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Cancer cells try to avoid the overproduction of reactive oxygen species by metabolic rearrangements. These cells also develop
specific strategies to increase ROS resistance and to express the enzymatic activities necessary for ROS detoxification. Oxidative
stress produces DNA damage and also induces responses, which could help the cell to restore the initial equilibrium. But if this is
not possible, oxidative stress finally activates signals that will lead to cell death. High mobility group B (HMGB) proteins have been
previously related to the onset and progressions of cancers of different origins. The protein HMGB1 behaves as a redox sensor and
its structural changes, which are conditioned by the oxidative environment, are associated with different functions of the protein.
This review describes recent advances in the role of human HMGB proteins and other proteins interacting with them, in cancerous
processes related to oxidative stress, with special reference to ovarian and prostate cancer. Their participation in the molecular
mechanisms of resistance to cisplatin, a drug commonly used in chemotherapy, is also revised.

1. Introduction

Reactive oxygen species (ROS), generated as consequence of
oxidative metabolism, activate signal transduction pathways,
which contribute to cellular homeostasis [1]. Metabolically
active cells, neutrophils, and macrophages from the immune
system produce high levels of ROS. Consequently, the
recruitment of immune cells during chronic inflammation
increases oxidative stress (OS) in the microenvironment [2].
Exogenous sources, such as cigarette smoke and UV-light,
also contribute to increasing the total cellular ROS content.
The maintenance of the steady-state equilibrium between
ROS generation and elimination is crucial for cell survival,
while its loss causes cell death by different mechanisms
triggered by oxidative damage. Cancer cells demand high
energy production to sustain their pathological increase in
proliferation rate. Thus, in order to avoid excessive ROS gen-
eration, they switch the utilization ofmetabolic pathways that

require mitochondrial respiration to fermentation [3]. They
also develop specific strategies to increase ROS resistance,
which include deviation of the glycolytic flux into the pentose
phosphate pathway (PPP) or changes in other enzymatic
mechanisms enhancing ROS detoxification [3, 4]. In cancer
cells, ROS production is mainly due to overexpression of the
NADPH oxidase [3]. Paradoxically, the antioxidant enzymes
necessary for ROS elimination use the NADPH coenzyme;
therefore, the PPP is important as a source of NADPH
reducing power [3]. While a balance between enhanced ROS
production and detoxification can be maintained, cancer
cells will proliferate and survive. Commonly used radio- and
chemotherapies are prooxidant strategies that alter cancer
cells through ROS modulation and induce cell death [5, 6].

Changes in the redox state of cells affect proteins, lipids,
and nucleic acids in different ways. HMGB1 is an abundant
protein, 106 molecules per cell [7], which has been postulated
as a redox sensor [8]. HMGB1 is also related to the hallmarks
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of cancer as described by Hanahan and Weinberg [9].
These are as follows: sustained proliferative signalling, cell
death resistance, replicative immortality, genome instability
and increased mutations, tumour-promoted inflammation,
insensibility to growth repressors, deregulation of cellular
energetics, evasion of immune destruction, induction of
metastasis, and promotion of angiogenesis. The biological
functions of HMGB1 are diverse in normal cells and dur-
ing the start and progression of cancer. Remarkably, these
functions change depending on its redox state and cellular
compartment. In the nucleus it behaves as a DNA chaperone,
sustains nucleosome dynamics and chromosomal stability,
and contributes to telomere maintenance [10]. It also mod-
ulates gene transcription and recombination [7]. Besides,
HMGB1 participates in DNA repair by different mechanisms
such as nucleotide excision repair, NER, mismatch repair,
MMR, base excision repair, BER, and double strand break
repair, DSBR [11]. In the cytoplasm,HMGB1 binds the protein
beclin1, increases autophagy, inhibits apoptosis, and regulates
mitochondrialmorphology and function [12].HMGB1 can be
secreted by activated macrophages, monocytes, natural killer
cells, and dendritic cells or can be released from necrotic
or injured cells mainly during oxidative stress [13, 14].
Once HMGB1 becomes an extracellular signal, it binds to
several cell surface receptors, principally to the receptor
for advanced glycation end products (RAGE) and toll-like
receptors (TLRs) and activates nuclear factor kappa B (NF-
𝜅B) signalling [15] and other downstream signalling pathways
[12]. As a result, HMGB1 modulates immune and inflamma-
tory responses and promotes cell proliferation, angiogenesis,
and cell adhesion and migration. Curiously, oncogenic and
tumour-suppressive activities have been assigned to HMGB1
at different stages of tumour genesis and therapy [12]. More-
over, it has been reported that Tax1, an oncogenic protein
of viral origin, upregulates HMGB1 levels, which suggests
that cancers of viral origin could also be related to HMGB1
deregulation [16].

Different isoforms of the human protein HMGB1,
encoded by the HMGB1 gene, have been reported [17] and
other genes (HMGB2 and HMGB3—alias HMG2a—and
HMGB4), encoding similar although less studied HMGB
proteins, are present in the human genome [18–20]. This
review describes recent advances in the biological functions
of human HMGB proteins and other proteins interacting
with them, in cancerous processes related to OS, with special
reference to ovarian and prostate cancer. These two malig-
nancies have been previously related to redox imbalance and
deregulation of the nuclear factor erythroid 2-related factor
2 gene, NRF2, encoding a transcription factor that binds to
antioxidant response elements (AREs) and that is regarded
as a promising therapeutic target [21, 22]. The molecular
mechanisms of resistance to cisplatin, commonly used in
chemotherapy of ovarian and prostate cancers, and their
interplay with HMGB proteins are also reviewed.

2. HMGB Proteins as Redox Sensors

HMGB1 is so far themost studiedmember among the human
HMGB protein family. It has many different functions that

depend on its redox state and posttranscriptional modi-
fications, like acetylation, which determine its cellular or
extracellular localization. HMGB1 is polyacetylated near its
nuclear-localization sequences (NLSs) and this modification
blocks the interaction with the nuclear importer [23]. Acety-
lated cytosolic HMGB1 is incorporated into cytoplasmic
secretory vesicles that allow the regulated secretion of the
protein [24]. The four human HMGB proteins have two
positively charged DNA binding domains, HMG A-box and
HMG B-box, folded in the characteristic L-shaped architec-
ture (Figure 1(a)). Each domain is formed by three alpha-
helix-stretches which are indicated in Figure 1(b). InHMGB1,
the HMGA-box includes amino acids 1–79, and the HMG B-
box is formed by amino acids 89–163.The acidic carboxyl ter-
minus, amino acids 186–215, is negatively charged and has an
extended and flexible structure, which interacts with residues
within and between the two HMG boxes [25] although it
has the highest affinity for the HMG B-box [26]. Many of
the redox changes, associated with different functions of
HMGB1, are conditioned by the environment and, therefore,
HMGB1 is considered a master redox sensor. This function
depends on three cysteine residues at positions 23, 45, and
106, which can be in reduced state, as thiols, or oxidized, as
disulphide bonds. In moderate oxidative conditions, Cys23
and Cys45 easily form an intramolecular disulphide bridge,
while Cys106 remains reduced (the semioxidized HMGB1
form). Nuclear magnetic resonance (NMR) spectroscopy
studies of HMGA-box have shown that the redox potential of
the Cys23-Cys45 pair is within the physiological intracellular
range [8]. The formation of the disulphide bond is favoured
with a standard redox potential as low as −237mV [27]; in
consequence, a significant fraction of HMGB1 is expected
to be in the semioxidized form within cells [8]. This Cys-
Cys bond is a target of glutathione-dependent reduction by
glutaredoxin [28]. The proximity of these Cys residues to
amino acids that are necessary for DNAbinding [29] explains
the importance of redox-regulated conformational changes
in HMGB1, which may modulate their affinity for DNA.
Redox changes may also affect the interaction with other
proteins and receptors and modify their biological functions.
Cysteines can be further oxidized to sulfenic (RSOH), sulfinic
(RSO
2
H), or sulfonic (RSO

3
H) acids under increased OS

pressure [28].

3. Structural and Functional Similarities and
Differences between Human HMGBs

The tertiary structure of HMGB1 A-box [29] reveals that
Cys23 and Cys45 are located at the centre of helix I and helix
II, respectively, opposing each other and at a distance that
allows the formation of a disulphide bond under appropriate
oxidative conditions (Figure 1(a)). The proteins HMGB1,
HMGB2, HMGB3, and HMGB4 share a great similarity in
their amino acid sequences as shown in the CLUSTALW
alignment (Figure 1(b)). Only HMGB4 has some remarkable
differences with the others, but even so, it conserves high
similarity. Cys23 and Cys45 are conserved in HMGB2 and
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Figure 1: Comparative structure and expression of human HMGB proteins. (a) The HMG box folding characteristic of HMGB proteins
showing the two Cys that form the disulphide bond. (b) CLUSTAL alignment of the human HMGB proteins. The three alpha-helix-stretches
of HMG box-A and Box-B are indicated by their secondary structure; the acidic tail in the carboxylic end is signalled in red; cysteines are in
green; the twoNLSs characterized inHMGB1 are underlined in yellow. (c) Levels of expression ofmRNAs fromHMGBproteins are according
to data from BioGPS (http://BioGPS.org).

HMGB3. Cys23 is absent in HMGB4, and certainly the DNA
binding capacity of HMGB4 is independent of redox changes
[30].

Cys106 is involved in the nuclear localization of HMGB1
[28] and this residue is conserved in the four human HMGB
proteins (Figure 1(b)). Two nuclear location signals (NLSs),
which are rich in lysine residues and extend from amino

acids 28–44 and 179–185, respectively, have been described
in HMGB1 [31]. The NLSs are well conserved as shown in
the alignment (Figure 1(b)) although in HMGB4 they show
more variation. Although Cys106 is not present inside the
NLS, thiols may participate in nuclear transport by a number
of indirectmechanisms such as nuclear pore complex binding
[32], ubiquitination [33], or transporter interaction [34, 35].
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Figure 2: Venn diagram of HMGB protein interaction partners. Those reported as modified during ovarian or prostate cancer progression
are highlighted inside the boxes. The figure has been done considering the public results from BioGRID (http://thebiogrid.org/, as available
on date 05/31/2015).

Consequently, Cys106 conservation may be important to
preserve the nuclear functions of these proteins.

Besides the absence of Cys23, the two most outstanding
features of HMGB4, in comparison to the other HMGB
proteins, are the presence of two additional cysteines at
positions 164 and 178 and the absence of the acidic tail in the
carboxylic end (Figure 1(b)). To our knowledge the biological
significance of Cys164 and Cys168 in HMGB4 has not been
studied yet. The function of the acidic tail in HMGB
proteins is related to the interaction with other proteins,
like nucleosome core histone H3 [36], and also to the
stabilization of specific HMGB folding forms, because in
HMGB1 it can interact with basic residues present in HMG
B-box or in the interconnection of the two HMG boxes
[25, 26].

HMGBproteins arewidely expressed, except in cellswith-
out nucleus [37]. Data from microarrays reveal that HMGB1
andHMGB2 genes are the highest expressed in immune cells.
HMGB3 expression is relatively high in placenta andHMGB4
expression is specific of testis (Figure 1(c)). The functional
significance of these variations is unknown, since specific
studies have not been reported. One possible explanation is
that they may have different functions in different tissues,
which may be associated with binding to tissue-specific
protein partners. Remarkably, abnormal mRNA and protein
levels of these proteins have been detected in numerous
cancers, including ovarian and prostate [38–41].

4. HMGB Interactions with Nuclear Proteins

After ribosomal synthesis, HMGB1 is imported into the
nucleus where it interacts with the minor groove of free
DNA through the HMG boxes [42] and it behaves as a DNA
chaperone [43]. HMGB1 also binds to packed DNA, relaxes
the structure of nucleosomes, promotes their sliding, and
relaxes chromatin; thus, by its ability to bend DNA, HMGB1
favours the accessibility of other proteins to chromatin [44].
The C-terminal unstructured acidic tail of HMGB1 interacts
with the N-terminal unstructured tail of histone H3, which
is close to the DNA entry/exit points around the nucleosome
dyad, thus positioning HMGB1 on the linker DNA [36]. This
DNA chaperone function would explain the implication of
HMGB proteins in wide variety of nuclear processes such
as DNA replication, recombination, transcription, telomere
maintenance, and diverse mechanisms of DNA repair [45–
47]. OS causes DNA damage and it also affects proteins
involved in these DNA-related processes. The OS induced
responses could help the cell to restore the initial equilibrium
or if the feedback to the initial status is not possible, they
could activate pathways that would lead to cell death.

Several proteins have been recognised as HMGB1,
HMGB2, HMGB3, or HMGB4-interactants by diverse
approaches and results are deposited in BioGRID (http://
thebiogrid.org/). A summary of these interactions is pre-
sented by a Venn diagram (Figure 2).The results in BioGRID
include more interactions detected for HMGB1 or HMGB2
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than for HMGB3 or HMGB4 proteins, a feature that will
probably changewith the progression of ongoing interactome
projects in the near future. HMGB1 and HMGB2 interact
with each other and they have common interactors like
the nuclear hormonal receptors which are deregulated in
prostate and ovarian cancers [48–50]. The functions of the
HMGB partners as well as their sensibility to OS could help
us to understand the role of HMGB proteins in the response
to oxidative damage and their implications in the origin and
progression of cancer.

In the nucleus, HMGB proteins interact with a number of
transcription factors, among them tumour suppressors like
P53 [51–53] or its homolog P73 [54]. It has been reported
that nuclear retention of HMGB1 and P53 depends on the
formation of a complex between them and, without their
binding partner, HMGB1 or P53 can return more easily to
the cytoplasm [55]. The interaction with P53 is of particular
importance in the relation of HMGB1 with OS and cancer
since P53 also functions as a redox sensor in the cell [56].
It has been recently reported that P53 can directly sense OS
through DNA-mediated charge transport and that purine
regions with lower redox potential facilitate higher P53-DNA
dissociation [57]. The association in vivo and in vitro of
each of the four HMGB proteins with the retinoblastoma
protein (RB) occurs through a common LXCXE/Dmotif that
is necessary for modulation of cancer cell growth [58, 59].

HMGB1 interacts differentially with members of the REL
family of transcription factors (RELA/P65, c-REL, RELB,
P50/NF-𝜅B1, and P52/NF-𝜅B2) like NF-𝜅B1 [60]. In the
nucleus NF-𝜅B1 promotes cell proliferation and antiapoptosis
by transcriptional regulation, playing a key role in tumour
genesis and progression [61]. HMGB1 and HMGB2 interact
with nuclear steroid hormone receptors including estrogen,
androgen, and glucocorticoid receptors [48–50] favouring
the binding to their DNA targets [62, 63]. The interactions
with hormone receptors are of relevance taking into account
the hormonal dependence of several cancers [40].

HMGB1 binds to cyclin-dependent kinases like CDK2
that control transcriptional regulation of genes related to
cell cycle progression [64]. HMGB1 also interacts with
topoisomerase II alpha, highly expressed in tumours and
involved in replication and chromosomal segregation and
recombination, and stimulates its catalytic activity [47]. In
absence of RB, HMGB1 and HMGB2 modulate the binding
of the transcription factorNF-Y to the topoisomerase II alpha
promoter [65]. NF-Y recognizes CCAAT boxes and has been
related to different types of cancer [66].

The high mobility group A (HMGA) proteins belong, as
HMGB proteins, to the HMG family and are characterized by
the “AT hook” domain forDNAbinding, instead of theHMG
box present in HMGB proteins. The HMGA proteins alter
chromatin structure and thereby regulate the transcription
of several genes, being also implicated in the development
of benign and malignant neoplasms [67]. HMGA proteins
have been related to the process by which epithelial cells
change to mesenchymal type (the epithelial-to-mesenchymal
transition, or EMT). During EMT, epithelial cells lose their
cell polarity and cell-cell adhesion capacity, which leads to
constriction caused by the two vicinal cells and extrusion

of a new mesenchymal cell. This stromal mesenchymal cell
has both migratory and invasive capacities and also has the
potential to differentiate into a variety of cell types. EMT
is essential for numerous developmental processes and also
occurs in the initiation of metastasis, being very important
in tumours of epithelial origin. Carcinoma cells in the pri-
mary tumour lose cell-cell adhesion mediated by E-cadherin
and gain access to the bloodstream through extravasation
[68]. HMGA2, once induced by transforming growth factor
𝛽 (TGF𝛽), associates with SMAD complexes and induces
expression of the SNAIL transcription factors, which controls
epithelial-mesenchymal transitions by repressing E-cadherin
[69] and Twist [70] expression. No direct effect of the HMGB
proteins in this process has been described and although
HMGB1, HMGB2, and HMGB3 interact with HMGA1 [71],
a direct interaction with HMGA2 has not been reported.The
study of HMGB-HMGA interactions is an interesting area to
explore in relation to EMT.

HMGB proteins are able to bind to other nuclear proteins
that do not have DNA binding capacity but that have a
role in modifying transcription and in the onset of cancer.
HMGB1 interacts with the aminoterminal enhancer of split,
AES, [72], which plays an important role in tumour metas-
tasis by regulating cell adhesion through changes in RND3
expression [73]. RND3 (alias RHOE) is amember of the small
GTPases and regulates actin cytoskeleton organization and
cell migration [74], as well as proliferation, differentiation,
and apoptosis [75–77].

Besides the effects caused by direct interactions between
HMGB proteins and other regulators of gene expression, we
also have to consider the cross-regulation that operates to
modulate the expression of all these factors. In this sense, it
has been recently shown that the enhanced ectopic expression
of HMGB1 decreases BCL-2-like protein 4 (BAX) and P53
expression, while it enhances B-cell lymphoma extra large
(BCL-XL), B-cell lymphoma 2 (BCL-2), cyclin D1, and NF-
𝜅B expression [78]. This causes activation of cell growth and
diminishes cell death [78].

5. HMGB Proteins in Survival
versus Cell Death Control

Redox imbalance in the cells could lead to oxidative damage
in the nucleus, with the consequent genome instability, and
other processes related to malignancy along cancer origin
and propagation. The progression of the OS response in the
cell is accompanied by changes that might affect cell survival,
providing reparative mechanisms, or promoting cell death.
However, death or survival of a single cell could be good or
bad for the organism. If survival affects a cell without a serious
compromise in genome integrity and stability, the tissue will
probably restore its healthy status. But if a cell with previous
hallmarks for cancerous progression survives, its success is
paradoxically detrimental for the tissue and the organism.

Cell death can occur by different mechanisms and the
oxidative state of the cell and its microenvironment is a key
determinant for their selection (Figure 3). When oxidative
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damage starts and ROS production is enough for starting
themitochondrial permeability transition (MPT),mitophagy
and autophagy allow the cell to recycle damaged elements
and survive. Autophagy and its selective form mitophagy
that destroys damaged mitochondria require the formation
and progression of the phagophore to finally produce the
autophagosome. Then, the autophagosome fuses to the lyso-
some to constitute the autolysosome, where the degradation
of the sequestered elements occurs [79]. If the oxidative dam-
age persists, the integrity of the mitochondria is affected and
cytochrome 𝑐 is released; this molecule signals apoptosis and,
consequently, cell death without immunogenic activation.
Finally, with the highest levels of oxidative damage, necrosis is
established and with it the possibility of a wide immunogenic
activation [80].

As shown in Figure 3, in viable cells, HMGB1 is mostly
localized in the nucleus associated with DNA and proteins
in chromatin. Low acetylation of histones, observed during
apoptosis, causes a hypercondensation of chromatin and the
irreversible HMGB1 binding; this binding is a canonical
characteristic of alarmins like HMGB1 [80]. If the apoptotic
cell is not cleared by macrophages, secondary necrosis is
produced and the instability of cellular membranes allows
HMGB1 to be released to the extracellular media strongly
bound to DNA [37]. If necrosis is primary, not derived from
previously apoptotic cells, HMGB1 release is also observed,
but in this case the protein is free, not associated with

DNA [81]. ATP depletion mediated by poly[ADP-ribose]
polymerase 1 (PARP1) also regulates HMGB1 release during
necrosis [82].

HMGB1 has important functions controlling the balance
between autophagy and apoptosis. In the nucleus, as a regula-
tor of transcription, and in the cytoplasm, by binding to reg-
ulator proteins, HMGB1 controls these processes. Under OS
or other types of stress, hyperacetylation of NLSs promotes
HMGB1 translocation from the nucleus to the cytoplasm [83].
The export from the nucleus ismediated by the chromosome-
region maintenance 1 protein, CRM1 [31]. In the cytoplasm,
semioxidized HMGB1 (Cys23-Cys45 disulphide and Cys106
thiol) leads to the activation of caspase-3 and caspase-9
and promotes the induction of the mitochondrial pathway
of apoptosis. But it also binds to the protein beclin1 and
favours the formation of the autophagosome [84]. Under
proautophagic conditions beclin1 forms a complex with
the proteins ambra1, VPS34, and VPS15 that initiates the
formation of the phagophore [85]. The binding of HMGB1
to beclin1 favours autophagy and simultaneously inhibits
apoptosis [27, 86]. Moreover, P53 is a negative regulator of
HMGB1-beclin1 interactions in the cytoplasm, and loss of P53
increases interactions between HMGB1 and beclin1 [55].

HMGB1 also controls autophagy as a direct transcrip-
tional regulator of the heat shock protein 𝛽1 (HSP𝛽1), which
is a regulator of actin cytoskeleton dynamics [86]. Therefore,
the suppression of HSP𝛽1 expression avoids the dynamics
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necessary to the progression of the autophagosome and
consequently inhibits autophagy as well as mitophagy [86].
Class III phosphatidylinositol-3 kinase (PI3K III) activity is
required for the activation of autophagy [87] and HMGB1
promotes the formation of the beclin1-PI3K III complex [88],
which is necessary for triggering autophagosome nucleation
[89], probably by mitogen-activated protein kinase kinase
(MEK) and protein-serine/threonine kinases (ERK1/2) sig-
nalling [88].

6. Extracellular HMGB1 Functions
and Effects on Other Cells That Contribute
to Cancer Progression

If cancer cells do not cope with redox imbalance and under-
gone necrosis, the releasedHMGB1 induces diverse responses
over the cells in the microenvironment (Figure 4), which
contribute to tumour cell survival and the development of
metastases [90]. These effects of extracellular HMGB1 are
linked to poor prognosis in several cancers including pros-
tate, colon, pancreas, and breast [80].

The extracellular HMGB1 binds to diverse receptors in
several cells, alone or forming heterocomplexes with other
immunogenic molecules. Reduced HMGB1 (three thiols in
Cys23, Cys45, and Cys106) binds to RAGE and induces
beclin1-dependent autophagy [84]. RAGE is expressed in
macrophages, cancer cells, and cells in themicroenvironment

of tumours such as leukocytes, endothelial cells, and fibrob-
last [91]. Overexpression of RAGE and HMGB1 has been
observed during cancer progression, invasion, andmetastasis
[92]. Conversely, blockade of RAGE-HMGB1 signalling sup-
presses tumour growth and metastases [93].

Semioxidized HMGB1 binds to TLR4 receptors in the
immune cells and produces the release of cytokines, whereas
reduced HMGB1 does not bind to TLR4. However, the
reduced form binds to CXCR4 receptor forming a heteromer
with the C-X-C motif chemokine 12 (CXCL12) and this
interaction signals cell migration, thus promoting recruit-
ment of motile inflammatory cells [94]. When all the thiol
groups of HMGB1 have been oxidized to sulfonates, the
molecule loses both the cytokine-inducing and chemoattrac-
tant activity [95]. In addition, HMGB1 forms complexes with
other immune-stimulatory molecules as the lipopolysac-
charide (LPS), the TLR2 ligand Pam3CSK4, nucleosomes,
interleukin-1𝛽 (IL-1𝛽), RNA, andDNA,which bind to diverse
receptors in the cellular membrane or in the membrane of
endosomes [37].

The migration of endothelial cells is necessary for angio-
genesis and tumour growth and HMGB1 overexpression is
associated with an increased angiogenic potential of the
endothelial cells [96]. The molecules by which HMGB1
stimulates this proangiogenic response in the endothelial
cells include targets of the vascular endothelial growth factor
(VEGF) and platelet-derived growth factor (PDGF) as well
as increased activity of matrix metalloproteinases, integrins,
and NF-𝜅B [96].
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7. The Function of HMGB Proteins
and Other Redox Sensors during Oxidative
Stress in Ovarian Cancer

Distinct cyto- and histopathology disorders in ovaries have
been related to cancer malignancies and the epithelial origin
(epithelial ovarian cancer or EOC) is themost frequent (80%)
cause. There is some controversy about whether EOC is
initiated in the ovarian surface epithelium or in the fallopian
tube, since both share a common embryogenic origin [97].

OS has been proposed as a cause of ovarian cancer. ROS
are generated during ovulation, and indeed several factors
that reduce the number of ovulatory cycles along women
life (oral contraceptive pills, pregnancies, and lactation)
diminish the risk to have this type of cancer [98, 99]. Two
hypotheses have been formulated to explain how the increase
of ROS production accompanying ovulation might induce
the carcinogenesis. In the “incessant ovulation” hypothesis,
it is assumed that repeated cycles of apoptotic cell death and
repair at the ovarian surface epithelium eventually generate
OS and irreparable genetic damage; tumour suppressor genes
become mutated and cells become malignant. The major
epithelial origin of ovarian cancer could be a consequence
of the less robust DNA repair mechanisms in the surface
epithelial cells of the ovary [100]. In a second view, the “inces-
sant menstruation” hypothesis, ROS are generated through
the Fenton reaction supported by the iron present in heme
released after lysis of red blood cells by macrophages [101].

Common gene mutations associated with OS, and which
are found in the surface epithelial cells of the ovary, affect
in 50-80% of ovarian cancers to the protein P53 and in 30%
of ovarian cancers to RB. Other frequent mutations affect
the small GTPases, RAS proteins, whose mutations produce
resistance against OS-induced apoptosis, 8-oxoguanine DNA
glycosylase (OGG1) whose mutation prevent the repair of
oxidized guanine and increase C to T transitions, and the
mutS homolog 2 (MSH2), involved in DNAmismatch repair
[102, 103].

Enzymatic and nonenzymatic oxidative defence systems
are necessary to cope with the oxidative environment that
persists in the ovary. Among the enzymatic systems, super-
oxide dismutase, catalase, glutathione peroxidase, and glu-
tathione reductase have been described in ovary [104]. The
transcription factor NRF2 in healthy cells senses the redox
state and activates the expression of genes related to protec-
tion against ROS damage through binding to AREs that are
present in the promoters of the target genes. Although NRF2
is not a molecular redox sensor by itself, its translocation
to the nucleus depends on the dissociation of its partner,
the redox sensor KEAP1, which is E3 ligase adapter that in
absence of ROS retains NRF2 in the cytoplasm and targets
it for degradation in the proteasome [105–107]. NRF2 is also
targeted for degradation in the proteasome by a KEAP1-
independent mechanism that implies the phosphorylation
of specific serines in the NEH6 domain of NRF2 by glyco-
gen synthase kinase-3 (GSK3) and the interaction with the
ubiquitin ligase adapter TrCP and the Cullin1/Ring-Box 1,
E3 ubiquitin protein ligase (RBX1) complex [108]. OS affects

the redox state of cysteine residues of KEAP1 and prevents
NRF2 ubiquitination; in these conditions NRF2 enters the
nucleus where it binds, together with the MAF proteins
[109, 110], to AREs in the promoters of its target genes [111].
After restoration of the redox balance SRC-kinases will
promote the export ofNRF2 again to the cytoplasm for degra-
dation [112]. The KEAP1-NRF2 pathway regulates both mito-
chondrial and cytosolic ROS production through NADPH
oxidase [113]. Abnormal activation of NRF2 is a major event
during ovarian carcinogenesis [22] and it is frequently due
to RBX1 alterations [114]. A direct interaction between the
two major redox sensors, KEAP1-NRF2 and HMGB1, which
are implicated in the onset and progression of cancers related
to OS, has not been reported; however they might converge
in several signalling pathways. A cross talk between NRF2
and HMGB1 during the response to DNA damage has been
proposed; it is thought that the NRF2-ARE pathway may
regulate time kinetics of HMGB1 release; ROS and HMGB1
levels will then modulate the response to DNA damage [115].

OS activates the oncoprotein AKT in several cell types;
the activation of serine/threonine kinase AKT is achieved
either by a direct phosphorylation cascade or by inactivation
of the phosphatase and tensin homolog protein PTEN [116].
Signalling pathways for AKT activation include those elicited
by the EGF receptor, phosphatidylinositol-4,5-bisphosphate
3-kinase (PI3K), and integrins [117–119]. Activated AKT
controls apoptosis and cellular proliferation and migration,
as well as DNA repair [120]. However, active AKT also down-
regulates the antioxidant systems; this causes an increase
in ROS generation that, in turn, stimulates AKT activation
and produces further OS in a vicious cycle [121]. Activation
of the PI3K/AKT pathway is indeed associated with 40%
of human ovarian cancers in The Cancer Genome Atlas
Network [102, 103, 122, 123]. A triple association of oxidative
stress, AKT activation, and ovarian cancer has not yet been
proved in humans, although it has been found in surface
epithelial cells ofmouse ovary [118]. It has been demonstrated
that the extracellular signalling of HMGB1 through RAGE
andTLR4 receptors activates the PI3K-AKT/ERK1/2 pathway
and contributes to proliferation of lung cancer cells [124]. A
connection between NFR2 and AKT has also been recently
reported [108].

HMGB1 is considered a biomarker for ovarian cancer
[38, 39] and increased levels of interleukin-8 protein (IL-
8) and HMGB1 correlate with poor prognosis in prostate
and ovarian cancer cells [125]. Targeting HMGB1 by RNA
interference inhibits ovarian cancer growth and metastasis
[126]. The relevance of HMGB1 is of particular importance
to hormone-related cancers, including ovarian origin [40]. In
this sense, the interaction between the estrogen receptor (ER)
and the estrogen responsive element (ERE) in the promoters
of target genes is markedly minor (60-fold) in nucleosome
DNA compared to that in free DNA and diverse approaches
have shown that HMGB1 restructures the canonical nucle-
osome to facilitate strong ER binding [40]. Lymph node
is a probable channel by which ovarian cancer cells may
spread and invade other tissues. In human epithelial ovarian
cancer, the proteinHMGB1, together with tumour-associated
macrophages, enhances lymphangiogenesis [127].
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HMGB2 is also deregulated in EOC [128]. HMGB2 is
part of the SET complex, which is composed of NM23, P32,
SET, HMGB2, and APE1. This complex is also implicated in
apoptosis and response toOS andDNA repair [128]. Tumours
expressing low levels of SET, but high levels of NM23, or,
alternatively, low levels of APE1, but high levels of HMGB2,
have a better prognosis compared to other tumours [128].
Although the mechanisms producing these patterns are still
unknown, the authors postulated that specific combinations
of markers from the SET complex could be useful to classify
patients for treatment [128].

8. Oxidative Stress in Prostate Cancer
and the Function of HMGB Proteins and
Other Redox Sensors

The human prostate anatomy displays a zonal architecture,
corresponding to central, periurethral transition, peripheral
zone, and anterior fibromuscular stroma. The majority of
prostate carcinomas are derived from the peripheral zone,
while benign prostatic hyperplasia arises from the transition
zone [129]. Prostate contains a pseudostratified epithelium
formed by three cell types: luminal, basal, and neuroen-
docrine [130]. However, a histopathological classification of
prostate cancer subtypes, which differ in their prognosis
or treatment, has not been possible. The majority of the
diagnosed prostate cancers correspond to acinar adenocar-
cinomas that originate in the prostate gland and express the
androgen receptor [129].

Increased ROS production in prostate cancer cells has
been linked to diverse processes. The first one is the change
observed in mitochondrial function. Frequently, the mito-
chondrial DNA isolated from prostate cancer cells contains
an increased rate of mutations [131], which compromise
the stability of the genome and the mitochondrial function,
thus increasing ROS production. Upregulation of members
of the membrane-bound NADPH oxidase protein complex
(NOX1-5 and DUOX), which catalyses the production of
superoxide from oxygen using NADPH as a cofactor [132],
is another important source of intracellular ROS production.
In human prostate cancer cells the levels of NOX2, NOX4,
and NOX5 are increased [133]. As an additional source
during prostaglandin biosynthesis, the catalytic activities of
the cyclooxygenase enzymes (COXs) also produce ROS.
The COXs proteins are present in two isoforms, COX1,
constitutively and ubiquitously expressed, and COX2 that is
overexpressed in cancerous prostate tissues [134]. Androgens,
which are very important in prostate cancer development,
also contribute to increasing ROS levels by signalling the
transcription factor JUND [135] and themitochondrial redox
regulator P66SHC, a 66 kDa SRChomologous-collagen hom-
ologue (SHC) adaptor protein [136]. However, ROS levels
could also be increased due to androgen deprivation [137,
138]. These results indicate that physiological levels of andro-
gens are necessary tomaintain the cellular redox equilibrium,
and deviations caused by high or low production cause OS.
Chronic inflammation, proliferative inflammatory atrophy
(PIA), and infectious prostatitis constitute a prior stage to

prostate malignancy [139, 140] and, in these conditions,
activated inflammatory cells and secreted inflammatory
cytokines contribute to ROS generation and therefore to
carcinogenesis [139, 141].

Antioxidant defences are diminished in prostate cancer
cells, oppositely to what could be expected taking into
account the increased production of ROS. Superoxide dismu-
tase (SOD1, SOD2) and catalase activities are downregulated
[142, 143] and themaster redox regulatorNRF2 is significantly
downregulated in human prostate cancer [21]. As a conse-
quence of higher levels of ROS production and diminished
antioxidant defences, several indicators of oxidative damage
have been found and tested as diagnosis and prognosis
markers in prostate cancer. These include increased F2-
isoprostane [144] or 8-hydroxydeoxyguanosine [145] in urine
and increased peroxide levels [137] or decreased levels of the
antioxidant 𝛼-tocopherol [146] in serum.

Recently, functional links betweenOS andprostate cancer
have been reviewed [138]. Oxidative damage and DNA
damage, which may produce changes favouring the invasive
behaviour of epithelial cells, have been described [147] as
well as the shortening of telomeres, which may lead to
chromosomal instability [148]. The levels of the tumour
suppressor homeobox protein NKX3.1 are diminished in
nearly all prostate cancers and metastases studied [149];
it has been suggested that NKX3.1 has a protective role
against DNA damage [150]. This protein also links OS
with prostate cancer in animal models; mutation of the
homologous protein in mice displays deregulated expression
of several antioxidant and prooxidant enzymes; in thismodel,
progression to prostate adenocarcinoma is correlated with
decreased superoxide dismutase activity and accumulation of
oxidative damage in DNA and proteins [151].

Diverse cellular signalling pathways have been reported
to play significant roles in the progression of prostate cancer
[152]. Among them those regulated by the androgen receptor
(AR) [153–155], estrogen receptors [156], PI3K/Akt/mTOR
[157, 158], PTEN [159], NF-𝜅B [160], the epidermal growth
factor receptor EGFR [161], and PDGF [162]. Also, ROS-
activatedmatrixmetalloproteinases, which promote invasion
and metastasis, are activated in prostate cancer cells [133].
RND3, which contributes to cell migration, is also deregu-
lated in prostate cancer [76]. Finally, it has been suggested
that, during prostate cancer progression, genes expressed in
embryonic developmental programs are reactivated [163].
In particular, elevated canonical Wnt signalling may play
a role in the emergence of castration resistance [164, 165].
Activation of Hedgehog signalling [166, 167] and Notch [168]
and fibroblast growth factor (FGF) signalling [169, 170] may
also play significant roles in prostate cancer.

There are many interconnections between these sig-
nalling pathways. For instance, PTEN functions as a tumour
suppressor by negatively regulating the PI3K/AKT signalling
and, in 30–50% of prostate cancer cases, loss of PTEN func-
tion causes PI3K/AKT signalling upregulation [158]. In an
early step of prostate carcinogenesis, PTEN undergoes copy
number loss and this event is correlated with progression
of prostate cancer to a more aggressive, castration-resistant,
stage that does not respond to hormone therapy [171].
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The upregulation of AKT/mTOR signalling pathway in
prostate cancer occurs primarily through activation of AKT1
[172]. The consequences of AKT activation are mediated in
part by activation of NF-𝜅B signalling via stimulation of
inhibitor NF-𝜅B kinase, IKK [173]. The stimulation of AR
signalling leads to activation of SRC oncogenic kinases that
phosphorylate AR in prostate cancer cells and cause cas-
tration resistance and cellular proliferation and invasiveness
[174]. PI3K/AKT signalling [175] and AR signalling [155]
increase SKP2 abundance in prostate cancer cells. SKP2 is
the S-phase kinase associated protein 2 involved in cell cycle
progression; it is the component of the SCF complex that
confers substrate specificity to E3 ligase for ubiquitination
of many targets that are tumour suppressors, which are
marked for degradation in the proteasome [176]. Remarkably,
as explained along the review in precedent sections, several
among these signalling pathways are elicited by the redox
sensor NFR2 or by the HMGB proteins.

Finally, several research lines outline the direct impor-
tance of HMGB proteins in prostate cancer and their implica-
tions in therapy. IncreasedHMGB2 expression [177], HMGB1
expression [41], or coexpression of RAGE and HMGB1 [178,
179] has been associated with prostate cancer progression and
has been correlated to poor patient outcome. Consequently,
silencing of HMGB1 [180] or RAGE [181] genes in prostate
cancer cells resulted in decreased cellular viability.

9. Cisplatin, Chemoresistance, Oxidative
Stress, and HMGB Proteins

Cisplatin (cis-diamminedichloroplatinum(II)) is commonly
used in prostate, ovarian, and other cancers therapy. It binds
to DNA and forms majorly intrastrand cross-links with
guanines. This produces cytotoxicity by inducing a DNA
damage stress response [182, 183]. Emodin, an effective ROS
generator, in cotreatment with cisplatin remarkably enhances
chemosensitivity in prostate cancer cells, compared with
cisplatin alone [184]. Cisplatin also generates OS response
in the cells [185] that, together with the OS response gen-
erated as a consequence of cancer disease, might affect the
functions of HMGB proteins. Steroid hormones that induce
HMGB1 overexpression sensitize cancer cells to cisplatin and
carboplatin [186]. In the LNCaP prostate cancer cell line,
combined treatment with estrogen and cisplatin increases
HMGB1 expression and apoptosis more than cisplatin alone
and this effect is mediated by interaction between estrogen
and ER-alpha [187].

Indeed, cisplatin and HMGBs proteins are functionally
related, since these proteins bind with higher affinity to
platinated DNA than to unmodified DNA [188].The reduced
(three-thiol) form of HMGB1 has a higher affinity for
platinated DNA than the semioxidized form [189]. In this
sense, the success of cisplatin chemotherapy toward testicular
tumours has been attributed to the specific expression in testis
of HMGB4 that lacks one of the cysteine residues that forms
the disulphide bond in the other HMGB proteins [30].

The initial positive response to cisplatin treatment is
frequently limited by development of broad resistance against

radio- and chemotherapies. Therefore, there is much interest
in understanding the mechanisms responsible for develop-
ment of resistance in the treatment of ovarian and prostate
cancers and other types of cancers. The proteins HMGB1,
HMGB2, HSC70, GRP58, and GAPD form a nuclear com-
plex, which alters DNA conformation, and they have been
associated in vivo with resistance to chemotherapeutic drugs
in ovarian cancer patients [190]. In an ovarian cell line
resistant to platinum-treatment some genes were overex-
pressed including those encoding for matrix metallopro-
teinases (MMP3 and MMP12) and HMGB2, while genes that
encode for extracellular matrix proteins were downregulated
as well as genes involved in the regulation of cell cycle and
growth [191]. In awide-genome study of genes associatedwith
platinum-based chemotherapy resistance in ovarian cancer,
several connections with the OS response have been found;
these include the response mediated by NRF2, P53, and
TGF𝛽 signalling [192, 193], which have many links to HMGB
proteins as already explained. Nucleus accumbens-1 (NAC1),
a nuclear factor belonging to the BTB/POZ gene family, also
modulates sensitivity of ovarian cancer cells to cisplatin by
altering the HMGB1-mediated autophagic response [194].

Clusterin, a chaperone protein upexpressed in prostate
cancer, stabilizes Ku70/BAX complexes, sequestering BAX
from its ability to induce mitochondrial release of cyto-
chrome 𝑐, thus avoiding subsequent apoptosis and promoting
resistance to cisplatin; the secreted clusterin form is expressed
in aggressive late stage tumours, and although its high
expression may be considered an adaptive response to OS,
it enhances the survival potential of cancerous cells [195].
Overexpression of riboflavin kinase, necessary for synthesis
of FAD and glutathione reduction, is upregulated in cisplatin-
resistant cells and it is related to prostate cancer progression
[196]. The ubiquitin-specific protease 2a (USP2A), a deubiq-
uitinating enzyme overexpressed in prostate adenocarcino-
mas, confers resistance to cisplatin;USP2A increases intracel-
lular reduced glutathione content, reduces ROS production,
and impairs the activation of apoptosis [197].

Resistance to cisplatin has been also attributed to DNA
repair enzymes, which are able to remove lesions caused
by cisplatin on DNA [182]. The mechanism of DNA repair
is however inhibited by HMGB proteins that contribute to
cytotoxicity both in vitro [198–200] and in vivo assays [201].

10. Conclusions and Perspectives

ROS overproduction and imbalance are a primary cause of
malignancy in the onset of cancer. Cells have evolved mul-
tiple strategies in response to ROS production and HMGB
proteins play a major role in many molecular mechanisms
participating in these responses. In the nucleus, HMGB
proteins affect DNA repair, transcription, and chromosomal
stability; in cytoplasm they determine key decisions that
finally lead towards autophagy or apoptosis; as extracellular
signals they produce changes that affect the microenviron-
ment of the tumour and attract cells from the immune
system. In turn, the inflammatory onset can increase ROS
production and therefore enhances the response. HMGB1
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and HMGB2 are expressed at the highest levels in immune
cells and, besides, they have been related to cancers, which are
hormone-responsive, such as ovarian and prostate cancers.
Since HMGB proteins have many different functions and are
necessary in healthy cells, an improved strategy to modulate
their role in cancer progression could be to act through other
proteins interacting specifically with them.The identification
of HMGB partners, which could be univocally associated
with specific cancerous processes or with mechanism of cis-
platin resistance, is a field of interest for ongoing translational
cancer research. Interactome strategies are outstanding for
the development of these research lines.
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