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1  Introduction

Ocular Immune Diseases (OID) encompass a diverse spec-
trum of disorders caused by aberrant immune-mediated 
inflammatory responses affecting the ocular surface, intra-
ocular structures, and the orbit. These diseases arise from 
complex interactions between localized inflammation and 
systemic immune dysregulation. Despite clinical advance-
ments, their pathogenesis remains elusive, leading to 
delayed diagnoses and non-specific therapies. Emerging 
evidence implicates the pivotal role of metabolic changes 
in OID pathogenesis. Metabolomics, with its capacity to 
identify disease-specific metabolic signatures, offers trans-
formative potential for uncovering OID mechanisms and 
guiding precision medicine. This review synthesizes current 
metabolomics applications in OID research, highlighting its 
role in biomarker discovery, pathogenesis exploration, and 
therapeutic innovation to improve disease outcome.
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Abstract
Background  Ocular Immune Diseases (OID) are a heterogeneous group of disorders characterized by immune-mediated 
inflammatory responses affecting various parts of the eye. OID encompass infectious forms caused by pathogens and non-
infectious forms driven by immune dysregulation, which may occur as isolated ocular conditions or as part of systemic 
diseases. Nonspecific early symptoms often lead to misdiagnosis and significant risks of visual impairment. The unclear 
etiology and pathogenesis of OID present challenges in achieving effective treatments. Metabolomics, a cutting-edge omics 
tool, provides critical insights into disease-relevant phenotypes and advancing the understanding of OID.
Aim of review  This review synthesizes recent advancements in metabolomics, focusing on methodologies and sample 
sources for comprehensive profiling. It provides a holistic overview of metabolomics applications in OID, including kerati-
tis, conjunctivitis, dry eye disease, scleritis, uveitis, and thyroid eye disease. Additionally, it discusses current limitations and 
outlines future directions for improving precision diagnostic and therapeutic strategies.
Key scientific concepts of review  Metabolomic studies have identified distinct metabolic signatures in biofluids and tissues, 
bridging localized ocular inflammation with systemic immune dysregulation in OID. Perturbations in energy, lipid, and 
amino acid metabolism, oxidative stress regulation, and gut-derived metabolites highlight the metabolic reprogramming in 
OID. These findings enable the discovery of novel biomarkers, deeper insights into disease mechanisms, and the develop-
ment of targeted therapies. As metabolomics evolves, it holds substantial promise for advancing precision medicine and 
optimizing outcomes in OID.
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2  Overview of OID

Ocular immune diseases are broadly classified into infec-
tious and non-infectious categories. Infectious OID may 
originate from direct pathogen invasion or hematogenous 
dissemination of systemic infections (Al Akrash et al., 2021; 
Azari & Barney, 2013). Non-infectious OID are primarily 
immune-mediated and include both ocular specific condi-
tions (Foeldvari et al., 2023; Sainz de la Maza et al., 2012) 
and ocular manifestations of systemic diseases (Bjordal et 
al., 2020; Joye & Suhler, 2021; Karadag & Bolek, 2020).
Thus, evaluating ocular pathology within the context of 
systemic immunity is essential for accurate diagnosis and 
proper treatment for OID.

Globally, OID exhibit wide variability in prevalence, 
influenced by disease entities, geographic regions, and 
demographic factors (Tsirouki et al., 2018). Infectious OID 
are disproportionately prevalent in developing regions due 
to healthcare disparities, profoundly impacting vision health 
(Betzler et al., 2021; Won et al., 2008). Non-infectious OID 
show even greater epidemiological diversity, with Dry Eye 
Disease affecting 5–50% of the population (Song et al., 
2018; Stapleton et al., 2017) and uveitis accounting for 
9-15% of blindness (Ghadiri et al., 2023).

OID pathogenesis varies by type. Infectious OID pres-
ent acutely due to pathogen invasion, while non-infectious 
OID follow a chronic, relapsing course driven by immune 
dysregulation (Bonacini et al., 2020; Solomon et al., 2022; 
Zhang et al., 2024a, b). Overlapping early symptoms, such 
as eye pain, redness, photophobia, and blurred vision, com-
plicate diagnosis (Morales-Mancillas et al., 2024; Rietveld 
et al., 2003; Wu et al., 2023). Current treatments include 
pathogen-specific therapies combined with corticosteroids 
for infectious OID (Lee et al., 2017), while non-infectious 
OID require immunosuppressants and biologics (Rosen-
baum et al., 2019). However, the lack of targeted therapies 
and limited understanding of OID pathogenesis under-
score the need for further research on precise diagnostics 
and treatments (Egwuagu et al., 2021; Maleki et al., 2022; 
Zhong et al., 2023) (Fig. 1).

3  Overview of metabolomics

Metabolomics is the comprehensive study of small-mole-
cule metabolites, which are end products or intermediates 
of metabolic pathways. It provides crucial insights into bio-
chemical processes under various physiological and patho-
logical conditions (Johnson et al., 2016; Qiu et al., 2023; 
Wishart, 2019). Primary metabolites, such as lipids, amino 
acids, nucleic acids, and sugars, are conserved across spe-
cies, while exogenous metabolites vary with external factors 

like diet and environment (Jin et al., 2019; Peregrín-Alva-
rez et al., 2009; Wei et al., 2022). Metabolomics captures a 
dynamic snapshot of an organism’s metabolic state, links 
genetic variations to phenotypic traits, and provides critical 
insights into health states, disease mechanisms, and preci-
sion medicine (Tan et al., 2024; Xiao et al., 2022).

3.1  Workflow and analytical approaches

Metabolomics involves sample collection, metabolite 
extraction, separation, analysis, and quantification (Marques 
& Justino, 2023). Metabolomics employs two complemen-
tary approaches (Wei et al., 2021). Untargeted metabolo-
mics provides a broad view of the metabolome by profiling 
both known and unknown metabolites (Chen et al., 2021). 
It can uncover novel biomarkers without prior assump-
tions but is limited to relative quantification (Kontou et al., 
2023; Schrimpe-Rutledge et al., 2016). In contrast, targeted 
metabolomics quantifies predefined metabolites with high 
sensitivity, making it ideal for validating specific metabolic 
pathways or conditions (Sarmad et al., 2023; Urbanski et 
al., 2021).

The two cornerstone analytical platforms in metabolo-
mics are nuclear magnetic resonance (NMR) spectroscopy 
and mass spectrometry (MS) (Borges et al., 2021; Dunn 
et al., 2011b; Zampieri et al., 2017). NMR is renowned 
for its quantitative accuracy, broad detection capabilities 
(e.g., 1H, 13C, 31P), and the non-destructive nature, but its 
relatively low sensitivity demands higher metabolite con-
centrations (Dunn et al., 2011). MS offers superior sensi-
tivity and specificity for small-volume samples, but faces 
challenges in complex sample preparation, data interpre-
tation difficulties, limited reproducibility, and reliance on 
robust databases (Macedo et al., 2021; Strathmann et al., 
2020). Gas chromatography-MS (GC-MS) excels in vola-
tile compound analysis (e.g., short-chain fatty acids) but 
requires derivatization for non-volatiles, limiting its role in 
lipidomics (Einoch Amor et al., 2023). Liquid chromatog-
raphy-MS (LC-MS) offers broader applicability for polar 
and non-polar metabolites (e.g., amino acids, lipids) with 
high sensitivity and minimal sample preparation but relies 
on extensive databases (Cui et al., 2018). In OID research, 
LC-MS is preferred for low-abundant metabolite detection 
in tears and aqueous humor and is widely used in lipido-
mics, while GC-MS aids in targeted analysis of volatile 
compound. Refined methodologies, such as matrix-assisted 
laser desorption/ionization mass spectrometry imaging 
(MALDI-MSI) for spatial imaging (Planque et al., 2023), 
and high-resolution mass spectrometry (HRMS) for precise 
mass measurements (e.g. TOF-MS and Orbitrap) (Guan et 
al., 2022; Misra, 2021), further expand MS applications.
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3.2  Sample sources

Accurate metabolomic analysis depends on appropriate 
sample selection, with biofluids, tissues, cells, and animal 
models offering unique advantages and limitations (Du et 
al., 2022b).

Local biofluids provide direct insights into the ocular 
microenvironment. Tears, collected non-invasively using 
microcapillary tubes or Schirmer strips (Nättinen et al., 
2020), are highly indicative of both ocular surface diseases 

and systemic conditions (Khanna et al., 2022; Yazdani et al., 
2019; Zhan et al., 2021). However, their small volume and 
variability pose challenges. Aqueous humor and vitreous 
humor provide a direct window into intraocular conditions 
(Barbosa Breda et al., 2020; Tomita et al., 2021), with AH 
reflecting systemic influences via microfluidic exchange 
with cerebrospinal fluid (Serrano-Marín et al., 2023). How-
ever, both require invasive collection during surgeries, lim-
iting accessibility (Fang et al., 2023). Systemic biofluids, 
including blood, urine, sweat, and feces, capture a broader 

Fig. 1  Various sample types used in metabolomics studies of ocular immune diseases
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4  Disease-specific metabolic findings in OID

Ocular immune diseases (OID), such as keratitis, conjunc-
tivitis, dry eye disease, scleritis, uveitis, and thyroid eye 
disease involve complex metabolic alterations that dis-
rupt ocular homeostasis. Metabolomics has provided key 
insights into these diseases by identifying metabolic bio-
markers and enriched pathways that contribute to disease 
pathophysiology and progression.

4.1  Ocular surface: cornea and conjunctiva

The ocular surface, mainly comprising the cornea and con-
junctiva, maintains homeostasis through dynamic metabolic 
adaptations (Knop & Knop, 2007). The cornea primarily 
relies on glucose metabolism, transitioning from aerobic to 
anaerobic glycolysis under hypoxic conditions (Leung et 
al., 2011; Pinsky, 2014). The conjunctiva adapts to hyper-
osmotic stress by upregulating osmoprotectants and acti-
vating pathways such as prostaglandin synthesis (Chen et 
al., 2015). These adaptations are essential for maintaining 
ocular surface integrity and immune defense (Walker et al., 
2020).

4.1.1  Infectious keratitis and conjunctivitis

Infectious keratitis and conjunctivitis, caused by bacterial 
(Astley et al., 2019; Betzler et al., 2021), viral (Terada et al., 
2021), fungal (Thomas & Kaliamurthy, 2013), or parasitic 
(Hauber et al., 2011) pathogens, induce profound metabolic 
disturbances. Metabolomics has revealed disrupted energy 
metabolism as a shared feature across diverse pathogens, 
resulting from the exploitation of host resources and meta-
bolic reprogramming to support survival and virulence. 
Immune response pathways, including oxidative stress and 
inflammation, are also affected, reflecting the host’s defense 
mechanisms (Ma et al., 2024; Shrestha et al., 2023).

Key metabolic alterations include dysregulation in 
purine metabolism, such as adenine and adenosine deple-
tion alongside xanthine accumulation in bacterial keratitis, 
highlighting disruptions in nucleotide signaling and energy 
imbalance (Shrestha et al., 2023). Similarly, tear metabo-
lomics in Herpes simplex keratitis (HSK) demonstrates 
changes in energy and amino acid metabolism, with tear-
derived extracellular vesicles-based metabolic signatures 
achieving high diagnostic accuracy (77% in the internal 
testing set and 83% in the validation set) (Ma et al., 2024).

metabolic profile. Blood, despite its accessibility, may not 
fully reflect intraocular states due to blood-ocular barriers 
(Chen et al., 2020; Teabagy et al., 2023). Urine and sweat 
are non-invasive options but less relevant to ocular pro-
cesses (Ahn et al., 2017; Cui et al., 2021). Fecal samples 
provide valuable insights into gut microbiota (GM), which 
influences immune regulation and is linked to OID patho-
genesis though the gut-eye axis (Campagnoli et al., 2023). 
Challenges include individual variability and complex com-
position (Nam et al., 2022).

Tissue samples, like cornea, sclera, and lens, reveal local-
ized metabolic changes at the structural level but require 
invasive collection (Tamara et al., 2016). Cell samples 
offer a controlled environment for reproducible studies but 
may not fully replicate in vivo complexity (Su et al., 2015; 
Ziemanski et al., 2021). Animal models capture systemic 
interactions within living organisms and facilitate dynamic 
analyses of disease progression (Parker et al., 2022). How-
ever, interspecies differences and ethical concerns limit 
their translational applicability.

A comprehensive understanding of OID requires inte-
grated analyses that encompass local and systemic levels, as 
well as human and animal investigations. Moreover, ensur-
ing consistency and comparability of samples is also critical 
for obtaining reliable and reproducible metabolomic results 
(Dunn et al., 2011). Standardized protocols, including rigor-
ous selection criteria, collection methods, appropriate sam-
ple volumes, controlled timing, proper storage, and effective 
quality control, can minimize variability and enhance the 
robustness of metabolomic data (Yazdani et al., 2019).

3.3  Clinical applications

Metabolomics offers versatile applications in disease under-
standing by identifying disease-specific metabolic signa-
tures (Daphne Teh et al., 2021). It facilitates early diagnosis 
by detecting metabolic changes preceding clinical symp-
toms, supports disease monitoring by longitudinal profil-
ing, and predicts therapeutic efficacy (Chng et al., 2018). 
Beyond biomarker discovery, metabolomics aids in thera-
peutic development by uncovering disrupted pathways and 
novel targets, advancing precision medicine through tailored 
therapies based on individual metabolic profiles. Together, 
these applications underscore the potential of metabolomics 
to revolutionize clinical practice of OID by advancing diag-
nostic precision, disease monitoring, therapeutic develop-
ment, and precision medicine.
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Lipid metabolism is also significantly disrupted in DED, 
with altered tear film lipid composition and reduced lipid 
diversity destabilizing the lipid layer structure (Khanna et 
al., 2022). Pro-inflammatory lipid mediators, such as prosta-
glandins and leukotrienes, exacerbate chronic inflammation 
(Shim et al., 2012), while lipid dysregulation in meibum 
further contributes to tear film instability, aggravating DED 
symptoms (Garcia-Queiruga et al., 2024).

Beyond the ocular surface, systemic metabolic disrup-
tions also play a role in DED. In saliva, reduced levels of 
hypotaurine, a key metabolite in osmoprotection, contrib-
utes to impaired antioxidative defense mechanisms (Fineide 
et al., 2023). In serum, disruptions in androgen metabolism 
correlate with DED severity, suggesting the broader sys-
temic hormonal imbalances impacting DED (Vehof et al., 
2017). Altered phosphatidylcholine (PC) and lysophospha-
tidylcholine (LysoPC) levels in plasma also reflect systemic 
immune dysregulation in DED (Li et al., 2023). Further-
more, fecal metabolomics uncovers disrupted amino acid 
and lipid metabolism linked to gut dysbiosis and proinflam-
matory pathways, emphasizing the gut-eye axis in DED 
(Yang et al., 2022).

Besides, metabolomic analyses indicate that DED sub-
types can be differentiated by severity and etiology based 
on their metabolic profiles (Galbis-Estrada et al., 2014). For 
example, a nine-metabolite signature enables discrimination 
between pSS and non-pSS-related DED with an ROC-AUC 
of 0.83 (Urbanski et al., 2021).

By combining insights from localized tear film altera-
tions and systemic contributions, metabolomics provides a 
comprehensive framework for understanding the multifac-
torial nature of DED and supports the development of tai-
lored therapeutic approaches (Table 1).

4.2  Sclera and scleritis

The sclera, a dense connective tissue, provides mechani-
cal protection to the retina and optic nerve, maintains ocu-
lar shape, and blocks off-axis light to ensure visual clarity 
(Kano, 2023). While metabolically quiescent, the sclera 
exhibits active extracellular matrix (ECM) remodeling 
under mechanical stress via oxidative phosphorylation and 
the pentose phosphate pathway (Jiang et al., 2014).

Scleritis is a severe inflammatory condition, often asso-
ciated with systemic autoimmune diseases like rheumatoid 
arthritis and IgG4-related diseases (Nevares et al., 2020). 
Immune-mediated mechanisms, such as T and B cell activa-
tion, cytokines release, and antibody-mediated mechanisms, 
are commonly implicated (Wakefield et al., 2013).

Although direct metabolomics studies on scleritis remain 
scarce, related research underscores the role of lipid media-
tors in inflammatory ocular conditions (Das, 2020; Shim et 

4.1.2  Non-infectious keratitis and conjunctivitis

Non-infectious keratitis and conjunctivitis, triggered by 
immune-mediated inflammation, allergens, irritants, or sys-
temic diseases, exhibit distinct metabolic profiles.

Allergic conjunctivitis (AC) is characterized by T helper 
type 2 (Th2) cell activation and IgE-mediated mast cell 
activation (Tariq, 2024). Metabolomic and lipidomic analy-
ses in AC mouse models highlight significant increases in 
pro-inflammatory mediators like prostaglandins and leukot-
rienes derived from arachidonic acid, supporting the thera-
peutic potential of dietary omega-3 fatty acids in modulating 
inflammation (Hirakata et al., 2019a, 2019b). Blood metab-
olite profiling identified 8 key biomarkers, such as palmi-
tate, 3-methoxytyrosine, and carnitine, associated with AC 
heritability and susceptibility (Zou et al., 2024).

Superior Limbic Keratoconjunctivitis (SLK) is a chronic 
inflammation disorder caused by mechanical injury, tear 
film instability, or autoimmune factors (Lahoti et al., 2022). 
It is driven by an imbalance of polyunsaturated fatty acids 
(PUFAs), particularly altered ω-3/ω-6 ratios, emphasizing 
lipid metabolism as a potential avenue for biomarker dis-
covery and therapeutic intervention (Zong et al., 2024).

Ocular mucous membrane pemphigoid (MMP) is a rare 
autoimmune disease affecting the conjunctiva and other 
mucous membranes, mainly characterized by lipid signal-
ing alterations, with 9(S)-HOTrE and (±)5-HEPE identified 
as potential diagnostic biomarkers (Di Zazzo et al., 2020; 
Du et al., 2022a).

4.1.3  Dry eye disease

Dry eye disease (DED) is a multifactorial condition affect-
ing the ocular surface, often associated with systemic condi-
tions like primary Sjögren’s syndrome (pSS) (Bjordal et al., 
2020). Metabolomic studies have identified significant local 
and systemic metabolic disruptions in DED.

Tears, being a direct reflection of ocular surface health, 
have been extensively analyzed in DED (Yazdani et al., 
2019). Energy metabolism emerges as a central factor in 
DED pathogenesis. Reduced levels of L-carnitine impair 
fatty acid oxidation and ATP production, leading to mito-
chondrial dysfunction and oxidative damage (Pescosolido 
et al., 2009). Disruptions in purine metabolism, highlighted 
by elevated levels of Ap4A and Ap5A, contribute to energy 
imbalance and chronic inflammation (Carracedo et al., 
2016; Peral et al., 2006). Further downstream, amino acid 
metabolism compensates by supporting protein synthesis to 
mitigate oxidative stress. This metabolic adaptation enables 
the ocular surface to cope with chronic inflammation (Chen 
et al., 2019).

1 3

Page 5 of 17     74 



R. Li et al.

Ta
bl

e 
1 

D
et

ai
le

d 
in

fo
rm

at
io

n 
of

 m
et

ab
ol

om
ic

s s
tu

di
es

 o
n 

dr
y 

ey
e 

di
se

as
e 

(D
ED

)
A

ut
ho

r, 
Ye

ar
Sa

m
pl

e 
ty

pe
s

N
um

be
r o

f C
as

es
M

et
ho

do
lo

gy
 (I

de
n-

tifi
ed

 M
et

ab
ol

ite
s)

K
ey

 P
at

hw
ay

s a
nd

 M
aj

or
 D

iff
er

en
tia

l M
et

ab
ol

ite
s

(P
es

co
so

-
lid

o 
et

 a
l.,

 
20

09
)

Te
ar

To
ta

l: 
20

10
 D

ED
 a

nd
 1

0 
H

C
s

H
PL

C
Li

pi
d 

an
d 

en
er

gy
 m

et
ab

ol
is

m
.

D
ED

 v
s. 

H
C

↓:
 C

ar
ni

tin
e 

an
d 

its
 d

er
iv

at
iv

es
(P

er
al

 e
t 

al
., 

20
06

)
Te

ar
To

ta
l: 

97
46

 sy
m

pt
om

at
ic

 
ca

se
s a

nd
 5

1 
no

ns
ym

pt
om

at
ic

 
co

nt
ro

ls

Ta
rg

et
ed

 H
PL

C
-M

S
N

uc
le

ot
id

e 
m

et
ab

ol
is

m
.

Sy
m

pt
om

at
ic

 c
as

es
 v

s. 
co

nt
ro

ls
↑:

 A
p4

A
 a

nd
 A

p5
A

(C
he

n 
et

 
al

., 
20

19
)

Te
ar

To
ta

l: 
37

18
 D

ED
 a

nd
 1

9 
H

C
s

U
nt

ar
ge

te
d 

U
PL

C
/Q

-T
O

F-
M

S/
M

S
(1

56
)

C
om

pl
em

en
t a

nd
 c

oa
gu

la
tio

n 
ca

sc
ad

es
, g

ly
co

ly
si

s /
 g

lu
co

ne
og

en
es

is
, a

m
in

o 
ac

id
 m

et
ab

ol
is

m
, a

nd
 g

lu
ta

th
io

ne
 m

et
ab

ol
is

m
.

D
ED

 v
s. 

H
C

↑:
 3

3 
m

et
ab

ol
ite

s, 
3-

hy
dr

ox
ya

nt
hr

an
ili

c 
ac

id
, u

ro
ca

ni
c 

ac
id

, u
rid

in
e,

 c
ar

ni
tin

e,
 ty

ro
si

ne
, g

lu
ta

m
ic

 a
ci

d,
 p

ro
lin

e,
 ly

si
ne

, 
ar

gi
ni

ne
, L

ys
oP

C
 2

2:
6,

 L
ys

oP
E 

22
:6

, x
an

th
in

e,
 in

os
in

e,
 n

ic
ot

in
am

id
e

↓:
 1

,2
-d

im
et

hy
l-4

-(
6-

m
et

hy
l-4

-h
ep

te
ny

l)-
1,

3-
cy

cl
oh

ex
ad

ie
ne

(S
hi

m
 e

t 
al

., 
20

12
)

Te
ar

To
ta

l: 
40

23
 D

ED
 a

nd
 1

7 
H

C
s

Ta
rg

et
ed

 
na

no
-L

C
-M

S/
M

S
(P

ro
st

ag
la

nd
in

s)

A
ra

ch
id

on
ic

 a
ci

d 
m

et
ab

ol
is

m
.

D
ED

 v
s. 

H
C

↑:
 P

G
E2

 ↓
: P

G
D

2
(G

ar
ci

a-
Q

ue
iru

ga
 

et
 a

l.,
 

20
24

)

M
ei

bu
m

To
ta

l: 
44

11
 D

ED
 a

nd
 1

1 
H

C
s

U
nt

ar
ge

te
d 

El
ut

e 
U

H
PL

C
 sy

st
em

 
co

up
le

d 
w

ith
 ti

m
-

sT
O

F 
Pr

o 
M

S/
M

S 
(1

31
)

Li
pi

d 
m

et
ab

ol
is

m
.

D
ED

 v
s. 

H
C

↑:
 p

ol
ar

 li
pi

ds
, c

er
am

id
es

, l
ys

op
ho

sp
ha

tid
yl

ch
ol

in
es

 
↓:

 n
on

-p
ol

ar
 li

pi
ds

, c
ho

le
st

er
ol

 e
st

er
s, 

tri
ac

yl
gl

yc
er

ol
s, 

di
ac

yl
gl

yc
er

ol
s

(G
al

bi
s-

Es
tra

da
 e

t 
al

., 
20

14
)

Te
ar

To
ta

l: 
90

55
 D

ED
 (2

2 
m

ild
-to

-m
od

er
at

e 
an

d 
33

 m
od

er
at

e)
 

an
d 

35
 H

C
s

N
M

R
En

er
gy

 m
et

ab
ol

is
m

, l
ip

id
 m

et
ab

ol
is

m
, a

m
in

o 
ac

id
 m

et
ab

ol
is

m
, a

nd
 n

eu
ro

tra
ns

m
itt

er
 m

et
ab

ol
is

m
.

D
ED

 v
s. 

H
C

↑:
 G

lu
co

se
, p

he
ny

la
la

ni
ne

, a
rg

in
in

e 
an

d 
ph

os
ph

oe
th

an
ol

am
in

e
↓:

 C
ho

le
st

er
ol

, N
-a

ce
ty

lg
lu

co
sa

m
in

e

(U
rb

an
sk

i 
et

 a
l.,

 
20

21
)

Te
ar

To
ta

l: 
80

40
 p

SS
 D

ED
 a

nd
 

40
 n

on
-p

SS
 D

ED

Ta
rg

et
ed

LC
-M

S
(1

04
)

Li
pi

d 
m

et
ab

ol
is

m
, a

m
in

o 
ac

id
 a

nd
 b

io
ge

ni
c 

am
in

e 
m

et
ab

ol
is

m
.

pS
S 

D
ED

 v
s. 

no
n-

pS
S 

D
ED

↑:
 L

ys
oP

C
s (

C
16

:1
, C

18
:1

, C
18

:2
), 

SM
 (C

16
:0

, C
22

:3
), 

PC
aa

 (C
42

:4
)

↓:
 se

rin
e,

 a
sp

ar
ta

te
, d

op
am

in
e

(F
in

ei
de

 
et

 a
l.,

 
20

23
)

Te
ar

Sa
liv

a
To

ta
l: 

31
19

 D
ED

 a
nd

 1
2 

H
C

s

U
nt

ar
ge

te
d

LC
-H

R
M

S
(1

74
)

Li
pi

d 
m

et
ab

ol
is

m
, p

ol
ya

m
in

e 
m

et
ab

ol
is

m
, a

nd
 o

xi
da

tiv
e 

st
re

ss
.

D
ED

 v
s. 

H
C

↑:
 C

ar
tin

e,
 sp

er
m

in
e,

 sp
er

m
id

in
e,

 a
ra

ch
id

on
ic

, D
H

A
↓:

 O
le

am
id

e,
 p

an
th

en
ol

, r
es

or
ci

no
l

(V
eh

of
 e

t 
al

., 
20

17
)

Se
ru

m
To

ta
l: 

28
19

 
43

6 
D

ED
 a

nd
 

23
83

 H
C

s

U
nt

ar
ge

te
d 

G
C

-M
S 

an
d 

LC
-M

S
(3

41
)

Li
pi

d 
m

et
ab

ol
is

m
.

D
ED

 v
s. 

H
C

↓:
 A

nd
ro

st
er

on
e 

su
lfa

te
, e

pi
an

dr
os

te
ro

ne
 su

lfa
te

, 4
-A

nd
ro

st
en

-3
β,

17
β-

di
ol

 d
is

ul
fa

te
 1

,4
-A

nd
ro

st
en

-3
β,

17
β-

di
ol

 d
is

ul
fa

te
 2

, 
D

H
EA

-S
, g

ly
ce

ro
ph

os
ph

oc
ho

lin
es

(Y
an

g 
et

 
al

., 
20

22
)

Fe
ca

l 
m

ic
ro

bi
ot

a
To

ta
l: 

50
30

 p
SS

 a
nd

 2
0 

H
C

s

U
nt

ar
ge

te
d

U
PL

C
-M

S
(2

05
1 

in
 E

SI
 +

 m
od

e 
an

d 
92

3 
in

 E
SI

-)

A
m

in
o 

ac
id

 m
et

ab
ol

is
m

, l
ip

id
 m

et
ab

ol
is

m
, a

nd
 th

ei
r i

nt
er

pl
ay

 w
ith

 g
ut

 m
ic

ro
bi

ot
a.

pS
S 

vs
. H

C
↑:

 1
3 

m
et

ab
ol

ite
s, 

L-
hi

st
id

in
e,

 p
he

ny
lg

ly
ox

yl
ic

 a
ci

d,
 h

om
ov

an
ill

ic
 a

ci
d

↓:
 2

0 
m

et
ab

ol
ite

s, 
5-

m
et

ho
xy

in
do

le
ac

et
ic

 a
ci

d

1 3

   74   Page 6 of 17



Metabolomics of ocular immune diseases

acid, sarcosine) with AUC values greater than 0.9, along-
side dysregulations in aminoacyl-tRNA biosynthesis, lysine 
degradation, and glycine, serine and threonine metabo-
lism (Chen et al., 2020; Cui et al., 2020). Notably, shared 
metabolic pathways between BD and VKH, particularly in 
aminoacyl-tRNA biosynthesis, suggest overlapping immu-
nopathological mechanisms despite their distinct clinical 
presentations (Xu et al., 2021) (Table 2).

4.4  Orbit and thyroid eye disease

Thyroid Eye Disease (TED) is the most prevalent orbital 
disease in adults (Bahn, 2010). It is an organ-specific auto-
immune condition, driven by autoantibodies to thyroid-stim-
ulating hormone receptor (TSHR) and insulin-like growth 
factor-1 receptor (IGF-1R) (Krieger et al., 2016; Kumar et 
al., 2004). Recent metabolomic studies have revealed sig-
nificant metabolic disruptions in TED.

In tears, elevated Ornithine decarboxylase (ODC) activ-
ity and increased polyamine synthesis (e.g., putrescine and 
spermine) suggest tissue remodeling in active TED, poten-
tially mediated by TSHR autoantibodies (Billiet et al., 2022; 
Zusman & Burrow, 1975).

In orbital tissues, TED exhibits profound metabolic 
remodeling, particularly in lipid metabolism. Enhanced 
triacylglycerol (TAG) biosynthesis, fatty acid uptake, and 
disruptions in cholesterol and choline metabolism, contrib-
ute to de novo adipogenesis and inflammation (Huang et 
al., 2022; Zhang et al., 2020). Energy metabolism is also 
affected, with a shift from oxidative phosphorylation to 
glycolysis and increased oxidative stress, as evidenced by 
changes in purine and glutathione metabolism (Du et al., 
2023; Zhang et al., 2021).

Beyond ocular involvement, TED has broader systemic 
implications. TED has been linked to elevated sphingosine-
1-phosphate (S1P) levels, a key sphingolipid involved in 
inflammatory signaling and tissue remodeling (AUC > 0.8) 
(Byeon et al., 2018), and disruptions in steroid hormone 
biosynthesis (Shi et al., 2023). Regarding amino acid 
metabolism, coordinated changes in fumarate, proline, phe-
nylalanine, and glycerol were observed across orbital tis-
sues and plasma (Ji et al., 2018). A serum biomarker panel 
consisting of glycine, glycerol 3-phosphate, estrone sulfate, 
CPS1, GP1BA, and COL6A1 achieved high predictive 
accuracy for TED (AUC = 0.933) (Shi et al., 2023). More-
over, upregulation of the kynurenine pathway, a key branch 
of tryptophan metabolism related to Th1 immune responses, 
further highlights systemic immune dysregulation in TED 
(Ueland et al., 2023).

Additionally, the gut-ocular axis involvement is evi-
denced by altered biosynthesis of unsaturated fatty acids 
and elevated levels of SCFAs, highlighting gut dysbiosis 

al., 2012). Besides, bioinformatic analyses have identified 
TNF-α and IL-6 as pivotal genes in scleritis, suggesting that 
oxidative stress and arachidonic acid metabolism as poten-
tial therapeutic targets (Yan et al., 2023).

4.3  Uvea and uveitis

The uvea supports ocular homeostasis through oxidative 
phosphorylation, aerobic glycolysis, the pentose phosphate 
pathway, and the kynurenine pathway, which also modu-
lates immune function and vascular tone (Hayreh & Hayreh, 
2023; TeSlaa et al., 2023; Wang et al., 2023; Wilson, 2017).

Uveitis, as the fourth leading cause of acquired blindness, 
can arise from both infectious and non-infectious etiologies, 
with the latter being more prevalent (Burkholder & Jabs, 
2021). Uveitis can be subdivided into anterior, intermediate, 
posterior, and pan uveitis based on the primary anatomical 
site of inflammation (Jabs et al., 2005).

Anterior uveitis (AU) can manifest as an isolated ocular 
disease or coexist with systemic conditions, most notably 
HLA-B27-positive spondyloarthritis (SpA) (Onal et al., 
2006). Locally, aqueous humor metabolomics has revealed 
alterations in branched-chain amino acid biosynthesis, 
ascorbate metabolism, and the TCA cycle, with ketoleucine 
identified as a key biomarker of disease activity in HLA-
B27-related AU (Verhagen et al., 2019). Systemic metabolic 
disruptions include perturbations in amino acid, carbohy-
drate, and lipid metabolism (Guo et al., 2014). Fecal metab-
olomics has emphasized the role of gut dysbiosis in AU 
pathogenesis, with specific alterations of short-chain fatty 
acids (SCFAs) and kynurenine pathway metabolites distin-
guishing AU from non-AU SpA patients (Essex et al., 2024; 
Huang et al., 2018).

Panuveitis, often associated with Behçet disease (BD) 
and Vogt-Koyanagi-Harada (VKH) disease, carries a rela-
tively poor prognosis due to the irreversible damage to 
macula and optic nerve (Burkholder & Jabs, 2021). Serum 
metabolomics has demonstrated high diagnostic accuracy 
for both conditions (AUC = 0.83 for BD and 0.73 for VKH) 
(Shimizu et al., 2020).

In BD, biomarker panels in urine, serum, and sweat 
achieved remarkable AUC values of 0.974, 0.998, and 
0.947, respectively (Ahn et al., 2017, 2018; Cui et al., 
2021). Among these, a consistent decrease in L-citrulline, 
involved in the urea cycle and nitric oxide (NO) synthe-
sis, indicates dysregulated oxidative stress and immune 
response in BD, supported by concomitant alterations in 
glutathione metabolism (Mak et al., 2017). Additionally, 
sphingosine-1 phosphate (S1P) and EtherLPE 18:2 were 
identified as key biomarkers correlated with disease activity 
(Park et al., 2023). In VKH, serum metabolomics identified 
diagnostic biomarkers (e.g., D-mannose, L-lysine, stearic 
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should also prioritize standardized sampling and analytical 
methods to enhance data interpretability.

Technological limitations, particularly the insufficient 
sensitivity, specificity, and accuracy of current MS plat-
forms, also pose challenges. Advancing high-throughput MS 
can aid in detecting low-abundant metabolites, while inte-
grating metabolomics with imaging techniques may enable 
high-resolution mapping of localized metabolic changes 
(Unsihuay et al., 2021). Furthermore, advancements in 
data analysis tools, particularly those leveraging bioinfor-
matics, artificial intelligence and machine learning, will be 
critical for identifying complex patterns in metabolomics 
data. On one hand, integrating data from multiple bioflu-
ids and tissues to explore systemic-ocular interconnections 
can uncover robust biomarkers and therapeutic opportuni-
ties targeting both local inflammation and systemic disease 
drivers. On the other hand, integrating metabolomics with 
other omics technologies enables holistic data synthesis 
across diverse biological dimensions, providing a com-
prehensive view of biological systems and the underlying 
disease mechanisms. Together, such integrative approaches 
hold promise for refining personalized medicine.

Moreover, clinical translation remains a major challenge, 
as no OID biomarkers have yet achieved clinical valida-
tion. To bridge this translational gap, interdisciplinary col-
laborations among researchers, clinicians, and biomedical 
engineers should be established to validate candidate bio-
markers and develop clinical tools, such as diagnostic kits, 
facilitating precision medicine paradigms.

Ultimately, addressing current limitations and prioritiz-
ing translational research will enable metabolomics to revo-
lutionize the understanding of OID, transforming molecular 
insights into practical applications and advancing diagnos-
tics, therapies, and patient outcomes.

7  Conclusion

Ocular Immune Diseases (OID) are highly heterogeneous, 
with intricate etiologies and poorly elucidated pathogenesis. 
Early diagnosis is challenging due to nonspecific symptoms 
and systemic associations, while current treatments remain 
suboptimal, leading to unfavorable prognoses. Metabolo-
mics provides key insights into OID pathogenesis, linking 
ocular inflammation with systemic immune dysregulation. 
Key metabolic pathways implicated in OID include energy 
metabolism for immune activation, lipid metabolism driv-
ing chronic inflammation, amino acid metabolism modulat-
ing immune responses, and oxidative stress mitigating tissue 
damage. Metabolic biomarkers, such as purine metabolites 
in infectious OID and lipid mediators in non-infectious 
OID, facilitate early diagnosis, subtype classification and 

and its role in immune modulation via Th17/Treg balance 
(Biscarini et al., 2023; Gong et al., 2019; Zeng et al., 2019; 
Zhang et al., 2024b) (Table 3).

5  Shared metabolic findings in OID

OID exhibit overlapping metabolic disruptions that bridge 
localized inflammation with systemic immune responses. 
Key pathways disrupted in OID include energy metabo-
lism, where glycolysis and purine metabolism fuel immune 
activation and tissue repair, highlighting its role in infec-
tious OID for rapid pathogen clearance (Shrestha et al., 
2023; Zhang et al., 2021). Lipid metabolism alterations, 
particularly in arachidonic acid and phosphatidylcholine 
pathways, drive pro-inflammatory mediator production and 
tissue remodeling in non-infectious OID (Hirakata et al., 
2019a, 2019b; Li et al., 2023; Yan et al., 2023). Amino acid 
metabolism, notably the kynurenine pathway dysregulation, 
modulates immune privilege and osmotic stress adaptation 
(Guo et al., 2014; Ma et al., 2024; Wang et al., 2023). Com-
mon pathways, such as oxidative stress regulation through 
glutathione metabolism and oxidative phosphorylation, are 
critical for mitigating inflammation-induced tissue damage 
and maintain redox balance across OID subtypes (Du et al., 
2023). Additionally, systemic influences, such as microbi-
ota-derived short-chain fatty acids, underscore the gut-eye 
axis’s role in modulating immune responses (Biscarini et 
al., 2023; Yang et al., 2022). These interconnected pathways 
demonstrate the specific metabolic reprogramming that 
underpins the distinct pathophysiological features of OID.

6  Pitfalls and future directions

Although metabolomics has established itself as a vital tool 
for advancing the understanding of ocular immune dis-
eases, there are still many challenging issues that need to 
be addressed.

Sample heterogeneity and source bias are inherent chal-
lenges in metabolomics, as factors such as age, lifestyle, 
diet, systemic diseases, and medications can confound 
metabolomic profiles. While methodological adjustments 
like propensity score matching (PSM) in case-control stud-
ies and randomized controlled trials (RCTs) can address 
these issues, current studies are often constrained by small 
sample sizes and non-standardized protocols, limiting statis-
tical power, generalizability, and reproducibility. Expanding 
studies to large-scale, diverse populations and incorporat-
ing longitudinal sampling are essential to improve clinical 
applicability and to capture dynamic metabolic changes 
linked to disease progression or treatment. Future studies 
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