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Machine learning can accurately predict pre-admission
baseline hemoglobin and creatinine in intensive care patients
Antonin Dauvin 1,2, Carolina Donado3, Patrik Bachtiger4, Ke-Chun Huang1, Christopher Martin Sauer 1,4, Daniele Ramazzotti5,
Matteo Bonvini6, Leo Anthony Celi 1,7* and Molly J. Douglas8*

Patients admitted to the intensive care unit frequently have anemia and impaired renal function, but often lack historical blood
results to contextualize the acuteness of these findings. Using data available within two hours of ICU admission, we developed
machine learning models that accurately (AUC 0.86–0.89) classify an individual patient’s baseline hemoglobin and creatinine levels.
Compared to assuming the baseline to be the same as the admission lab value, machine learning performed significantly better at
classifying acute kidney injury regardless of initial creatinine value, and significantly better at predicting baseline hemoglobin value
in patients with admission hemoglobin of <10 g/dl.
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INTRODUCTION
Any clinical measurement is more meaningful as part of a trend
over time than as a standalone data point. However, at the time of
intensive care unit (ICU) admission for an acute illness, pre-
admission data to inform both clinical decisions and predictive
models is often unavailable. This may be due to a lack of recently
drawn laboratory blood results, often compounded by poor data
sharing between healthcare providers and their disparate
systems.1,2 Clinical teams frequently make rapid, best-guess
assessments of the chronicity of abnormalities, and in the setting
of the clinical story, these assumptions help to guide the type and
intensity of treatment. Thus far, technological advances have
failed to ameliorate the subjectivity of this method of decision
making.
Two frequently deranged and clinically-important laboratory

values are hemoglobin and creatinine. While anemia is defined by
World Health Organization as a hemoglobin value of <12 g/dl in
adult women and <13 g/dl in adult men,3 a recent review showed
that the average hemoglobin at the time of intensive care unit
admission is approximately 10 g/dl.4 The standard of care for the
past two decades has been transfusion to maintain a hemoglobin
level of at least 7 g/dl.5 However, given that chronic anemia is
generally better tolerated than acute anemia, and that transfusion
itself carries risks,6 establishing early in the hospital stay that
anemia is chronic may help to limit unnecessary transfusions.
Much like hemoglobin, creatinine levels are commonly

deranged in acutely ill patients.4 Acute kidney injury (AKI) is
defined as a creatinine increase of at least 1.5 times baseline over
the last seven days or an absolute increase of ≥0.3 mg/dl over
48 h.7 This is in contrast to chronic kidney disease (CKD), in which
derangements must persist for three months or more.8 By
definition, this distinction relies on historical results, which may
not be available. Detection of AKI will prompt a search for causes
as well as the taking of corrective action, which may include fluid
resuscitation and renal replacement therapy. In contrast, stable
chronic kidney disease does not mandate aggressive treatment.

Thus, decision making may be encumbered by lack of
historical data.
Machine learning, a branch of artificial intelligence that allows

computers to perform pattern recognition on datasets, is
increasingly applicable in medical contexts.9 The ability of
algorithms to extract patterns which may be non-obvious to the
human observer has already been leveraged for a wide variety of
future-oriented predictions including clinical deterioration,10–13

readmission risk,14 cancer prognostication,15 anticipation of fluid
requirements in pressor-dependent patients,16 prediction of
meaningful changes in laboratory results in the ICU,17 arrhythmia
identification,18 and enhanced interpretation of medical ima-
ging.19–21 Such efforts have addressed the challenge of predicting
the next value or event in patients who are already in a monitored
setting. However, studies seeking to quantify a “past state,”
including the presence of abnormality on historical blood results,
have yet to be widely attempted.
The aim of this study is to predict the prior-to-admission

baseline hemoglobin and creatinine values for patients admitted
to the ICU, using objective parameters available within two hours
of ICU admission. We present a machine learning workflow and
measures of accuracy for the models constructed to create this
prediction. We contrast the interpretability of different algorithms,
given that model complexity and lack of transparency may result
in biased or illogical conclusions going unseen.22

RESULTS
Cohort characteristics
The full hemoglobin and creatinine cohorts meeting inclusion criteria
totaled 6139 and 4643 respectively, with 4331 patients appearing in
both cohorts. The comparison cohort for which baseline lab data was
not available totaled 13,853 patients. With respect to creatinine, the
cohort with outpatient labs had slightly higher average age (64 vs 61)
and the same median admission creatinine (0.9mg/dl), but lower in-
hospital mortality (10.4% vs 13.6%) and slightly shorter average
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hospital length of stay (10.5 vs 10.7 days) (Table 1). Relative to the
comparison cohort, the hemoglobin cohort also had slightly higher
average age (63 vs 61) and similar admission hemoglobin (11.5 vs
11.4 g/dl), but lower in-hospital mortality (12.7% vs 13.6%) and
slightly shorter average length of stay (10.5 vs 10.7 days). The mean
time from baseline lab draw to admission was 14.3 days for
hemoglobin and 13.7 days for creatinine.
The distributions of the baseline and initial values for hemoglobin

and creatinine were overlapping (Fig. 1), but 12% of patients in each
cohort showed a change in category (to hemoglobin <10 g/dl or
creatinine >1.3mg/dl) between baseline and admission.

Primary outcome – classification task
The three best-performing models on the classification task—
gradient boosted trees, random forest, and logistic regression—
did not differ significantly in performance, and demonstrated
areas under the receiver operating characteristic curve (AUC) of
0.86–0.89 (95% CI 0.84–0.90 across all models). Optimal

classification trees (OCT) showed similar performance for hemo-
globin with AUC of 0.88 (95% CI 0.87–0.89) and intermediate
performance for creatinine with AUC of 0.77 (95% CI 0.76–0.79).
Using a target of hemoglobin of <8 g/dl as a prediction target
yielded similar AUCs to targeting hemoglobin <10 g/dl for the
three top performing models, but reduced performance for OCT,
with mean AUC 0.62 rather than 0.88. The legacy algorithm CART
had an AUC of only 0.64 (95% CI 0.64–0.68). For creatinine, all
models performed significantly better than simply assuming the
baseline to be similar to the admission value, which gave an AUC
of 0.5. For hemoglobin, however, assuming the baseline
hemoglobin was in the same category as the admission value
had an AUC of 0.78 (95% CI 0.76–0.80).
Limiting the cohort to just patients with admission values for

hemoglobin and creatinine in the abnormal category resulted in
reduced machine learning model performance, with mean AUCs
ranging from 0.66 to 0.80. The AUC for the “simple model” of
assuming no change from admission value was reduced for
hemoglobin and improved for creatinine with this cohort (Table 2,

Table 1. Cohort characteristics.

Characteristic Known hemoglobin baseline
(n= 6139)

Known creatinine baseline
(n= 4643)

Unknown outpatient baselines
(n= 13,551)

Initial admission hemoglobin (g/dl) – Mean
(interquartile range)

11.5 (10.0–13.0) 10.4 (9.0–11.5) 11.4 (9.9–13.0)

Outpatient baseline hemoglobin (g/dl) – Mean
(interquartile range)

12.3 (10.8–13.7) N/a N/a

Initial admission creatinine (mg/dl) – Median
(interquartile range)

1.0 (0.7–1.4) 0.9 (0.7–1.3) 0.9 (0.7–1.3)

Outpatient baseline creatinine (mg/dl) – Median
(interquartile range)

N/a 1.29 (0.8–1.2) N/a

Time lag from baseline lab draw to admission
(days) – Mean (interquartile range)

14.3 (6–16) 13.7 (6–16) N/a

Age – Mean (interquartile range) 63 (54–75) 64 (55–75) 61 (50–76)

ICU length of stay (hours) – Mean (interquartile range) 87 (28–89) 91 (28–94) 115 (32–121)

Hospital length of stay (days) – Mean
(interquartile range)

10.5 (4–13) 10.5 (5–12) 10.7 (4–13)

In-hospital mortality (%) 12.7% 10.4% 13.6%

Gender Female (%) 42.1% 42.5% 41.6%

Vasopressors used (%) 25.8% 26% 16.7%

Admission type

Emergency (%) 52.2% 53.0% 87.1%

Elective (%) 46.2% 45.0% 9.3%

Urgent (%) 1.6% 2.0% 3.6%

Fig. 1 Distributions of the baseline (outpatient) and initial (admission) values for hemoglobin and creatinine. Left: Hemoglobin, Right:
Creatinine.
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Fig. 2). The machine learning models’ superior performance
compared to the “simple model” for both full and limited cohorts
is also evident when examining precision-recall curves (Supple-
mentary Figs 3–6), which take into account for the prevalence of
true positives and true negatives in the dataset.

Secondary outcome - continuous prediction
For the continuous prediction task, i.e., predicting the actual
baseline value, performance on hemoglobin prediction for the full
cohort was similar across the models with mean absolute error
(MAE) 0.97–1.1 g/dl. The 95% confidence interval (CI) for the best
performing model, gradient boosted trees, was 0.96–0.98 g/dl. For
creatinine prediction on the full cohort, MAE across the models
was 0.32–0.42 mg/dl, and 95% CI for the best-performing model,
gradient boosted trees, was 0.31–0.33mg/dl. The “simple model”
of just predicting the same value as admission yielded mean
errors of 1.3 g/dl for hemoglobin and 0.38 mg/dl for creatinine.
The MAE in all methods of prediction increased when examining
just the cohort with abnormal admission values, to 1.1–1.3 g/dl
(95% CI 1.1–1.3 across all models) for hemoglobin and 0.61–0.72
mg/dl (95% CI 0.59–0.77 across all models) for creatinine (Table 3,
Fig. 3). Simply predicting the same value as admission for these
sub-cohorts yielded mean absolute errors of 2.1 g/dl for
hemoglobin and 0.75 mg/dl for creatinine.

Secondary outcome - model interpretability
Model interpretability is optimized when a human being can
understand how a computer model arrived at a particular
conclusion. Of the models tested, Optimal Classification Trees is
qualitatively the most interpretable, as the entire model can be
represented visually as a single branching decision tree, as shown
in Figs 4 and 5.23,24 Ensemble methodologies like random forest25

and gradient boosted trees26 produce multiple decision trees,
each built from a subset of the data, that are then combined to
yield the model output. However, these “forests” of decision trees
do not lend themselves to a cohesive visual representation and
are not shown.
Assessment of feature importance was also done for all models.

The admission value of the lab test of interest was consistently the
most important model input. For hemoglobin, the mean
corpuscular hemoglobin concentration was reliably the next
second most important feature (Supplementary Figs 15–19). For
creatinine and AKI prediction, the other parameters consistently
selected as important were blood urea nitrogen, electrolytes, age,
heart rate and blood pressure (Supplementary Figs 20–24).

DISCUSSION
It is common for patients presenting with acute illness to have
multiple derangements in vital signs and laboratory results,
without clarity as to which abnormalities are due to acute illness
versus chronic comorbidities. In the absence of historical data,
clinical teams use their judgement to estimate the chronicity of
abnormalities; these assumptions often guide the type and
intensity of treatment. The goal of this work is to improve clinical
care through the accurate back-prediction of the pre-admission
baseline hemoglobin and creatinine using data commonly
available within the first several hours of ICU stay.
We trained and tested several prediction methods, including

logistic and linear regression, gradient boosted trees, random
forest, and optimal trees. These models performed well on the
classification task with AUC’s of 0.86–0.89. The regression models
demonstrated the ability to predict hemoglobin and creatinine to
within clinically-informative ranges, averaging within 0.97–1.1 g/dl
of the true value for hemoglobin and 0.32–0.42 mg/dl for
creatinine. As the inter-analyzer laboratory variability for hemo-
globin measurement has been reported at 0.3–1.5 g/dl,27 and forTa
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creatinine at 0.1–0.2 mg/dl,28 model precision approaches that of
existing laboratory testing on varied equipment. Compared to
assuming the baseline to be the same as the admission lab value,
machine learning performed significantly better at classifying
acute kidney injury regardless of initial creatinine value, and
significantly better at predicting baseline hemoglobin value in
patients with admission hemoglobin of <10 g/dl. On other
outcome measures, i.e. classifying baseline hemoglobin as greater
or less than <10 g/dl regardless of admission value, or predicting
actual baseline creatinine, the “simple model” of assuming that
the baseline is the same as the initial lab value performed nearly
as well. Thus, machine learning can lend precision to the baseline
lab prediction, and whether or not this affects treatment decisions
will depend on individual patient context.

Overall, model performance on the subsets of patients with
abnormal admission labs was decreased compared to that on the
full cohorts (Tables 2 and 3). The sample sizes for these subgroups
were only 26–37% of the size of the full cohorts, therefore there
were fewer data points for the algorithm to learn from and
performance may have been decreased in part for this reason.
We explored this further with Bland–Altman plots (see Supple-

mentary Information). For all hemoglobin prediction models, there
was a tendency for the model to under-predict high baseline levels
and over-predict if the true baseline was low. We suspect this is
related to having relatively few patients to learn from at the
extremes of the hemoglobin range, eg. hemoglobin <9 or >13 g/dl
(Fig. 1, Supplementary Figs 7–10). For creatinine, there was also a
trend to under-predict high baseline values, but this was most

Fig. 2 Receiver operating characteristic curves for the binary classification task by model. The left panels show performance on classifying
baseline hemoglobin as <10 g/dl or not, and the right panels show performance on classifying AKI as present or absent. Upper panels show
results for the full cohort, and bottom panels show results for the just the cohorts with admission hemoglobin <10 g/dl (left) and admission
creatinine >1.3 mg/dl (right). The “baseline”model, shown for comparison, simply assumes the baseline value is similar to the admission value.
RFC random forest classifier, CART classification and regression trees, Log logistic regression, XGB gradient boosted trees, OCT optimal
classification trees.
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pronounced at levels of creatinine consistent with renal failure, i.e.,
>4–6mg/dl (Supplementary Figs 11–14). This may be partly related
to the fact that for chronic renal failure patients, a creatinine of 4 g/dl
and 6 g/dl may occur within the same week (as the value varies with
dialysis timing) without significant vital sign changes to give the
algorithm a reason to predict a higher value.
The features identified by the models as important predictors of

baseline hemoglobin and creatinine levels appear clinically
appropriate. For both, the admission value was the strongest
predictor of the baseline value. For hemoglobin, MCHC, a measure
of the concentration of hemoglobin in a given volume of packed
red blood cells, tends to be decreased in chronic but not acute
anemia,29 and this was reflected in the model. For creatinine, BUN
as well as other electrolytes that are handled by the kidneys
affected prediction of recent changes in renal function, as did
more advanced age. Vital signs including heart rate and blood
pressure were important features in the models, as they may be

affected by anemia and may also suggest changes in end organ
perfusion that may be causative of acute kidney injury. While
previous work has shown that both random forest models as well
as multiple imputation with chained equations (MICE)30,31 perform
well for the imputation of missing laboratory values, our work
builds on this by adding the rich clinical information available
from vital signs to help with imputing a value more distant in time,
the pre-illness baseline.
Non-intuitive interactions were also identified in the optimal

classification trees. For instance in one of the generated trees
(Supplementary Fig. 25), glucose >450mg/dl was predictive of
normal renal function. Upon further investigation, a bimodal age
distribution of the patients with glucose >450mg/dl was noted
(see Supplementary Figs 26 and 27), suggesting that in some
cases a markedly elevated glucose was simply a marker of
younger age, which tends to be associated with better renal
function. We suspect this finding was produced by a cohort of

Table 3. Summary of models’ performance on predicting the actual baseline value for hemoglobin and creatinine.

Model Mean absolute error for baseline hemoglobin – g/dl (95% CI) Mean absolute error for baseline creatinine – mg/dl (95% CI)

Full Cohort
n= 6139

Cohort with Admission Hgb < 10 g/dl
n= 1553

Full Cohort
n= 4643

Cohort with Admission Cr > 1.3 mg/dl
n= 6139

Gradient Boost 0.97 (0.96–0.98) 1.1 (1.1–1.1) 0.32 (0.31–0.33) 0.61 (0.59–0.63)

Random Forest 0.98 (0.96–0.99) 1.1 (1.1–1.2) 0.34 (0.33–0.35) 0.65 (0.63–0.66)

Linear Regression 1.0 (1.0–1.0) 1.2 (1.2–1.3) 0.37 (0.36–0.38) 0.70 (0.68–0.72)

ORT (Optimal
Regression Trees)

1.1 (1.0–1.1) 1.3 (1.2–1.3) 0.42 (0.36–0.49) 0.72 (0.67–0.77)

Assume same as
admission (“Simple
model”)

1.3 (1.3–1.3) 2.1 (2.0–2.2) 0.38 (0.36–0.39) 0.75 (0.71–0.78)

Hgb hemoglobin, Cr creatinine

Fig. 3 Histograms of the differences between predicted and observed baseline hemoglobin and creatinine values for the Gradient Boosted
Tree model. Left panels show hemoglobin results and right panels show creatinine results. The upper panels show results for the full cohort,
and bottom panels show results for the just the cohorts with abnormal admission labs – hemoglobin <10 g/dl (left) and admission creatinine
>1.3 mg/dl (right).
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otherwise-healthy younger patients admitted for uncontrolled
type I diabetes.
The capacity for model interpretability can help to address valid

concerns around bias and discrimination in datasets, and how

these may have unseen impacts on the output of uninterpretable
machine learning models.32,33 We hypothesize that this interpret-
ability may ultimately increase the acceptance and clinical utility
of machine learning, by allowing providers to understand and

Fig. 4 Representative optimal classification tree for the hemoglobin classification task. In this tree, “Predict 0” indicates the model’s prediction
that the baseline hemoglobin is <10 g/dl, and “Predict 1” indicates a prediction that the baseline hemoglobin is 10 g/dl or greater. Relevant
features generate branch points, and each terminal node (or “leaf”) represents the final model prediction. The tree shown is a segment of a
larger, more complex tree diagram. Terminal nodes are colored red or green, and nodes that have additional branchings in the full model are
gray. The relative thickness of the lines connecting the nodes is proportional to the fraction of patients falling on either side of the split. The “p
value” is the model’s certainty that the categorization is correct, eg “There is a 95% chance that the baseline hemoglobin is <10 g/dl.” Hb
hemoglobin (g/dl), MCHC mean corpuscular hemoglobin concentration (g/dl), SBP systolic blood pressure (mmHg), chloride (mEq/L), RR
respiratory rate (breaths per minute), max maximum, min minimum.

Fig. 5 Representative optimal classification tree for the AKI classification task. “Predict 0” indicates the model’s prediction that AKI is present,
and “Predict 1” indicates a prediction of no AKI. Please see full explanation of the tree diagram in Fig. 4. Cr creatinine (mg/dl), bicarbonate
(mmol/L), white blood cells (thousand/μL), HR Heart Rate (beats per minute), TEMP temperature (degrees celsius), RR respiratory rate (breaths
per minute), sodium (mEq/dl), SPO2 oxygen saturation (%), INR(PT) international normalized ratio of prothrombin time, mean average, min
minimum, sd standard deviation.
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gain trust in the models’ methodology and outputs. While this
work focused on information from a de-identified and structured
clinical database, it uses values that are commonly charted.
Deploying an algorithm within the EHR, in which the record might
report “predicted” as well as “measured” laboratory values, is a
future possibility. Further, existing illness severity scores, e.g.,
SOFA34 or APACHE II,35 operate on the premise that the patient’s
biomarkers were normal prior to illness. This does not allow the
score to distinguish chronic comorbidities from acute derange-
ments. The ability to impute a “well” baseline that is individualized
to a given patient would permit more nuanced categorization, for
instance creating different renal function scores for a young
patient with AKI versus an elderly patient with chronic kidney
disease. For critical care research where many physiologic
derangements coexist, this may be particularly useful in identify-
ing subgroups of patients who benefit from various treatments.
Algorithm deployment within an EHR would face validation,

regulatory, and privacy challenges.36 Notably, as machine learning
algorithms are trained to predict outcomes based on past events,
they run the risk of perpetuating biases rather than promoting
objectivity. Rigorous comparisons of model classification for
privileged vs at-risk subgroups has been described.37 Attention
to these details will be important future work for any machine
learning deployed in the healthcare setting, where bias is well
known to affect patient-health system interactions.38,39

This study has several limitations. Only patients with prior-to-
admission labs were included, potentially yielding a sicker cohort
compared to patients without these outpatient healthcare
contacts, which may limit generalizability. However, the shorter
length of stay and lower mortality in the group with outpatient lab
draws argues against this cohort being significantly sicker. The fact
that MIMIC-III is a single-center database also limits external
validity of the results. Our machine learning workflow for
predicting baseline labs, however, may be adapted for other
institutions, allowing the re-training of models to fit different
populations.
This work assumes a state of stability or wellness when labs are

drawn in the outpatient setting. Although the state of health
required to present for outpatient blood test versus that requiring
admission to the ICU are highly divergent, the former may not
represent a “stable” baseline for all patients.
We chose two hours of ICU time as a clinically reasonable cut

point for data capture prior to model training and testing. This is a
trade-off, as longer data-capture could produce a more accurate
prediction, but the clinical utility of the prediction wanes the
longer it is delayed. Further, as MIMIC-III is an ICU database, we
were not able to incorporate vital sign data from the emergency

department or non-ICU wards. If such data were available, it might
allow predictions of similar accuracy to be made at an earlier
time point.
In summary, the use of statistical and machine learning models

enables accurate prediction of the prior-to-admission baseline
hemoglobin and creatinine levels, using data available within two
hours of ICU admission. Compared to assuming the baseline to be
the same as the admission lab value, machine learning performed
significantly better on classifying acute kidney injury regardless of
initial creatinine value, and significantly better at predicting
baseline hemoglobin value in patients with admission hemoglo-
bin of <10 g/dl.

METHODS
This study is reported in accordance with the STrengthening the Reporting
of OBservational studies in Epidemiology (STROBE) statement.40 The
project was approved by the Institutional Review Board of the Beth Israel
Deaconess Medical Center (IRB Protocol #2001P001699) and was granted a
waiver of informed consent.
We used retrospective data from the Medical Information Mart for

Intensive Care (MIMIC-III, version 1.4) database; a single center, publically
available, de-identified high-resolution database of ICU stays, built and
maintained by the Laboratory for Computational Physiology at Massachu-
setts Institute of Technology (MIT). MIMIC-III is available at http://mimic.
physionet.org/. MIMIC-III includes 46,520 patients with intensive care unit
admissions between 2001 and 2012 at Beth Israel Deaconess Medical
Center in Boston.41 While the database is comprehensive for ICU stays,
including bedside monitor vital sign data, laboratory values, and full text of
chart notes, it also includes outpatient laboratory results when samples
were processed within the Beth Israel Deaconess system.

Derivation and validation cohorts
Using the MIMIC-III database, we identified patients aged 15 to 90
admitted to intensive care who also had prior-to-admission blood tests
drawn for hemoglobin or creatinine in the outpatient setting between
three and 30 days prior to admission. The outpatient setting was used as a
proxy for the patient being in a well state, and the prior to admission value
was taken to represent the patient’s recent “baseline”. Ninety was chosen
as an age cut-off, as patients older than 90 have their ages masked for
confidentiality in MIMIC-III. For patients with more than one ICU stay, only
the first ICU stay was used. Patients were excluded if the ICU stay was
shorter than four hours, and if they did not have the lab of interest
(hemoglobin or creatinine) tested within two hours before or after ICU
admission. Two final cohorts of 6139 and 4643 patients were identified for
the hemoglobin and creatinine prediction tasks respectively (Fig. 6). As
hemoglobin and creatinine are often tested together, 4331 patients
appeared in both groups. In total 75% of each cohort was used for model
training. The remaining 25% was used for validation and testing, and all

Fig. 6 Cohort selection process from the MIMIC-III database.
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reported metrics of model performance were obtained from this subset.
The cohort of patients meeting all inclusion criteria except for the
availability of an outpatient lab measurement was also extracted, for
comparison of baseline characteristics (Table 1).

Independent variables and outcomes
The primary outcome measure was model performance on a binary
classification task. For hemoglobin, we predicted whether the baseline
hemoglobin was <10 g/dl or not, in accordance with the World Health
Organization cut-off for moderate anemia.42 The creatinine binary
prediction target was the presence or absence of acute kidney injury,
i.e., whether the admission creatinine relative to the predicted baseline
showed an increase of 1.5 fold, in accordance with KDIGO guidelines.7

Given that patients presenting with normal hemoglobin and creatinine
levels were highly likely to have normal baselines, the primary outcomes
were also assessed on the subset of patients presenting with hemoglobin
of <10 g/dl or creatinine >1.3 mg/dl. This cohort was significantly smaller,
totaling 1553 patients for hemoglobin and 1719 for creatinine. For
hemoglobin, we additionally tested model performance for identifying
baseline hemoglobin of <8 g/dl, as this is closer to most clinicians’
transfusion threshold.
Secondary outcomes were model performance on a regression task in

which the actual baseline value was predicted for hemoglobin and
creatinine, and a qualitative assessment of model interpretability.
The independent variables selected from MIMIC-III and used as model

inputs are shown in full in Table 4, and included patient demographics
such as age, gender, vital signs (temperature, heart rate, blood pressure,
respiratory rate and oxygen saturation), and laboratory values including
complete blood count, red cell indices, electrolytes, coagulation studies,
and renal and liver function tests as available within two hours of ICU
admission. Time-series vital signs were summarized as maximum,
minimum, mean, and standard deviation over the two hour period. Data
extraction and preprocessing was accomplished using R (R Foundation for
Statistical Computing, Vienna, Austria, v3.5.0),43 the Google BigQuery
application programming interface (Google LLC, Mountain View, CA),44 and
the community developed IPython package Pandas45 (v0.23.4).

Missing data
The majority of independent variables were missing for less than 20% of
patients in the creatinine cohort, and less than 30% of patients in the
hemoglobin cohort (See Supplementary Figs 1 and 2). The missingness
distributions were bimodal, with a second peak above 80% missing, and
features with greater than 80% missing data were excluded. This resulted
in the removal of seven initially-extracted features: ferritin, folate, iron,
transferrin, total iron binding capacity, total protein, and vitamin B12 from
the analysis. Missing data for all other features were imputed, testing both
simple mean imputation and optimal k nearest-neighbor (K-NN)

imputation.46 K-NN imputation, in which the imputed value is informed
by the values of otherwise-similar patients, improved the models’ area
under the curve by 1% or less compared to mean imputation, but was kept
in the final analysis pipeline to improve future generalizability to other
datasets. Specifically, imputation over clusters of patients with similar
physiology may produce more physiologically accurate results. Further-
more, avoiding imputing a whole-sample mean prevents the mean value
taking on unexpected significance during machine learning, as a surrogate
marker of missing values.

Modeling
We tested and compared several modeling algorithms for performance
and interpretability, including the ensemble methodologies random
forest,25 gradient boosted trees26 and classification and regression trees
(CART),47 and as well as non-ensemble methods, namely optimal
classification trees,23,24 linear regression, and holistic logistic regression.48

To enhance model training, a grid search pipeline was built with several
train-validation-test splits to identify the best-performing hyperparameters
(e.g., tree depth, number of trees, number of features considered for each
split) for each model. Machine learning processes as well as missing data
imputation were carried out with the use of Python v3.5.6 (The Python
Software Foundation, Beaverton, OR) and Julia v6.4 (NumFOCUS, Austin,
TX) programing languages. Community-developed packages including
IPython,49 Matplotlib50 (v3.0), Scikit-learn51 (v0.20.0), SciPy52 (v1.1.0),
Pandas45 (v0.23.4), as well as packages built by the Operations Research
Center of MIT including OptImpute and OptimalTrees23,24 were used.
For the primary outcome measure of model performance on the

classification tasks, models were compared on area under the receiver
operating characteristic curve (ROC). To quantify uncertainty in model
performance, bootstrapped cohorts were generated from random sub-
samplings of the dataset, and 95% confidence intervals were calculated.
For prediction of the actual baseline lab value, performance was

assessed on the mean absolute error, i.e. the average of the absolute value
of the difference between the observed and predicted value.

DATA AVAILABILITY
Access to the MIMIC-III database may be requested via: https://mimic.physionet.org/.

CODE AVAILABILITY
All code generated to produce this work is available at: https://github.com/adauvin/
Back-prediction

Table 4. Demographic, vital sign, and laboratory data extracted as model inputs.

Demographics Vital signs Laboratory values

Age at admission Temperature Hemoglobin Bilirubin

Sex Heart rate White blood cell count (WBC) pH

Time from baseline lab draw to admission Systolic blood pressure Platelet count Lactate dehydrogenase (LDH)

Diastolic blood pressure Sodium International normalized ratio (INR)

Respiratory rate Potassium Prothrombin time (PTT)

Oxygen saturation Bicarbonate Red blood cell count (RBC)

Chloride Mean corpuscular volume (MCV)

Blood urea nitrogen (BUN) Mean corpuscular hemoglobin
concentration (MCHC)

Creatinine Iron

Glucose Transferrin

Calcium Ferritin

Phosphate Folate

Albumin B12

Partial pressure of CO2 Lactate
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