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Abstract: The development of membrane technology is rapidly increasing due to its numerous
advantages, including its ease of use, chemical resistant properties, reduced energy consumption,
and limited need for chemical additives. Polyurethane membranes (PUM) are a particular type
of membrane filter, synthesized using natural organic materials containing hydroxy (-OH) groups,
which can be used for water filtration, e.g., ammonia removal. Red seaweed (Rhodophyta) has
specific molecules which could be used for PUM. This study aimed to ascertain PUM synthesis from
red seaweed biomass (PUM-RSB) by using toluene diisocyanate via the phase inversion method.
Red seaweed biomass with a particle size of 777.3 nm was used as starting material containing
abundant hydroxy groups visible in the FTIR spectrum. The PUM-RSB produced was elastic, dry,
and sturdy. Thermal analysis of the membrane showed that the initial high degradation temperature
was 290.71 ◦C, while the residue from the thermogravimetric analysis (TGA) analysis was 4.88%. The
PUM-RSB section indicates the presence of cavities on the inside. The mechanical properties of the
PUM-RSB have a stress value of 53.43 MPa and a nominal strain of 2.85%. In order to optimize the
PUM-RSB synthesis, a Box–Behnken design of Response Surface Methodology was conducted and
showed the value of RSB 0.176 g, TDI 3.000 g, and glycerin 0.200 g, resulting from the theoretical and
experimental rejection factor, i.e., 31.3% and 23.9%, respectively.

Keywords: ammonia; biomass; Gracilaria verrucosa Greville; polyurethane membranes; response
surface methodology; toluene diisocyanate

1. Introduction

Membrane technology continues to develop from year to year. As a separation and
purification method, membrane technology has several advantages, including minimum
energy use, less requirement for additional chemicals, and adequate chemical resistance [1].
The membrane works in extreme pH conditions [2], is very easy to apply [3], is practical,
simple [4–6], and has many applications [7]. Membranes can be synthesized using inor-
ganic or organic materials. A particular organic membrane that can be synthesized is a
polyurethane membrane PUM [8].

PUM can be synthesized by using various natural materials such as castor oil [9],
rubber seed oil [10], avocado seed oil [11], nyamplung seed oil [12], and carrageenan [13].
The natural materials, which contain a large amount of hydroxy (-OH) groups, can form
urethane bonds with a source of isocyanate (-NCO) [10,14,15]. Selected natural materials
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that contain many hydroxy groups are red seaweed [8,16] and isolated carrageenan from
seaweed [16].

Red seaweed, mainly Gracilaria verrucosa Greville, is an abundant and often underuti-
lized natural substance—especially in Indonesia’s Aceh region. The dominant components
of red seaweed include carrageenan, alginate, and agar [5,16]. Red seaweed has great
potential as a primary material for PUM synthesis, due to its -OH content [5,8,16]. The
carrageenan from seaweed has been used as a basic material for the synthesis of PUM
with optimum reaction conditions obtained at 60 ◦C for 5 min with a ratio concentration of
carrageenan to toluene diisocyanate of 15% (w/v). The analysis of test data on carrageenan
PUM showed that the properties of the resulting membrane were slightly elastic, where
the elongation percentage was only 9%. The membrane also has high tensile strength,
340 kgf/mm2, 9% elongation, 243.6 ◦C glass transition temperature, and a 423.02 ◦C melt-
ing point. The membrane performance is assessed by applying it to the ultrafiltration
process using standard 1000 ppm dextran solution. The average flux obtained is 39.2 L/h
flux value and a rejection factor of 45.9% [13].

One exciting application of PUM is in ammonia gas sensors [17] and for removing
ammonia from the air [18], river water [19], wastewater [20], saline wastewater [21], and
NH4Cl solutions [5]. Carrageenan contained in red seaweed has the anion -SO4

2- which can
bind NH4

+ cations [22,23]. Ammonia in water accumulates in the form of NH4
+, which can

disrupt the life of aquatic biota, so it is necessary to reduce levels of ammonia in water [24].
Ammonia levels in waters are usually less than 0.1 mg/L. If the ammonia level is more than
0.1 mg/L, the waters are toxic to some fish. High ammonia levels can contaminate organic
matter from domestic, industrial, and agricultural wastes [22]. Marlina et al. [5] have
reported that polyurethane synthesized from algal biomass can reduce ammonia levels in
pond water. The addition of activated carbon contributes to an increase in functional groups
and surface area, which are essential for removing NH3-N. Adsorption capacity increased
rapidly after adding activated carbon to the PUM (from 187.84 to 393.43 µg/g). The results
also suggest AlgPU is a suitable matrix for the immobilization of activated carbon as fillers.
The PUM has demonstrated the potential use of developed algae for NH3-N removal [5].
The modified membrane system AF-MBMBR (sponge moving bed membrane bioreactor
coupled with a pre-positioned anoxic bio-filter) was proposed to treat saline wastewater
from marine culture. The results showed that the efficiency of TOC (total organic carbon)
removal was very high, namely 92.8–96.2%, and the excellent TN (total nitrogen) removal
efficiency reached 93.2% [21]. The application of adsorption membranes in removing
ammonia has received significant attention thanks to its outstanding performance in the
hybrid process, namely the adsorption and filtration approaches [20].

The synthesis of PUM from natural materials has been widely developed, as previously
mentioned, however the synthesis of PUM from red seaweed of the Gracilaria verrucosa
Greville species has not yet been reported in the literature. This study used all parts of
the seaweed type Gracilaria verrucosa Greville, known as seaweed biomass, with the PUM
produced applied to filter the ammonia solution. The Box–Behnken Design of Response
Surface Methodology (RSM) was used to obtain the optimal composition in this study.
RSM is a mathematical and statistical method that can be used for modeling and analysis to
see the effect of quantitative variables on response variables and optimize these variables’
results. This design can also incorporate factorial and incomplete group designs [25,26].
This design uses Design Expert Software Version 10.0.3.0 with three factors and three levels.
In addition, RSM is also used to model and analyze quantitative variables. The relationship
between these variables can be described in equation [27–29]. The response used is the
level of ammonia absorbed by the PUM. The relationship between factors and responses
produces a 3D graph in order to determine the optimal composition.
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2. Materials and Methods
2.1. Materials and Samples

The materials and samples used were an aquadest, 1,4-dioxane as a solvent, glycerin
and castor oil as plasticizers, toluene diisocyanate (TDI), and NH4Cl. Each material used
had Pro Analysis (PA) qualities from Merck (Darmstadt, Germany). Furthermore, the
Gracilaria sp red seaweeds were obtained from ponds in Lamnga Village, Mesjid Raya
Subdistrict, Aceh Besar Regency, Aceh Province.

2.2. Equipment

The equipment used includes a Fourier Transform Infra-Red (FTIR) (IR-Prestige-21,
SHIMADZU), a Particle Size Analyzer (PSA) (DelsaTM Nano Beckman Coulter), a Scanning
Electron Microscope (SEM) (JOEL-6510 LA), a Differential Scanning Calorimetry (DSC)
(DSC-60, SHIMADZU), a Thermogravimetric Analysis (TGA) (DTG-60, SHIMADZU), and
an MTS EM tensile test with ASTM D638 Plastics Tension 1229.

2.3. Red Seaweed Biomass Preparation

The red seaweed obtained was sorted and cleaned of impurities using tap water and
dried in sunlight for five days. After drying, it was ground using a grinder and sieved
using fine gauze to obtain red seaweed biomass [30]. The red seaweed biomass (RSB) was
then characterized through a size analysis using PSA, and the sample was weighed, put
into a cuvette, and then combined with aqua pro injection up to 2.5 mg. The cuvette was
inserted into the PSA tool holder and the functional group analysis using FTIR.

2.4. Polyurethane Membrane Preparation

Polyurethane membrane from red seaweed biomass (PUM-RSB) was synthesized
by weighing 0.2 g RSB, which was placed in a beaker. Then 5 g of 1,4-dioxane and 0.5 g
of castor oil was added and homogenized for 10 min. Next, 2.5 g of TDI and 0.3 g of
glycerin were added, and the mixture was heated at 60 ◦C for 90 min. Afterward, the
dope solution was printed using a petri dish with a thickness of 0.800 ± 0.005 mm and
placed in a dust-free room at room temperature for 24 h. When the membrane sheet was
fully formed, it was immersed in warm, distilled water for 1–2 h and removed from the
mold [31].

2.5. Polyurethane Membrane Characterization

The resulting PUM-RSB was further characterized to include functional group analysis
using FTIR (IR-Prestige-21, SHIMADZU), samples made into KBr pellets (ratio 1:20), and
recorded spectrum in the wavenumber range 4000–400 cm−1. Morphological analysis was
conducted using SEM (JOEL—6510 LA); the sample was placed on an aluminum plate and
coated with palladium gold using a vacuum. The sample was analyzed using Det.BSE and
SE at a voltage of 10, 15, and 20 kV. Thermal analysis was conducted using DSC (DSC-60,
SHIMADZU) and TGA (DTG-60, SHIMADZU); the observation was carried out under a
nitrogen gas flow with a speed of 20 mL per minute. The sample was weighed to 10 mg
and heated at a temperature of 0 to 600 ◦C. The mechanical properties were analyzed using
MTS EM tensile test with ASTM D638 Plastics Tension of 1229.

2.6. Filtration Experiment

First, 70 mL of 10 ppm NH4Cl test solution (pH 9) was put into 17 pieces of 100 mL
beaker glass, and each test solution was inserted into a filtration module with a PUM-RSB
attached with a surface area of 22.051 cm2. Next, the filtration process was carried out
with a dead-end flow system with a pressure of 20 bar for 20 min at room temperature.
The ammonia levels before and after the filtration process were analyzed using a UV-Vis
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spectrophotometer with the Nessler method at a wavelength of 425 nm. The water flux and
rejection factors of a PUM-RSB are determined using the following Equations (1) and (2).

Water Flux J =
V

AtP
(1)

Rejection factor R =

(
1 − C2

C1

)
× 100% (2)

J: Flux (mL/cm2·min·bar)
V: Permeate volume (mL)
A: Surface area (cm2)
t: Time (min)
P: Pressure (bar)
R: Rejection factor (%)
C1: Feed concentration (ppm)
C2: Permeate concentration (ppm)

3. Results and Discussion
3.1. Red Seaweed Biomass

The red seaweed used in this study was from the Species: Gracilaria verrucosa Greville,
Genus: Gracilaria, Familia: Gracilariaceae, Order: Gracilariales, Class: Rhodophyceas, which
had been identified in the plant systems laboratory of the Faculty of Biology, Gadjah Mada
University. The Gracilaria verrucosa Greville is a red seaweed (Figure 1) that grows wild in
community ponds and is not utilized for many commercial purposes. The red seaweed
used was obtained from Lamnga Village, Aceh, Indonesia. All parts of the red seaweed,
alternatively known as biomass in the form of red seaweed biomass (RSB), were produced
from the algae milling process.
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The particle size is a significant factor in the reaction rate, where the smaller the
particle size, the faster the reaction process [32]. Based on the PSA data, the RSB had a
particle size of 777.3 nm with a polydispersity index of 0.221. The closer the polydispersity
index value is to 0, the more homogeneous the particle size distribution, whereas a value
above 0.5 indicates a heterogeneous particle size distribution [33].

The FTIR spectrum of RSB can be seen in Figure 2. The spectrum showed a deep, wide
absorption at 3404 cm−1, which signifies a large number of -NH and -OH groups which
are possible candidates for forming urethane bonds [8]. In addition, the weak absorption
at 2920 cm−1 for C-H alkanes can result in brittle and less elastic membrane properties.
In addition to the abundant -OH groups, the transmittance value shows the complexity
of the compounds contained in the RSB FTIR spectrum. Transmittance is defined as the
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ratio of light intensity before and after passing through the sample (T = I/Io). The lower
the transmittance value, the more light is absorbed by the functional groups in the sample,
meaning that the functional groups contained in the sample have a large number and are
complex [34].
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3.2. Polyurethane Membrane

The synthesis of PUM using red seaweed biomass (PUM-RSB) was carried out by
trial and error until the right conditions were ascertained. Synthesis required the for-
mation of urethane bonds based on two main groups, namely hydroxy and isocyanate.
The polymerization reactions of polyurethane formation are shown in Figure 3, where
urethane cross-linkage occurred in the presence of a functional group, such as a hydroxy
and isocyanate group [15]. Furthermore, the composition of its materials or ingredients sig-
nificantly influences the physicochemical properties of the PUM-RSB, as it forms both soft
and hard segments [35]. Its synthesis involved a variety of additional materials (Table 1).

In Table 1, it can be seen that the PUM-RSB has a brittle and inelastic nature; this is due
to the lack of soft segment constituent components. The addition of castor oil and glycerin
can increase the elasticity and strength of the PUM. Castor oil can form soft segments [36],
while glycerin can increase the formation of cross-links (hard segments). PUM in the form
of RSB and TDI possesses brittle, breakable properties. These properties are due to the
lack of soft segment-forming components, which is the weak absorption at 2929 cm−1 C–H
alkanes (Figure 2). Therefore, other additives needed to increase the elasticity and firmness
of the membrane were added, such as castor oil [37] and glycerin. The PUM-RSB formed
with the addition of castor oil and glycerin had dry and elastic properties. The membranes
with numbers 6 and 7 are membranes without using RSB as a control.

Polyurethane membranes synthesized using 0.2 g RSB, 2.5 g TDI, 0.5 g castor oil and
0.3 g glycerin had visually shown better results (Table 1). Therefore, the membranes were
characterized by methods including functional group analysis using FTIR, morphological
analysis using SEM, thermal analysis using TGA and DSC, and tensile strength analysis.
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Table 1. Variations in PUM synthesis using red seaweed biomass.

RSB 1 (g) TDI 2 (g) Castor Oil (g) Glycerin (g) Visual Description PUM-RSB 3

0.2 2.5 0 0
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1 RSB: Red seaweed biomass, 2 TDI: Toluene diisocyanate, 3 PUM-RSB: Polyurethane membrane from red
seaweed biomass.

The FTIR analysis of the functional groups of PUM-RSB proved that the urethane
bond was formed (Figure 2). The urethane bond is characterized by the absorption of -NH
bonds at 3390 and 1635 cm−1, -C=O at 1738 cm−1, -CN at 900–1300 cm−1, and weakening
-NCO 2280 cm−1 [38]. The increase in absorption of -NH bonds at 3390 cm−1 compared to
the FTIR of RSB indicates the addition of -NH bonds formed from urethane bonds and the
reduction of -OH bonds from RSB.
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Figure 3. Reaction of PUM-RSB synthesis [1,36,39].

Furthermore, the SEM image in Figure 4 shows a layer formation, and the outer layer
looked tighter than the inner. Therefore, the outer layer has the potential to maintain the
strength of the membrane and as a selective layer. The inner layer contains a cavity, which
serves as a membrane reinforcement and a filter. In the inner layer, gaps are formed due to
dense cross-bonding of hollow urethane cross-linking [40,41].
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Thermogravimetric Analysis (TGA) was applied against temperature. The initial
degradation temperature depended on the thermal stability of the weakest point in the
macromolecular structure. The second degradation temperature was dependent on the
urethane bonds formed and the most thermostable units, aromatic, and ester groups of soft
segments in the macromolecular structure. Meanwhile, the final degradation temperature
was dependent on either the formed polyurethane bond or some other structure [36].
PUM-RSB generally has low thermal stability, as the urethane groups are unstable and
decompose below 300 ◦C. Therefore, a reduction in the initial membrane weight at 300 ◦C
influences the degradation of urethane and urea bonds present in the hard segment. The
second thermal degradation between 340–450 ◦C involved further breaking of bonds into
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other aliphatic groups present in the membrane structure [42]. The TGA results showed
that the membrane had a high initial degradation temperature of 290.71 ◦C with a residue
of 4.88%, as demonstrated in Figure 5. In addition, the high degradation temperature
occurred due to the cross-linkage of urethane [43]. Moreover, DSC analysis of the PUM-
RSB showed the first endothermic peak at 95 ◦C was assigned to water evaporation. The
urethane bond-breaking was detected at an endothermic peak at 242 ◦C, a high temperature
indicating a more thermally stable urethane linkage. The peak in 300–500 ◦C is associated
with some degradation of the hemicellulose complex constituents [5,6,37].
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The mechanical properties of the resulting PUM-RSB have a stress value of 53.43 MPa
and a nominal strain of 2.85%, as shown in Figure 6. From the results of the mechanical
properties test, the resulting PUM-RSB is still less elastic. Membrane strength and strain
significantly affect membrane performance. The PUM synthesized using carrageenan has a
9% elongation percentage. This membrane also has a large tensile strength of 340 kgf/mm2,
with a yield strength of 69.17 kgf/mm2 [13]. The base material for the synthesis of PUM-
RSB can affect the elongase value and tensile strength.
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3.3. Ammonia Filtration

Polyurethane membranes synthesized using red seaweed biomass (PUM-RSB) have
been applied as an ammonia filter in water. PUM-RSB can be used as an ammonia filter
because PUM-RSB has a free SO4

2− anion group and an isocyanate (NCO) group. Both
groups can bind NH4+ cations in water with the reaction shown in Figure 7. The reaction
between SO4

2− anions and NH4
+ cations will form ammonium sulfate bonds, while the

reaction of the isocyanate group (NCO) with the NH4
+ cation will form a substituted urea

bond [23,24]. These bonds very rarely occur because of the limited SO4
2− anion groups

and isocyanate groups (NCO) on the surface of the PUM-RSB.
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The optimal PUM-RSB membrane was determined by varying the composition of the
membrane components. Varied membrane composition using a combination design using
Response Surface Methodology with Box–Behnken Design, which can combine factorial
designs with incomplete group designs [25]. The results of this design use Software Design
Expert Version 10.0.3.0 with three factors (RSB, TDI, and Glycerin) and three levels (low,
medium, and high), resulting in 17 run combinations of the PUM synthesis composition as
shown in Table 2.

Table 2. The result of decreased ammonia levels from the filtration process.

Run Factor 1 A:
RSB (g)

Factor 2 B:
TDI (g)

Factor 3 C:
Glycerin (g)

Flux
(mL/cm2·min·bar) Rejection Factor (%)

1 0.2 3.0 0.4 0.952 26.944
2 0.2 2.5 0.3 0.700 24.231
3 0.3 2.5 0.4 0.731 21.037
4 0.2 2.0 0.2 1.660 32.369
5 0.2 3.0 0.2 0.935 28.330
6 0.1 2.5 0.4 0.930 26.342
7 0.2 2.5 0.3 1.322 28.692
8 0.1 2.0 0.3 0.754 18.505
9 0.3 2.0 0.3 0.732 21.339

10 0.1 2.5 0.2 1.156 27.547
11 0.3 2.5 0.2 0.928 26.100
12 0.2 2.5 0.3 1.141 29.355
13 0.2 2.0 0.4 1.662 29.295
14 0.3 3.0 0.3 0.701 25.196
15 0.2 2.5 0.3 0.840 25.437
16 0.2 2.5 0.3 1.058 23.749
17 0.1 3.0 0.3 0.992 28.873
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Table 2 shows the results of decreasing ammonia levels from the filtration process
using a PUM-RSB. The highest ammonia level that can be maintained by PUM-RSB is a
flux of 1.660 mL/cm2.min.bar and a rejection factor of 32.369%. The low rejection factor is
caused by the low interaction between ammonia and sulfate and isocyanate groups on the
PUM-RSB. The interaction between ammonia and PUM-RSB was strongly influenced by the
pH of the feed solution [44], while, in this study, pH 9 was used. At alkaline pH ammonia
will be in the form of NH3 while at acidic pH ammonia in water will be NH4

+, which allows
NH4

+ to bond with SO4
2− at MPU and form ammonium sulfate bonds [23,24]. The value of

the rejection factor and water flux in this study was lower compared to other studies. The
application of clinoptiloite-based hollow fiber ceramic membranes in ammonia ffiltration
resulting in a rejection factor of 96.67% and a flux of 30 L/m2·h [2]. Meanwhile, another
study used polyurethane films from polyol algae with activated carbon filler to remove
ammonia using the adsorption method showed a high adsorption capacity of 109.45% [5].
Comparison of the results from the literature can be used for further development of this
PUM-RSB research using the adsorption method and the addition of activated carbon
as filler.

3.4. Statistical Design Model

All types of model designs show no significant results, which can be seen from the
higher R2 value for the response of the rejection factor. The highest R2 value is the quadratic
model reaching 57.46%, while the linear model is the linear model 14.74%, and the 2FI
model 22.31%. The R2 value of all models has not yet produced the desired value; a
reasonably good R2 value is above 70%. The value of R2 expressed in % can indicate the
contribution of the regression. The greater the R2 value, the greater the contribution or role
of factor (x) to the response (y) [25]. The rejection factor statistical design model can be
seen in Table 3 and the analysis of the variance of the quadratic model in this study can be
seen in Table 4.

Table 3. Statistical design model of PUM-RSB synthesis.

Source Linear 2FI Quadratic

Std. Dev 3.61 3.93 3.47
R-Square 0.1474 0.2231 0.5746

Adj R-Square −0.0494 −0.2431 0.0277
Pred R-Square −0.6545 −2.4505 −3.8734
Adeq Precisior 2.651 2.702 3.495

PRESS 328.60 685.27 967.87

Table 4. ANOVA analysis for a quadratic model of the flux and rejection factor.

Source Sum of
Squares df Mean

Square F Value p-Value
Prob > F Characterization

Model 114.12 9 12.68 1.05 0.4853 Not significant
A-RSB 7.21 1 7.21 0.60 0.4649
B-TDI 7.67 1 7.67 0.64 0.4514

C-Glycerin 14.39 1 14.39 1.19 0.3111
AB 10.60 1 10.60 0.88 0.3799
AC 3.72 1 3.72 0.31 0.5960
BC 0.71 1 0.71 0.059 0.8150
A2 48.57 1 48.57 4.02 0.0849
B2 1.42 1 1.42 0.12 0.7412
C2 23.45 1 23.45 1.94 0.2060

Residual 84.48 7 12.07
Lack of Fit 57.90 3 19.30 2.90 0.1649 Not significant
Pure Error 26.59 4 6.65
Cor Total 198.60 16
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The Adeq Precision value is the signal-to-noise ratio. The expected ratio is greater than
4, in the quadratic model the resulting ratio is smaller than 4, this indicates an inadequate
signal [45]. The relationship between the PUM-RSB rejection factor and the factor (x) based
on the coefficient value can be seen in Equation (3) and the 3D plot in Figure 8.

y = 26.29 − 0.95A + 0.98B − 1.34C − 1.63AB − 0.96AC + 0.42BC − 3.40A2 + 0.58B2 + 2.36C2 (3)
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The optimization results using the Response Surface Methodology with Box–Behnken
Design provide a solution to the composition of the PUM-RSB, as shown in Table 5.
The table shows that the theoretical rejection factor results from the optimum solution
are 31.324%, with a desirability of 0.925, and the desirability value is close to 1.00 [46].
The result of the rejection factor experimentally from the optimum membrane solution
was 23.9%.

Table 5. Optimum composition solutions for polyurethane membrane synthesis.

RSB (g) TDI (g) Glycerin (g) Rejection Factor
(Theory) (%) Desirability

Rejection Factor
(Experiment)

(%)

0.176 3.000 0.200 31.324 0.925 23.870

4. Conclusions

Red seaweed from the Gracilaria verucosa Greville can be used as a base for making
PUM-RSB. The addition of castor oil and glycerin can improve the physical properties
of PUM-RSB. PUM-RSB without using plasticizer is dry, brittle, and easily crushed, so
the addition of castor oil and glycerin as a blaster can improve the physical properties of
PUM-RSB. The PUM-RSB produced from red seaweed possesses elastic, dry, and sturdy
properties. Furthermore, it had a high initial degradation temperature of 290.71 ◦C, and the
residue from TGA analysis was 4.88%. The quadratic model chosen in the Box–Behnken
design has a higher R2 value than other models, namely 57.46%. The optimal composition
of PUM-RSB on the Box–Behnken design on Response Surface Methodology is RSB 0.176 g,
TDI 3.000 g, and glycerin 0.200 g, which yields a theoretical rejection factor of 31.3% and,
experimentally, 23.9%.
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