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1 INTRODUCTION
In silico virtual screening, or high-throughput virtual screening (HTVS), has yielded
an excellent complement to the time-consuming and expensive experimental tech-

niques of high-throughput screening. The ability to virtually screen compound librar-

ies to improve enrichment of ligands progressed to experimental validation has

provided countless lead compounds. HTVS computationally screens large databases

of virtual compounds that either possess similarity toward a known inhibitor (ligand-

based) or complementarity toward the solved receptor structure (structure-based;

Shoichet, 2004). This allows researchers to screen large databases or compound

libraries in order to identify a highly focused subset from which actives can be con-

firmed experimentally (Ripphausen et al., 2011) and, in the case of molecular dock-

ing, can predict the binding pose, thereby simplifying future lead optimization

(Joseph-McCarthy et al., 2007). HTVS is especially attractive to academic facilities,

occasionally in parallel with HTS, as fiscal expenses of pure HTS screens are often

too large for academic budgets (Zhu et al., 2013). Improvements in computer hard-

ware and the availability of relatively inexpensive clusters have also increased the

speed of HTVS, contributing to its gain in popularity (Anderson, 2003). Because

it mostly eliminates cost-of-ownership associated with computing infrastructure, it

is likely that cloud computing will further contribute to this uptake.

Molecular docking was first described in 1982 (Kuntz et al., 1982) and has since
become the central idea in structure-based virtual screening. It comprises two major

tasks for which separate algorithms are used. The sampling algorithm predicts the

many confirmations, referred to as poses, which the ligand can assume within the

binding or active pocket. A scoring function then predicts the binding energies

between the ligand and receptor for each predicted pose. The generated binding

poses are then ranked based on their binding energies, where the top-ranked pose

should correspond to the correct confirmation of the ligand. Scoring functions
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488 CHAPTER 27 Virtual Screening and Molecular Docking
are, therefore, also capable of filtering through, and ranking, large databases of

compounds in virtual screening, where the highest-ranked binding energies should

correspond to a potential lead (Phatak et al., 2009).
Used on its own, molecular docking is, however, plagued with weaknesses.

The static nature of the receptor is a primary fault where the dynamic nature of

the biological structures is not considered. Limitations in sampling algorithms and

imperfections in scoring functions also lead to the generation of both false positives

and false negatives (Lill, 2011; Wang et al., 2003; Brooijmans and Kuntz, 2003;

Alvarez, 2004) and the requirement for training sets in various algorithms often leads

to accuracy being highly target dependent (Warren et al., 2006). These inherent flaws
are further exacerbated by user oversights and errors. This chapter will detail several

practical aspects to consider prior to commencing a virtual screening study, while

simultaneously providing a theoretical explanation of docking and scoring. This

review will provide guidelines, but there is no “one-rule-fits-all” in molecular dock-

ing. Most docking programs have varying methods to deal with each topic discussed

and describing details of each program is outside the scope of this review. It must also

be taken into account that every receptor is different and the ability to replicate

experimental and physiological findings is highly system dependent.
2 RECEPTOR STRUCTURE PREPARATION
Although most receptor preparation tools accurately complete processes that were

not undertaken during X-ray crystal structure refinement, it is important to under-

stand these processes and make adjustments where necessary. The most common

receptor preparation procedures include adding hydrogens and atom-type charges,

but it is also important to ensure that missing side-chains are added, missing bonds

and molecule chain breaks are detected and fixed, bond orders are assigned, and

where alternate locations are present, the atoms with highest frequencies must be

selected. Other, more complicated, procedures in receptor preparation include accu-

rate prediction of protonation states and identifying which water molecules (if any)

should remain in the receptor structure. All of these procedures maximize the bio-

logical realism in the modeled system, which leads to the identification of a higher

proportion of true bioactives.
2.1 PROTONATION STATES
The resolution of most crystal structures does not provide information on the location

of hydrogens, commonly referred to as the protonation state (ten Brink and Exner,

2009). The accurate prediction of the correct protonation state, especially within the

binding interface, is crucial to accurately predict the correct binding mode and, to a

greater extent, binding affinity (Kalliokoski et al., 2009; Fornabaio et al., 2003;
Onufriev and Alexov, 2013). This incorrect prediction of binding mode and affinity

will inevitably lead to the identification of false positives, while true bioactives are
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missed (Onufriev and Alexov, 2013). It is notable to point out that force field–based

scoring functions are more susceptible to incorrect protonation states in comparison

to knowledge-based scoring functions (Onufriev and Alexov, 2013). Assigning the

incorrect protonation states further alters the state of hydrogen bond donors and

acceptors, which substantially limits the accurate prediction of protein-ligand inter-

actions (Polgár and Keserü, 2005).

Side-chains of ionizable amino acids can further vary their protonation states

within a receptor depending on the local environment and pH. Ligand binding

can also be accompanied by proton gain or release (Petukh et al., 2013) but this
is almost never incorporated into a molecular docking study (Onufriev and

Alexov, 2013). One study pointed out that a residue’s protonation state cannot be

accurately replicated, as protons are not static and are readily transferred between

molecules (Fornabaio et al., 2003). The quantum mechanical simulations necessary

to replicate proton movements are far beyond the scope and capabilities of molecular

docking and at best, the protonation state, or an ensemble of protonation states, that is

most suitable to ligand binding must be identified.

Histidine (His) provides a unique problem in terms of residue protonation, as it

can be protonated in three different conformations. The imidazole ring of the His

side-chain can be protonated in a neutral confirmation at the ε-nitrogen or the

δ-nitrogen or in a charged (+1) conformation where both the ε- and δ-nitrogens
are protonated (Kim et al., 2013). To further complicate the correct conformation

of the imidazole side-chain ring, ambiguities in crystal structures often switch the

carbon and nitrogen, creating an additional three rotameric conformations, termed

“flipped” (Glusker et al., 1994). His also represents a weaker base, and for this rea-

son, determining the protonation state is more complicated than for other ionizable

residues and must be determined individually (Waszkowycz et al., 2011). In the case
of His, analysis of hydrogen bonding networks is likely to yield the most detail about

the correct side-chain protonation.

The dynamic nature of a receptor means the protonation states of ionizable res-

idues are constantly changing. In order to accurately predict the conformation of a

ligand binding to a receptor, the protonation state of the receptor must be relevant to

the bound conformation and in correspondence with crystal data (i.e., absence of

steric clashes and hydrogen bonds occurring at expected locations) and in accordance

with the pH of the experimental conditions. Assigning protonation states to Asp, Glu,

Arg, and Lys during receptor preparation is generally straightforward, with deproto-

nated acids (Asp and Glu) and protonated bases (Arg and Lys) (Kim et al., 2013;
Waszkowycz et al., 2011). This is, however, a generalization and not a rule, and

the microenvironment of the residue and physiological pH of the receptor must be

taken into careful consideration. Calculating the theoretical pKa of these residues

at the physiological pH is possibly the most straightforward mechanism to determine

or estimate their protonation state (Polgár and Keserü, 2005).

As scoring functions are highly dependent on the correct receptor protonation

state, it can be assumed that a scoring function will favor the correct protonation state

by scoring it above the incorrect state (Onufriev and Alexov, 2013). This provides a
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mechanism to accurately predict the correct protonation state within an ensemble of

pregenerated receptor states. The correct replication of hydrogen bond positions

between ligand and receptor, as seen in the crystal structure or detailed in the liter-

ature, will further suggest the accurate placement of residue protons (Krieger et al.,
2012; Hooft et al., 1996). Observable steric clashes between a ligand and receptor,

after protonation, will further suggest incorrect proton placement (Word et al., 1999;
Krieger et al., 2012). This approach will only account for ionizable groups within the
binding interface and will not be able to account for the entire receptor, but this

remains a far more attractive strategy than ignoring the issue entirely.

In summary, in order to accurately approximate a receptor’s protonation state, the

identification of its physiological pH is key. Second, calculated pKa values for ion-

izable residues enables determination of the protonation state according to the given

pKa at the specified pH. Third, crystal structures and known, experimentally identi-

fied bioactives can yield a wealth of knowledge on the protonation state of a receptor

by scoring function analysis and inspection of steric clashes and hydrogen bonding

networks between ligand and receptor. Given these guidelines, the techniques used to

accurately predict the correct protonation state of a receptor are largely dependent on

the class of receptor being studied. For this reason, the techniques applied must be

accurately verified for the receptor under investigation before virtual library

screening.
2.2 SELECTING IMPORTANT ACTIVE SITE WATER MOLECULES
Active site water molecules are key determinants in ligand-receptor binding

(Thilagavathi and Mancera, 2010; Barillari et al., 2007). Not only can they mediate

hydrogen bonding between ligand and receptor, but their contribution to entropic and

enthalpic changes are significant (Lie et al., 2011; Cheng et al., 2012; Kroemer,

2007). In a virtual screening context, the addition of water (an explicit solvent) is

frequently neglected, as the intensive computational simulations required does not

permit the rapid screening required for large libraries, often seen in high-throughput

virtual screens, and accounting for water molecules in docking remains a significant

challenge (Cheng et al., 2012; Huang and Shoichet, 2008; Schneider and

Fechner, 2005).

The position of water molecules within an active site are also highly variable

(Santos et al., 2009), and to account for them as static in nature would be biased

toward ligands that complement the specific orientation and prejudice those that

would physiologically replace the water molecules, leading to a drastic increase

in false negatives (Kroemer, 2007). Several reports claim to more accurately predict

the binding mode of crystal structure inhibitors by incorporating water molecules

within the active site (Lemmon and Meiler, 2013). While these studies do possess

a high degree of merit, the inclusion of waters within the active site greatly decreases

the volume of the pocket and thereby the possible conformations that the ligand may

assume, which is further biased toward the correct conformation (Lie et al., 2011;
Hartshorn et al., 2007). As there is a constant compromise between speed and
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accuracy in a high-throughput virtual screen, however, the presence of active site

waters can greatly increase ligand enrichment. It is, therefore, important to determine

which waters, if any, must be kept during a virtual screen and exclude those that are

nonessential.

An initial step to assess the importance of active site waters would be to attempt to

replicate the binding mode of experimental structures in the absence of explicit

waters. If the accuracy is diminished by the absence of waters in the binding site,

it is important to select which waters are pivotal to binding. Waters that are not

hydrogen bonded to the receptor, and those that are located outside the binding

pocket (more than 5Å), will obviously have little effect on ligand binding and

can therefore be removed (Huang and Shoichet, 2008). Waters that possess three

hydrogen bonds with the receptor, or those with low B-factors, are likely to be highly

stable within the pocket and should be included in docking studies, as these waters

may prove difficult to displace by ligand binding and likely function to stabilize the

protein binding site (Yang et al., 2006; Hornak et al., 2006). Waters that form hydro-

gen bond bridges between the ligand and receptor are also likely to be important in

ligand binding. This may, however, be highly ligand-specific and its importance in

virtual screening, where a diverse set of ligand classes are under study, must be prop-

erly assessed and validated. Where essential water molecules are included in a virtual

screen they should, ideally, be treated as flexible (Huang and Shoichet, 2008). It is

also important to bear in mind that the accuracy of a docking algorithm may be

highly dependent on the parameterization of the algorithm and suitability toward

the class of receptor and inhibitor, which will be discussed later in this chapter.
3 ACCURATELY PREDICTING THE POSE OF SOLVED CRYSTAL
STRUCTURES AND DIFFERENTIATING DECOYS FROM ACTIVES
It is commonly accepted that there is no “first-in-class” algorithm or molecular dock-

ing software for the prediction of correct ligand-binding pose or relative free energy

of binding. Molecular docking algorithms are often calibrated on a training set of

experimental ligand-protein complexes and accuracy of these docking programs is

often highly dependent on the training set used (Ballester and Mitchell, 2010). This

highlights the importance of confirming that the docking software used for virtual

screening is capable of replicating the binding mode of known, experimental inhib-

itors for the class of receptor studied (Lim et al., 2011; Kroemer, 2007). To improve

ligand enrichment in a virtual screening context, the docking algorithm selected must

be properly validated for the class of receptor under investigation. Of course, in a

virtual screen, where hundreds of thousands to millions of compounds are potentially

being screened, validating for each class of potential inhibitor would be impossible,

but accurate validation must be undertaken with the largest obtainable data set of

true experimental leads, where the binding pose is known. A root-mean-square devi-

ation (RMSD) below 2Å for heavy atoms (excluding hydrogens) between the exper-

imental structure and predicted pose of docking is a well-defined benchmark to



492 CHAPTER 27 Virtual Screening and Molecular Docking
assess the accuracy of molecular docking sampling algorithms (Houston and

Walkinshaw, 2013).

A highly useful benchmarking strategy and metric to gauge the success of a

molecular docking program is the ability to differentiate true actives from decoys.

The Database of Useful Decoys–Enhanced (DUD-E; http://dude.docking.org/gener

ate) can generate decoys for an active compound (Mysinger et al., 2012). DUD gen-

erates decoys based on cheminformatic properties, includingmolecular weight, logP,

number of rotatable bonds, and number of hydrogen bond donors and acceptors. As

these decoys are not intended to bind to the target receptor, they are topologically

distinct from the active inhibitors, thereby serving as suitable negative controls.

The enrichment of the docking program can be assessed by its ability to rank true

actives above decoy ligands (Mysinger et al., 2012).
4 SIDE-CHAIN FLEXIBILITY AND ENSEMBLE DOCKING
Virtual screening simulations are typically performed on static structures, and it has

previously been demonstrated that the use of a holo (ligand-bound) conformation

provides better enrichment when compared to apo or homology modeled receptors

(McGovern and Shoichet, 2003). Given this, addressing protein flexibility can sub-

stantially improve enrichment but remains one of the most challenging aspects of

molecular docking. There are currently two approaches to incorporate the dynamic

nature of protein structures; flexible receptor docking and ensemble docking (Lill,

2013). These approaches have shown to improve enrichment in docking studies

(Craig et al., 2010), but the compromise between speed and accuracy must be heavily

weighted in high-throughput virtual screens.

Flexible docking most often only incorporates side-chains of residues within the

active site and therefore does not cover the dynamic range of protein conformations

(Meng et al., 2011). It has been demonstrated that only a small number of side-chains

within a binding pocket undergo structural changes upon ligand binding. This study

suggested that, within 85% of studied receptors, only three or fewer side-chains

exhibited movements upon ligand binding and further developed a scale of side-

chain flexibility (Lys>Arg, Gln, Met>Glu, Ile, Leu>Asn, Thr, Val, Tyr, Ser,

His, Asp>Cys, Trp, Phe; Najmanovich et al., 2000). Utilizing this scale, it may

be possible to identify which side-chains within a pocket must be made flexible

and which may be left static, although the ability to accurately enrich active ligands

must be displayed.

In ensemble docking, the ensemble of rigid structures can be generated by a

molecular dynamic simulation where snapshots are isolated from the trajectory or

when several structures are available from crystallography or nuclear magnetic res-

onance (NMR) experimental studies. There are two distinct classes of ensemble

docking. In the first method, several protein conformations are generated prior to

a docking screen and each ligand is docked into each receptor independently

(Carlson, 2002; Carlson and McCammon, 2000; Barril and Morley, 2005), thereby

http://dude.docking.org/generate
http://dude.docking.org/generate
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introducing receptor flexibility by multiple docking runs (Henzler and Rarey, 2010).

This is, of course, computationally inefficient and the time required to conduct a

screen increases with every protein structure included in the ensemble. The confor-

mational diversity is also limited to the conformational representations included in

the ensemble (B-Rao et al., 2009). The second method assesses an ensemble of pro-

tein structures in a single docking screen (B-Rao et al., 2009). This method either

unites ensemble structures or uses a receptor grid averaged over all protein struc-

tures, and therefore reduces computational cost considerably (Totrov and

Abagyan, 2008; Knegtel et al., 1997; Henzler and Rarey, 2010). To identify a suit-

able ensemble of structures to incorporate in a docking run, an enrichment docking

screen of known actives can be performed. Both ensemble and flexible receptor

docking is described in greater detail in several reviews (Cavasotto and Abagyan,

2004; Carlson, 2002; Therrien et al., 2014; Henzler and Rarey, 2010).

Molecular dynamic (MD) simulations is considered to be the most accurate

method to determine the stability of a ligand within a binding pocket, while account-

ing for full side-chain and backbone flexibility and incorporating solvent effects

(Marco and Gago, 2007; Alonso et al., 2006). Several docking studies have utilized

MD simulations to confirm results obtained from docking studies. However, the

intense computational costs make it practical for only a small set of ligands

(€Osterberg and Åqvist, 2005; Han, 2012; Mukherjee et al., 2011; Segura-Cabrera
et al., 2013).
5 CONSENSUS DOCKING
Scoring functions have been highlighted as the major weakness of molecular docking

(Yang et al., 2005; Warren et al., 2006; Wang et al., 2003). As these functions are
solely responsible for selecting and ranking the correct ligand pose within the bind-

ing site from the many possible conformations generated by the sampling algorithm,

it can potentially lead to identification of an incorrect pose. The integration of a con-

sensus approach to sampling and scoring, incorporating several algorithms to each

task, has shown to greatly improve ligand enrichment in virtual screening and iden-

tifying the correct pose of experimental structures (Teramoto and Fukunishi, 2007;

Houston and Walkinshaw, 2013; Kukol, 2011; Yang et al., 2005; Charifson et al.,
1999; Plewczynski et al., 2011). Consensus scoring compensates for deficiencies

in individual scoring functions and thereby improves the overall performance

(Teramoto and Fukunishi, 2007), with the inclusion of a single extra scoring function

being sufficient to improve binding affinity predictions (Chang et al., 2010). A sim-

ilar technique to consensus scoring is the approach of consensus sampling, which is

less well characterized. A recent study by Houston and Walkinshaw, 2013 utilized

three sampling algorithms from Dock (Ewing et al., 2001), Autodock (Morris et al.,
2009), and Autodock Vina (Trott and Olson, 2010) to identify the experimental pose

of a diverse set of ligands. The study achieved an accuracy of 82%, compared to the

55%–64% accuracy of using a single algorithm (Houston andWalkinshaw, 2013). In
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this study, a consensus result was confirmed when independently predicted poses

were within an RMSD cutoff of 2Å, the same distance defined as correct sampling

in comparison to experimental structures (Houston and Walkinshaw, 2013).

The approach of employing several algorithms to identify the correct pose with

subsequent consensus scoring to identify top-ranked ligands can greatly improve the

enrichment rate in a virtual screening context. The major cost of this approach is the

increase in false negatives, which are therefore missed and do not progress to exper-

imental testing. In an academic setting, or a lab where resources are limited, this is an

acceptable consequence, as the quality of the results is more vital in a virtual screen-

ing context. The improvement in the identified hit list, with a decrease in false pos-

itives and subsequent decrease in resource waste, would largely compensate for the

increase in false negatives (Houston and Walkinshaw, 2013).
6 MM-GBSA
Various elements of binding free energy, including long-range electrostatics, deso-

lvation upon binding, and entropic contributions, are poorly defined in conventional

scoring functions utilized in molecular docking (Rastelli et al., 2010a). These terms

are better defined by more rigorous and computationally intensive calculations

included in techniques such as free energy perturbation (FEP; Kollman, 1993), ther-

modynamic integration (TI; Lybrand et al., 1986), linear response (LR; Åqvist et al.,
1994), molecular mechanics Poisson-Boltzamann/surface area (MM-PBSA; Kuhn

and Kollman, 2000) and molecular mechanics generalized-Born/surface area

(MM-GBSA; Kollman et al., 2000). Of these, MM-PBSA and MM-GBSA are faster

by several orders of magnitude, making them favorable techniques for the rescoring

and reranking of hit lists identified by virtual screening. As these techniques

are computationally efficient and yield high correlations with experimental

binding energies, the general opinion that docking results should be further analyzed

by more advanced approaches is increasing (Rastelli et al., 2010a, Sgobba

et al., 2012).
MM-PBSA and MM-GBSA previously required an ensemble of snapshots, gen-

erated by an MD simulation of the protein-ligand complex in water. This has been

replaced by the use of a continuum implicit solvent model with a single minimized

protein-ligand structure. This technique has given excellent correlations with exper-

imental data (Guimarães and Cardozo, 2008; Greenidge et al., 2013) and is compa-

rable with the more time-consuming and computer-intensive approach of averaging

MD simulations in water (Rastelli et al., 2010a). The use of a single energy-

minimized structure with a continuum implicit solvent has further improved the

enrichment of virtual screens and can successfully discriminate between true binders

and decoys (Rastelli et al., 2010a). Explicit solvent models have further shown to

decrease this correlation (Greenidge et al., 2013).
MM-PBSA and MM-GBSA are force field–based methods that use a combina-

tion of molecular mechanics (MM) energies, polar and nonpolar solvation terms, and
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an entropy term to calculate the free energy of binding (ΔGbind; Massova and

Kollman, 2000; Kollman et al., 2000) from the change between the bound complex

(ΔGcom) and unbound receptor (ΔGrec) and ligand (ΔGlig) in solution [Eq. (27.1);

Rastelli et al., 2010a; Guimarães and Cardozo, 2008]:

ΔGbind ¼ΔGcom �ΔGrec �ΔGlig: (27.1)

Each of these terms are decomposed into gas-phase MM energy (ΔEMM), polar and

nonpolar solvation terms (ΔSsolv), and an entropy term (ΔS) at a predefined temper-

ature (T) [Eq. (27.2)].

ΔG com=rec=ligð Þ ¼ΔEMM +ΔGsolv� T:ΔS: (27.2)

EMM is calculated by the sum of chemical bonds, angles, and torsion terms (Ebat)

predefined by the force field and van der Waals (EvdW) and Coulombic terms (Ecoul).

The Gsolv terms are further decomposed into a polar (Gsolv,p) contribution and

nonpolar (Gsolv,np) contribution. The polar contributions are calculated by

generalized-Born (GB) approximations in MM-GBSA (Kollman et al., 2000;

Greenidge et al., 2013) and a Poisson-Boltzamn (PB) distribution in MM-PBSA

(Kuhn and Kollman, 2000), where the nonpolar contribution is usually calculated

as a linear function of the solvent accessible surface area (Hou et al., 2011a;
Greenidge et al., 2013). With these functions, the binding free energy (ΔGbind) is

calculated:

ΔG com=rec=ligð Þ ¼ΔEbat +ΔEvdW +ΔEcoul +ΔGsolv,p +ΔGsolv,np� T:ΔS: (27.3)

In most studies, the entropy (T. ΔS) term is neglected, as its calculation can be a

major source of error (Rastelli et al., 2010b) and does not always improve the pre-

diction accuracy (Hou et al., 2011a; Guimaraes, 2012); however, some researchers

do still advocate its use (e.g., Lafont et al., 2007).
When comparing the PB and GB methods in calculation of solvation terms, the

PB model is theoretically more rigorous and computationally intensive than GB but

does not always give a stronger correlation with experimental binding free energy.

The GB model is also more efficient and faster at ranking binding affinities of

ligands, making it more suitable in a virtual screening context (Hou et al., 2011a,
2011b; Huang et al., 2010; Li et al., 2010). MM-GBSA has further been shown to

be a more attractive option than the computationally heavy FEP and TI methodol-

ogies, as it can be as accurate and computationally more efficient, and handle struc-

turally more diverse ligands because it requires no training set (Guimarães and

Cardozo, 2008). In conclusion, MM-GBSA provides excellent correlation with

experimental binding energy, improved enrichment in virtual screening of com-

pound databases, is computationally suitable for medium-throughput screening or

reranking a defined hit list and provides more accurate docking poses (Hou et al.,
2011b). With this, the rescoring of docking complexes using MM-GBSA has

emerged as a computationally important approach in structure-based drug design

(Guimaraes, 2012).
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7 INCORPORATING PHARMACOPHORIC CONSTRAINTS
WITHIN THE VIRTUAL SCREEN
A pharmacophore is defined as an ensemble of structural features that are necessary

for molecular recognition (Guner, 2000). These features predominantly include

hydrophobic moieties and hydrogen bond donors and acceptors, but may also include

aromatic rings, cations, and anions. A pharmacophore model can be used prior to a

docking study to reduce the size of a ligand library, or it can be used to filter hits

following a virtual screen. These pharmacophoric features can be defined by an

ensemble of known, active inhibitors where features that are frequently repeated

are included in the pharmacophore model (Yang, 2010), or they can be defined

by the natural substrate. Identifying ligands that are able to replicate the interactions

made between the natural substrate and a receptor can greatly improve the success

and enrichment of a virtual screen. An example of substrate derived pharmacophoric

constraints is the three chymotrypsin-like protease (3CLpro) of coronaviruses. The S1
pocket in this family of proteases has an absolute specificity for glutamine, which is

mediated by a hydrogen bond between the substrate and His163, deep in the pocket.

The S2 pocket forms a deep hydrophobic region that displays preference for a hydro-

phobic moiety and the Glu166 residue increases substrate specificity via an addi-

tional hydrogen bond (Zheng et al., 2007; Chuck et al., 2011; Shoichet, 2004;
Schapira et al., 2003). These pharmacophoric features have been extensively used

to identify novel inhibitors of the 3CLpro (Jacobs et al., 2013).
8 CONCLUSION
Despite its limitations, molecular docking has yielded the discovery of novel leads

(Shoichet and Kobilka, 2012; Wang and Ekins, 2006) and, if used correctly, the

speed and cost effectiveness at which molecular docking screens can be conducted

can provide an excellent starting point in a project with few to no compelling leads

(Alvarez, 2004). Possibly the most important consideration to make when commenc-

ing a structure-based drug design study is a question of project design, especially if

the user is a beginner in the field. The more prior knowledge and availability of pub-

lished data, the greater the chance of success in the project where proper scrutiny of

available literature is essential. The availability of high-resolution crystals or NMR

structures of the receptor are paramount prior to a virtual screen, as homologymodels

have been proven to yield low enrichment when compared to holo or apo experimen-

tal structures. Holo structures have further proven to improve enrichment, and the

state of the experimental structure should therefore be taken into account

(McGovern and Shoichet, 2003). Efficient characterization of the active or allosteric

binding site is essential. Detailed understanding of the location and flexibility of

side-chains within the pocket, the presence or absence of active site waters, and pro-

tonation states of ionisable residues will contribute greatly to enrichment in a virtual
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screen. The availability of known actives will also allow for essential benchmarking,

validation, and potential generation of an effective pharmacophore model. It is

important to characterize what class of inhibitors these actives belong to. Molecular

docking is not capable of replicating covalent interactions between ligand and recep-

tor, and therefore covalent inhibitors should be excluded. Large peptidomimetics are

also difficult to dock with conventional docking methodologies. This is directly

related to the inaccuracy of docking algorithms to predict the correct conformation

of compounds with increased number of rotatable bonds. With each rotatable bond,

the conformational space that must be sampled increases dramatically and thereby

reduces the chance of successfully predicting the correct pose. Ligands in a molec-

ular docking screen, therefore, should be limited to eight rotatable bonds (Houston

and Walkinshaw, 2013). A final consideration covered in this chapter is the use of

consensus scoring and sampling. This has been shown to greatly improve enrichment

with MM-GBSA rescoring, yielding high correlations with experimental evidence

and should be considered in a virtual screening context (Teramoto and Fukunishi,

2007; Chang et al., 2010; Houston and Walkinshaw, 2013; Hou et al., 2011b).
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