tan et al., 2017

SAA3 Stimulates vascular proteoglycan

synthesis

Wilson et al., 2008; Thompson

et al., 2018

ANRIL Reducing vascular EC apoptosis Protein binding Song et al., 2017

Circ_0124644 Inducing vascular endothelium injury Unknown Zhao et al., 2017; Zhang et al.,

2020

Circ-ANRIL Protein binding Chen et al., 2020

Hsa_circ_0010729 Reducing apoptosis mRNA sponge Dang et al., 2017

circHIPK3 Improving cell viability mRNA sponge Shan et al., 2017

Myocardial infarction Carboxylesterase 1

pseudogene 1

Zhang et al., 2016; Koseler et al.,

2020

CDR1AS mRNA sponge Zhang et al., 2016

ZFAS1 mRNA sponge Zhang et al., 2016

MICRA mRNA sponge Salgado-Somoza et al., 2017

HRCR Inhibiting cardiac hypertrophy mRNA sponge Wang et al., 2016

MFACR Reducing cardiomyocyte cell

apoptosis

mRNA sponge Wang et al., 2017

Circ-Amotl1 Protein binding Zeng et al., 2017

Myocardial fibrosis Circ_010567 Targeting TGF-beta1 mRNA sponge Zhou and Yu, 2017

Cardiomyopathy Foxo3 Interacting with anti-senescent

proteins

Protein binding Du et al., 2017

CircTtn Activating the

IGF2/phosphatidylinositol 3-kinase

(PI3K)/AKT signaling pathway.

mRNA sponge van Heesch et al., 2019; Wang X.

et al., 2019

Pulmonary arterial

hypertension

hsa_circ_0016070 Vascular remodeling mRNA sponge Zhou et al., 2019

hsa_circ_0022342

hsa_circ_0002062

Inducing apoptosis in aortic smooth

muscle cells

Regulating gene expression

biomarkers

Miao et al., 2017

Aortic aneurysm Circ-000595 mRNA sponge Zheng et al., 2015

Aortic dissection Circ-101238 mRNA sponge Duggirala et al., 2015; Cheng

et al., 2020

Cardiac hypertrophy Circ-000203 Pro-hypertrophic effect Suppressing gene expression Li et al., 2020

attenuation of repression through separating targeted miRNAs
away from parental mRNAs, since binding of miRNA to the
target RNA is not 100% complementary, it is likely that one
miRNA can bind to multiple target RNAs. Such interactions
and binding generate a complex gene regulatory network that
may affect the expression of functional genes. An increase in
abundance of pseudogene RNA can strengthen the blocking of
miRNA and eliminate suppression on the expression of parental
genes, leading to an up-regulation of parental gene expression.
Studies have shown that the regulation of gene expression by
pseudogene in this manner needs the presence of RNAs that
bear common and functional metal regulatory elements (MREs)
(Poliseno et al., 2010). Furthermore, some pseudogenes can also
encode short peptides and proteins, although this is contradictive
to original definition of pseudogenes. Some pseudogenes may
gain or retain function during evolution. For example, the

processed pseudogene NLRP2P is related specifically to higher
primate. It is found to be closely associated with the Pyrin-
only protein 2 (POP2/PYDC2). The open-reading frame of the
NLRP2P gene located on chromosome X has characteristics that
are consistent with a processed pseudogene (retrotransposon).
However, it encodes Pyrin-domain-related protein with 45-
amino acids (Porter et al., 2014). Using a new bioinformatics
method, it was found that 40% lncRNAs and pseudogene RNAs
expressed in human cells are translated into peptides and 74% of
pseudogene peptides have conserved ORFs in mouse transcripts,
implying that these peptides are potentially functional (Ji et al.,
2015). As a consequence of biomedicine research, large number
of pseudogenes have been implicated in many human diseases
(Pink et al., 2011; Grander and Johnsson, 2016), including
cancer (Emadi-Baygi et al., 2017; Tutar et al., 2018) and
CVDs (Table 1).
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PSEUDOGENES AND CVDs

Atherosclerosis
Statins are the most commonly prescribed CVD drugs. To
identify biomarkers and determinants that are responsible for
statin response, Kim et al. compared whole transcriptome
sequence data of patients collected from simvastatin and
control after simvastatin treatment. They found that one of the
most differentially expressed genes is zinc finger protein 542
pseudogene (ZNF542P). It is considered as the signature gene
because the changes of its expression are most correlated with
statin-induced changes in the cellular level of cholesterol ester.
They further showed that knock-down of the ZNF542P gene
in a human hepatoma cell line increases the intracellular levels
of cholesterol ester after the cells were exposed to simvastatin.
These findings indicate that ZNF542P may have a role in low-
density lipoprotein cholesterol (LDL-C) response to simvastatin
(Kim et al., 2018). However, since these genes were identified
from cell lines, not directly from tissues of patients treated with
simvastatin, it is likely that they might not be the most responsive
genes in vivo.

Elevated LDL-C level is a main risk factor for CVDs because
it contributes to, and enhances the development and progression
of atherosclerotic lesions. Currently, only 20% of the variation
in LDL-C levels can be attributed to genetic variants. Through
an array-based association analysis, it was found that a variant
is strongly associated with LDL-C levels and the expression of
a transcribed pseudogene, APOOP1 located on chromosome 5,
increased LDL-C level and vascular plaque formation (Montasser
et al., 2018), suggesting that this may be a novel mechanism of
lipid homeostasis.

Serum amyloid-alpha (SAA) and high-sensitivity C-reactive
protein (hs-CRP) are sensitive biomarkers of acute inflammation
and are related to atherosclerosis. Recent studies show that
there is a significant and independent relationship between SAA
and development of potential cardiovascular events, suggesting
that systemic inflammations, manifested as high SAA or hs-
CRP levels, may accelerate the destabilization of existing
atherosclerotic plaques (Johnson et al., 2004). SAA has three
transcripts, SAA1/SAA2/SAA3. Among them, SAA3 is a human
pseudogene. In the animal model, it is an expressed acute phase
isoform in mice when acute inflammatory reaction occurs. Using
ApoE(–/–) mouse model, it was shown that over-expression of
SAA3 results in a 4-fold increase in atherosclerosis lesion size
over control while knockdown of SAA3 decreases atherosclerosis
(Johnson et al., 2004), implying that this gene may be a new
therapeutic target for atherosclerosis.

Non-coding locus INK4 on chromosome 9p21.3 is closely
related to atherosclerosis. The antisense non-coding RNA in
INK4 locus ANRIL was confirmed to be involved in the
pathological process of atherosclerosis, leading to carotid plaque,
stroke, aneurysms, peripheral arterial disease, heart failure,
and cardiovascular death events (Holdt and Teupser, 2012).
However, ANRIL is not directly related to high risk factors
such as hypertension and hyperlipidemia. Mechanistically, it
forms cicrANRIL, which binds to a number of proteins such
as the nucleolar protein pescadillo homolog 1 (PES1), leading

FIGURE 2 | Comparison of expression of Oct-4 pseudogenes PSG1 and

PSG5 in pulmonary arterial smooth muscle cells (PASMC) from idiopathic

pulmonary arterial hypertension (IPAH) patients and normal individuals.

to impairment of exonuclease-mediated pre-rRNA processing
and ribosome biogenesis in vascular smooth muscle cells
and macrophages, resulting in apoptosis and inhibition of
proliferation (Holdt et al., 2016).

Idiopathic Pulmonary Arterial Hypertension
Idiopathic pulmonary arterial hypertension (IPAH) is a
vasculopathy. It is characterized by increased pulmonary vascular
resistance due to vasoconstriction and/or lung remodeling
defects such as plexiform lesions, which are the hallmark of
the PAH, as well as massive cell proliferation, remarkable, and
irreversible vascular and angiogenic dysfunction. Octamer-
binding transcription factor 4 (Oct4) is a transcription factor
and is used as pluripotency markers in embryonic stem cell
research. Six pseudogenes of the Oct4 family have been identified
by using bioinformatics approach to analyze the genomic
nucleotide sequences. Some of them are found involved in the
excessive proliferation of pulmonary arterial smooth muscle cells
(PASMC) in patients with IPAH. Therefore, they may have a role
in the pathogenesis and development of IPAH. The expressions
of Oct-4 isoforms are upregulated in IPAH-PASMC conditions.
However, the mRNA levels of Oct-4 pseudogene Oct-4-psG1 and
Oct-4-psG5 are significantly down-regulated in IPAH-PASMC
(Figure 2) (Firth et al., 2010).

Heart Failure
Heart failure (HF) is a heterogeneous clinical syndrome
stemming from cardiac overload and injury. The disease is
expected to increase steadily in the upcoming years due
to demographic changes such as aging. Therefore, a better
understanding of molecular mechanisms underlying the disease
is crucial for prevention and treatment of the disease. Using
RNA-Seq, the expression of lncRNAs in 22 transplanted human
models of HF hearts was studies. In HF heart models, a
total of 84,793 mRNA coding and non-coding transcripts
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were identified using RNA-Seq, including 13,019 protein-coding
genes, 2,085 lncRNA genes, and 1,064 pseudogenes. Based
on the Ensembl release 73 (Genome Reference Consortium
human genome build 37), 48 lncRNAs, 27 pseudogenes, and 30
antisense RNAs were identified for a total of 105 differentially
expressed lncRNAs in the HF hearts. Compared with the donor
hearts, HF hearts showed that 7.7% of protein-coding genes,
3.7% of lncRNAs, and 2.5% of pseudogenes are differentially
expressed. In silico functional analyses suggested that many of
these pseudogenes have possible regulatory roles and are of
important for future mechanistic study (Di Salvo et al., 2015a).
Based on RNA sequencing, 800–1,000 differentially expressed
genes (DEGs) were identified between HF right ventricular (RV)
and unused donor human heart RVs (DON RV), and many
of them are likely pseudogenes. Since these DEGs had high
sensitivities, specificities, predictive values and areas under the
receiver operating characteristic curves, they might be novel
HF myocardial biomarkers (Di Salvo et al., 2015b). In these
studies, the sequenced transcripts were categorized based on
the Ensembl release 73, which was released in 2013. More
deferentially expressed transcripts could be identified with newer
versions of the Ensembl release. Furthermore, annotation of
these transcripts with other databases, such as GRCh38.p13
(Genome Reference Consortium Human Build 38 patch release
13) may offer more functional and classification information.
When RNA-seq is used to profile the transcripts, the RNA sources
have great impact on the transcriptome. In their work, end-
stage human myocardium was used for RNA-seq, which may
generate sequence bias due to medications and therapies (Di
Salvo et al., 2015b), resulting in biomarkers less suitable for non-
end stage patients. In addition, in vivo and in vitro experiments
are needed to defined and validate the biological functions of the
genes identified in silica. In general, parental and coding genes
have high expression levels than corresponding pseudogenes.
However, some pseudogenes have been found highly expressed.
For example, the expression level of pseudogene FBXO43 is
far more abundant than the corresponding parental gene (Shoji
et al., 2014). Endogenous siRNA produced from pseudogene
FBXO43 does not target the transcript of FBXO43, but the
transcripts related to FBXO43 such as the transcripts of MAPK1,
MDM2, OSMR, and IRAK3 and NMRA-like protein NMRAL1,
which is a redox-sensitive transcriptional regulator. Reduced
expression of NMRAL1 increases nitric oxide (NO) production
and reduces cell viability. Compared with unused donor hearts,
the expression level of NMRAL1 pseudogenes, but not NMRAL1
in right ventricle of HF was significantly reduced, indicating
that NMRAL1 pseudogenes are involved in HF in right ventricle
(Garciandia and Suarez, 2013). Identifications of genes including
pseudogenes would provide targets for future molecular analysis
on HF.

Other CVDs
The occurrence and prevalence of coronary artery disease are
gender-depended. Men are more likely to be affected than
women. Therefore, it is possible that the Y chromosome
may contribute to this sexual difference. An analysis of 11
genetic markers positioned on the male-specific region of the Y

chromosome in 3233 Britishmen revealed nine haplogroups. The
carriers of haplogroup I had a risk of coronary artery disease in
about 50% higher likelihood thanmen with other Y chromosome
lineages. The high risk possibly results from the interactions of
immunity and inflammation in cardiac systems and associated
with high blood pressure and myocardial infarction, but not
with BMI, blood lipids, blood pressure, and C-reactive protein
(Charchar et al., 2012). For men in the haplogroup I population,
the elevated risk of coronary artery disease appears to be related
to the down-regulations of several genes such as ubiquitously
transcribed-tetratricopeptide repeat, the Y-linked gene (UTY)
and protein kinases, and Y-linked, pseudogene (PRKY) in
macrophages (Bloomer et al., 2013). PRKY is a transcribed
pseudogene without exon 6 and a part of exon 5 (that encodes
the functional domains of the kinase). However, the biological
function of PRKY is largely unknown. Its functional homolog is
located on the X chromosome and is involved in the maturation
of macrophage and development of kidney (Li et al., 2002; Glesne
and Huberman, 2006).

Dilated cardiomyopathy (DCM) and hypertrophic
cardiomyopathy (HCM) are two major cardiomyopathies.
Khan et al. compared circRNA expression profiles in DCM,
HCM, and normal cardiac tissues and found that RNA-binding
motif protein 20 (RBM20), an essential protein for normal
splicing of many cardiac genes, is also crucial to generate of a
subset of circRNAs from the I-band of the titin gene. In RBM20-
null mice, these titin circRNAs are down-regulated in DCM
but not in HCM (Khan et al., 2016). These cardiac circRNAs
are mostly (∼90%) produced from constitutive exons and less
(∼10%) from alternatively spliced exons and are generated at the
expense of their linear counterpart (Aufiero et al., 2018).

Arrhythmogenic right ventricular cardiomyopathy
(ARVC) is a family-heritable disorder. It is characterized
by progressive degeneration and destabilization of right
ventricular myocardium, increased incidence of arrhythmias and
an increased risk of sudden death at a young age. To identified
gene associated with the disease, a number of genes located in
the critical region of the microsatellite markers were screened,
including laminin receptor 1 pseudogene 6 LAMR1P6, which
is a processed transposable element within the ARVC6 critical
interval (Asano et al., 2004) and a functional lamr1 retroposon
gene is a cause of ARVC observed in the mouse via regulating
mRNA stability of a homologous gene (Yonemura et al., 1998).

Marfan syndrome (MFS) is an autosomal dominant
connective tissue disorder with an estimated incidence of
1/5,000 peoples. It affects the cardiovascular system as well as
lung, skin, and dura. Since fibrillin-1 (FBN1) mRNA is indicator
for MFS severity, identification of trans-acting regulators
that controls FBN1 expression is important to elucidate the
mechanism. Pseudogene, SNX7-ps1, is found to be associated
with expression of a neighboring gene SLN (encoding sarcolipin)
that plays role in skin fibroblasts. Since SNX7-ps1 expression is
positively correlated with the SLN gene, it is likely that the two
genes are controlled by regulatory elements for their expression
(Benarroch et al., 2018).

CircRNAs have been shown to involve in a number of CVD
conditions ranging from atherosclerosis to cardiac hypertrophy
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FIGURE 3 | Biological functions of circRNAs as miRNA sponge (A), protein

sponge (B), and transcriptional regulator (C).

(Table 1) and they function as miRNA and protein sponges or
transcriptional regulators to exert biological functions (Figure 3).
For instance, cicrFoxO3 derived from the FoxO3 gene is
highly expressed in the elderly and is positively corelated to
senescence-associated β-galactosidase, SA-β-gal. It is proposed
that cicrFoxO3 may be a protein sponge of inhibitor of
differentiation-1, focal adhesion kinase, E2F transcription factor
I, and hypoxia inducible factor 1, resulting in reduced availability
of these proteins, thus reduced translocation of anti- senescence
proteins into the nuclei and cellular senescence (Du et al.,
2017). RBPs (RNA-binding proteins) have been found to be

expressed and regulated in the heart. After treatment with
doxorubicin, expression of circRNAs from Ttn (Titin), Fhod3
(Formin homology 2 domain containing 3), and Strn3 (Striatin,
calmodulin-binding protein 3) and Qki5 was down-regulated,
leading to reduced cell viability and cardiac senescence (Gupta
et al., 2018).

CONCLUSION

With the continuous development of sequencing technology and
bioinformatics, more and more pseudogenes are going to be
discovered and studied. Current investigations have shown that
pseudogenes can regulate gene expression and play important
roles in the occurrence and development of CVDs. They may be
used as new diagnostic markers or therapeutic targets to enhance
our efforts to combat the diseases. However, compared to other
molecular studies in human diseases, research on pseudogenes in
CVDs is still in its infancy. More studies are needed to further
our understanding of molecular mechanisms related to the role
of pseudogenes in cardiovascular and other diseases.
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