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Abstract

Connectional topography mapping has been gaining widespread attention in human

brain imaging studies. However, existing methods might not effectively utilize the

information from neuroimaging data, thus hindering the understanding of the under-

lying connectional organization in the brain and uncovering the optimal clustering

number from the data. In this study, we propose a novel method for the automated

construction of inherent functional connectivity topography in a data-driven manner

by leveraging the power of co-clustering-based on resting state fMRI (rs-fMRI) data.

We propose the co-clustering-based method not only for concurrently parcellating

two interconnected brain regions of interest (ROIs) under consideration into func-

tionally homogenous subregions, but also for estimating the connectivity between

these subregions from the two brain ROIs. In particular, we first model the connec-

tional topography mapping as a co-clustering-based bipartite graph partitioning prob-

lem for constructing the inherent functional connectivity topography between the

two interconnected brain ROIs. We also adopt an objective criterion, that is, silhou-

ette width index measuring clustering quality, for determining the optimal number of

clusters. The proposed method has been validated for mapping thalamocortical con-

nectional topography based on rs-fMRI data of 57 subjects. Validation results have

demonstrated that our method identified the optimal solution with five pairs of

mutually connected subregions of the thalamocortical system from the rs-fMRI data,

and could yield more meaningful, interpretable, and homogenous connectional

topography than existing methods. The proposed method was further validated by

the high symmetry of the mapped connectional topography between two

hemispheres.
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1 | INTRODUCTION

Connectional topography plays important role in brain functions and

behaviors, and can provide insight into neurodevelopment, too

(Phillips, Fish, Kambi, Redinbaugh, & Saalmann, 2019; Thompson,

Mohammadi-Nejad, Robinson, Andersson, & Sotiropoulos, 2020; Wu,

Calhoun, Jung, & Caprihan, 2015). Many neuropsychiatric disorders,

such as schizophrenia, have been manifested by disrupted communi-

cations for connections between distributed brain networks (Gong

et al., 2019; Jiang et al., 2019; Kim et al., 2020; Rolls et al., 2020;

Sheffield, Rogers, Blackford, Heckers, & Woodward, 2020). Thus, con-

nectional topography mapping is a matter of utmost importance for

revealing the connectional organization of the brain. However, the

connectional topography mapping is a more sophisticated analysis

than conventional region-of-interest or voxel-based morphometry

analysis, as the connectional analysis is required to clarify the inter-

regional or intervoxel relationships (Wu et al., 2015).

In recent decades, neuroimaging techniques, especially functional

magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI),

have become increasingly important for unveiling the connectional

organization in the human brain, which is essential for noninvasively

exploring human brain functions (Mars, Passingham, & Jbabdi, 2018).

With plenty of connectivity information provided by the neuroimaging

data, numerous methods have been proposed for connectional topog-

raphy mapping of the human brain (Behrens et al., 2003; Hwang,

Bertolero, Liu, & D'Esposito, 2017; Jiang et al., 2019; Johansen-Berg

et al., 2005; O'Muircheartaigh et al., 2011; O'muircheartaigh &

Jbabdi, 2018; O'muircheartaigh, Keller, Barker, & Richardson, 2015;

Wu et al., 2015; Wu, Caprihan, Bustillo, Mayer, & Calhoun, 2018;

Yuan et al., 2016; Zhang et al., 2008; Zhang, Snyder, Shimony, Fox, &

Raichle, 2010).

Existing connectional topography mapping methods can be divided

into three main categories, that is, prior connectivity based mapping

method (Behrens et al., 2003; Hwang et al., 2017; Jiang et al., 2019;

Johansen-Berg et al., 2005; Zhang et al., 2008, 2010), independent com-

ponent analysis (ICA) based mapping method (O'Muircheartaigh et al.,

2011; O'muircheartaigh et al., 2015; O'muircheartaigh & Jbabdi, 2018;

Wu et al., 2015, 2018; Yuan et al., 2016), and clustering-based mapping

method (Guevara, Román, Houenou, Duclap, & Guevara, 2016; Heuvel &

Pol, 2010; Lee et al., 2012; Salehi, Karbasi, Shen, Scheinost, & Constable,

2018; Toro-Serey, Tobyne, & McGuire, 2020; Van Den Heuvel, Mandl, &

Pol, 2008; Yeo et al., 2011). In particular, the prior connectivity based

mapping method is a hypothesis-driven approach, which needs

prior knowledge (i.e., prior brain targets) for mapping connectional topog-

raphy. The prior brain targets are usually obtained from anatomical/

cytoarchitectural templates (Behrens et al., 2003; Johansen-Berg et al.,

2005; Zhang et al., 2008, 2010), or structural/functional brain

parcellations (Hwang et al., 2017; Jiang et al., 2019). This kind of mapping

method assigns each voxel within one brain region of interest (ROI), con-

sidered for mapping its connectional topography, to one of the prior

brain targets that has the strongest connectivity strength with that voxel

based on fMRI data (Hwang et al., 2017; Jiang et al., 2019; Zhang et al.,

2008, 2010), or DTI data (Behrens et al., 2003; Hwang et al., 2017;

Johansen-Berg et al., 2005; Zhang et al., 2010). The identified subregions

and their respective connected brain targets compose the constructed

connectional topography.

Additionally, the ICA based mapping method is a data-driven

approach, which can construct meaningful connectional topography

of a certain neural circuit in consideration by applying ICA to func-

tional connectivity profiles derived from fMRI data (Wu et al., 2018;

Yuan et al., 2016), or structural connectivity profiles derived from DTI

data (O'Muircheartaigh et al., 2011; O'muircheartaigh et al., 2015;

O'muircheartaigh & Jbabdi, 2018; Wu et al., 2015). This kind of map-

ping method usually constructs the connectional topography at the

whole-brain level, which is generally achieved by applying ICA to con-

nectivity profiles (O'Muircheartaigh et al., 2011; O'muircheartaigh

et al., 2015; O'muircheartaigh & Jbabdi, 2018; Wu et al., 2015, 2018;

Yuan et al., 2016).

Besides the ICA based mapping method, the clustering-based

mapping method is a data-driven approach as well, which is also able

to construct meaningful connectional topography in the human brain

by clustering functional connectivity profiles derived from fMRI data

(Heuvel & Pol, 2010; Lee et al., 2012; Salehi et al., 2018; Toro-Serey

et al., 2020; Van Den Heuvel et al., 2008; Yeo et al., 2011), or struc-

tural connectivity profiles derived from DTI data (Guevara

et al., 2016). The existing clustering-based mapping method com-

monly constructs the connectional topography at the whole-brain

level similar to the ICA based mapping method, which is typically

achieved by grouping connectivity profiles utilizing clustering algo-

rithms, such as normalized cut (Toro-Serey et al., 2020; Van Den

Heuvel et al., 2008).

Overall, the ICA and existing clustering-based mapping methods

have shown their superiority for constructing more meaningful con-

nectional topography than the prior connectivity based mapping

method. The main reason for this is that the ICA and clustering-based

mapping methods are both data-driven approaches, which are not

dependent on prior knowledge as the hypothesis-driven method

(i.e., the prior connectivity based mapping method). However, both

ICA based mapping method and the existing clustering-based mapping

method are not sufficiently suitable for constructing fine-grained con-

nectional topography of a certain neural circuit in consideration. Fur-

thermore, the determination of the optimal granularity from data in

connectional topography mapping for the existing hypothesis-driven

and data-driven methods remains a major challenge.

To address the aforementioned challenges, we propose a novel

method for automatically constructing inherent connectional topogra-

phy from resting state fMRI (rs-fMRI) data in a data-driven manner, by

leveraging the co-clustering-based bipartite graph partitioning. Specif-

ically, the novel connectional topography mapping method is first pro-

posed for simultaneously identifying subregions of one brain ROI and

their respective connected subregions of another brain ROI (i.e., the

first brain ROI's interconnected brain structure) via co-clustering

based on rs-fMRI data. The identified subregions and their respective

connected subregions compose the mapped connectional topography
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between the two brain ROIs. Then, modified silhouette width

(SI) index measuring clustering quality is adopted as an objective crite-

rion to determine the optimal number of pairs of mutually connected

subregions between the two brain ROIs (Cheng, Wu, & Fan, 2014;

Cheng, Zhu, Zheng, Liu, & He, 2020; Craddock, James, Holtzheimer III,

Hu, & Mayberg, 2012).

We have validated the proposed method for mapping connec-

tional topography of the thalamocortical system based on 57 subjects'

rs-fMRI data obtained from Beijing Normal University 1 (BNU 1) (Lin

et al., 2015). Validation results have demonstrated that the mapped

five-cluster connectional topography with the proposed method was

the optimal solution according to the objective clustering quality crite-

rion. More importantly, the proposed method could construct more

meaningful, interpretable, and homogeneous connectional topography

compared with existing methods. The validity of the proposed method

was further verified by the high symmetry of the mapped connec-

tional topography between two hemispheres.

2 | MATERIALS AND METHODS

2.1 | The novel co-clustering method for
connectional topography mapping

The proposed method is a novel co-clustering approach for automati-

cally mapping connectional topography of the human brain based on

rs-fMRI data in a data-driven manner. The proposed co-clustering

based mapping method is comprises three key steps (Figure 1). Firstly,

two brain regions of interest (ROIs), from a certain neural circuit under

consideration, are extracted for mapping their connectional topogra-

phy (Figure 1a). Generally, one brain ROI is a subcortical brain

structure, and the other brain ROI is the brain cortex interconnected

with the subcortical brain structure. Secondly, a functional similarity

matrix is formed with dimensions nr × nc between the extracted two

brain ROIs, where nr and nc are the number of voxels in the two brain

ROIs, respectively (Figure 1b). The matrix element, that is, functional

similarity, is computed on the basis of the functional connectivity

between rs-fMRI signals. Simultaneously, a corresponding bipartite

graph model of the functional similarity matrix is established for con-

nectional topography mapping via co-clustering. Finally, the

established bipartite graph is co-partitioned by utilizing the co-

clustering for mapping connectional topography between the two

brain ROIs (Figure 1c).

2.1.1 | Extracting brain regions of interest

To precisely extract brain ROIs, two brain ROIs, that is, two inter-

connected brain structures, are extracted from subjects' structural

magnetic resonance imaging (sMRI) data other than frequently used

brain templates. Particularly, for each subject si, i = 1, 2, …, N in a data

set, the subcortical structures and cerebral cortex are segmented from

their sMRI data using FreeSurfer (Fischl et al., 2002). As an example,

Figure 1a shows the obtained substructure thalamus and its inter-

connected brain cortex of a randomly selected subject.

2.1.2 | Modeling bipartite graph for co-clustering

In the proposed method, the spectral co-clustering algorithm is

adopted for mapping the connectional topography (Dhillon, 2001;

Huang, Xu, Tsang, & Kang, 2020). This proposed co-clustering based

F IGURE 1 Framework of the proposed connectional topography mapping method. Abbreviation: ROIs, regions of interest
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connectional topography mapping method is firstly required to build

bipartite graph model Gd = (Vr, Vc, ℇd), and simultaneously compute

functional similarity matrix Mg between two brain ROIs of a certain

neural circuit under consideration. Here, the bipartite graph is con-

structed by modeling all voxels in each of the two brain ROIs as graph

nodes Vr = {ui j i = 1, 2, …, nr, nr = j Vrj} and Vc = {vi j i = 1, 2, …, nc,

nc = j Vcj}, respectively (j � j is the cardinality of a set), and by con-

necting each pair of voxels from the two different brain ROIs as graph

edges ℇd = {hu, vij u � Vr, v � Vc}. The graph edge weights {mg(u, v)j
u � Vr, v � Vc} constitute the functional similarity matrix Mg�ℝnr × nc .

In this study, a graph edge weight is defined by measuring the

functional similarity of functional signals. Generally, the functional

similarity is defined based on the functional connectivity measure

between functional signals, that is, Pearson correlation coefficient

(Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995)

r u,vð Þ= 1=Tð ÞPT
t=1 I u,tð Þ−�I uð Þ� �

I v,tð Þ−�I vð Þ� �
SI uð ÞSI vð Þ ð1Þ

where u � Vr, v � Vc, I(u, t), and I(v, t) are functional signals of voxels

u and v at time point t, T is the number of time points,
�I �ð Þ= 1=Tð ÞPT

t=1I �,tð Þ and SI �ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= T−1ð ÞPT

t =1 I �,tð Þ−�I �ð Þ� �2q
are mean

and SD of functional signals, respectively.

Due to the low signal-to-noise ratio (SNR) of functional signals, it is

difficult to construct robust connectional topography by directly utiliz-

ing the functional connectivity measure as graph edge weight (Luo

et al., 2020). In order to overcome the noise of functional signals, a one-

sample t test is firstly applied to functional connectivity measures from

a group of subjects, and the resulting t-statistic value is adopted as a

functional similarity measure for mapping robust connectional topogra-

phy of the human brain at the group level (Zhang & Li, 2014). In addi-

tion, the bipartite graph model requires graph edge weights to be

nonnegative, whose optimal solution can be computed efficiently by

solving an eigenvalue problem (Dhillon, 2001; Huang et al., 2020).

Moreover, providing that the functional similarity measure between

two voxels is negative, the two voxels are most likely to belong to two

different functional networks (Fox et al., 2005). Therefore, for a given

data set with N subjects si, i = 1, 2, …, N, the graph edge weight, that is,

functional similarity here, based on the t-statistic value of the functional

connectivity measures from the N subjects can be defined as

mg u,vð Þ=
�r u,vð Þ−μ

s u,vð Þ= ffiffiffiffi
N

p if
�r u,vð Þ−μ

s u,vð Þ= ffiffiffiffi
N

p >0

0 otherwise

,

8<
: ð2Þ

where u � Vr, v � Vc, μ = 0, �r u,vð Þ= 1=N
PN

i=1rsi u,vð Þ and

s u,vð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= N−1ð ÞPN

i=1 rsi u,vð Þ−�r u,vð Þð Þ2
q

are mean and SD com-

puted from functional connectivity measures of the N subjects,

respectively, rsi u,vð Þ is the functional connectivity measure between

voxels u and v for subject si. The defined graph edge weights

{mg(u, v)} j u�Vr, v�Vc} constitute the functional similarity matrix Mg

at the group level. The diagram of the heat map for the functional sim-

ilarity matrix Mg is shown in Figure 1b.

2.1.3 | Co-partitioning bipartite graph for
connectional topography mapping

The constructed bipartite graph model Gd = (Vr, Vc, ℇd) is solved by the

spectral co-clustering algorithm for connectional topography mapping

(Cheng, Liu, & Tao, 2019). In particular, the established bipartite graph

model can be firstly viewed as an undirected weighted graph model

Go = (V, Ag, εo). This undirected weighted graph Go = (V, Ag, εo) is con-

structed by modeling all voxels from the two brain ROIs as graph

nodes V = Vr + Vc, and connecting each pair of graph nodes from V

consisting of graph edges εo = {hu, vi j u, v � V}, and the number of

graph nodes V is n = nr + nc. The graph edge weights {ag(u, v) j u, v � V}

constitute an affinity matrix, which is defined as (Dhillon, 2001)

Ag =
0 Mg

Mg
T 0

" #
, ð3Þ

where �T denotes the transpose of a matrix, Mg is the functional simi-

larity matrix, and Ag � ℝn × n is a symmetric block matrix.

Subsequently, the bipartite graph co-clustering problem is trans-

formed into a spectral partitioning problem. Suppose the undirected

weighted graph Go is partitioned into k clusters V = {V1, V2, …, Vk}, and

the objective function of normalized cut on the undirected weighted

graph Go = (V, Ag, εo) is defined as follows (Shi & Malik, 2000)

Ncut Goð Þ= min
V1,V2,…,Vk

Xk

i=1

cut Vi,V−Við Þ
assoc Vi,Vð Þ , ð4Þ

where assoc Vi,Vð Þ=Pu�Vi ,v�V
ag u,vð Þ, cut Vi,V−Við Þ =

P
u�Vi ,v�V−Vi

ag u,vð Þ, and ag(u, v) is the value of an element of the affinity matrix Ag

at the location (u, v). Based on the k-cluster partition V = {V1,V2,…,Vk},

the two brain ROIs is correspondingly partitioned into k pairs of mutu-

ally connected subregions. In detail, for each pair of the mutually con-

nected subregions, one subregion is partitioned from one brain ROI,

and the other subregion is partitioned from the other brain ROI.

These pair-wisely connected subregions form the connectional

topography between the two brain ROIs of a certain neural circuit

under consideration. The co-clustering based connectional topogra-

phy mapping is intuitively achieved through simultaneously clustering

columns and rows of the functional similarity matrix Mg. Figure 1(c-1)

is the reordered functional similarity matrix according to the partition

with co-clustering, showing that the reordered functional similarity

matrix has clearly identifiable clusters in both column and row direc-

tions. In addition, Figure 1(c-2) shows the diagram of the constructed

thalamocortical connectional topography with the proposed method.

2.2 | Objective criterion for determining the
optimal number of clusters

In our proposed method, the clustering number must be known in

advance in order to construct the connectional topography via the co-

clustering. In the current study, an objective criterion is adopted to
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determine the optimal clustering number. The following criterion

defines the clustering quality of the mapped connectional topography.

In particular, the modified SI index is a clustering quality measure,

which is used as the objective criterion to identify the optimal cluster-

ing number from rs-fMRI data and to quantify the functional homoge-

neity of mapped connectional topography. The modified SI index for

a given mapped connectional topography is defined as (Cheng

et al., 2014, 2020; Craddock et al., 2012)

SI=
1
k

Xk

i=1

ai−bi
max ai,bif g , ð5Þ

where k is the number of pair-wisely connected subregions,

ai = 1= ni ni−1ð Þð Þð ÞPu,v�Vi ,u≠vag u,vð Þ is the average functional affinity

measures between every pair of voxels u and v assigned to ith pair-

wisely connected subregions Vi, bi = ð1= ni n−nið Þð ÞPu�Vi

P
v=2Vi

ag u,vð Þ
is the average functional affinity measures between voxel u in Vi and

voxel v in V−Vi. The ag(u, v) is the element of the affinity matrix Ag

defined in Equation (3), ni is the number of voxels of the ith pair-wisely

connected subregions Vi, n is the number of graph nodes V considered

for constructing the connectional topography.

The optimal clustering number k* is selected, when the SI value of

the mapped connectional topography is the largest among k = 2, 3, …,

and K cluster solutions (Rousseeuw, 1987). The maximum clustering

number K is chosen according to the spatial resolution of rs-fMRI

data, guaranteeing that the K is sufficiently large.

2.3 | Validation analysis

The proposed method is validated for constructing the connectional

topography of the thalamocortical system based on 57 subjects' rs-

fMRI data. Firstly, the data set and preprocessing are described. In

addition, the validity of the proposed method is assessed by measur-

ing the symmetry of the mapped connectional topography. Further-

more, the superiority of the proposed method is evaluated by

comparing with existing methods in terms of functional homogeneity.

2.3.1 | Data set and preprocessing

The proposed method has been validated for mapping thalamocortical

connectional topography within each hemisphere based on rs-fMRI

data. In particular, 57 healthy subjects' fMRI data from BNU 1 data

set was used in the current study, and there are 30 males and

27 females in the data set (age: 23.05±2.29, age range: 19–30) (Lin

et al., 2015). For each subject, the fMRI data have a spatial resolution

of 3.125 × 3.125 × 4.2 mm3, consisting of 200 time points at repeti-

tion time (TR)=2 s. Structural MRI data from the BNU 1 data set

was also used to extract the substructure thalamus and its inter-

connected brain cortex for mapping connectional topography of the

thalamocortical system in the current study (Figure 1a). The structural

MRI data of each subject has a spatial resolution of 1 × 1 × 1.33 mm3,

which was used to assist rs-fMRI data preprocessing as well. In our

experiments, the maximum clustering number K was set to 10, taking

into account that the fMRI has relatively low spatial resolution. The

imaging protocol was approved by the Institutional Review Board of

the State Key Laboratory of Cognitive Neuroscience and Learning at

Beijing Normal University, and written informed consent was

obtained from all subjects (Lin et al., 2015).

The rs-fMRI data were preprocessed with the following steps:

(a) discarding the first five time points to allow for equilibrium magne-

tization; (b) 3D rigid-body head motion correction to the middle frame

of data; (c) global 4D intensity normalization to a whole-brain mean

value of 10,000; (d) nonlinear registration to Montreal Neurological

Institute (MNI)-152 template with spatial resolution 3 × 3 × 3 mm3

based on the deformation field obtained from their co-registered

sMRI data using DARTEL as implemented in SPM12; (e) spatially

smoothing with a 6 mm full width at half-maximum (FWHM) Gaussian

kernel; (f) removal of motion artifacts with ICA-based Automatic

Removal of Motion Artifacts (ICA-AROMA) (Pruim, Mennes, Buitelaar,

& Beckmann, 2015); (g) regression out of a set of nuisance signals

including signal averaged over the white matter, signal-averaged over

the cerebrospinal fluid, and linear and quadratic trends; (h) temporally

high-pass filtering (cutoff frequency of 0.01 Hz). The preprocessing

procedures were performed by using tools from the Statistical Para-

metric Mapping software (SPM12 version 7,487; https://www.fil.ion.

ucl.ac.uk/spm/software/spm12/). In particular, the sMRI images were

segmented into white matter, gray matter, and cerebrospinal fluid by

using new segmentation for extracting physiological nuisance signals

for regression, that is, average signals from white matter and cerebro-

spinal fluid (Ashburner et al., 2014).

2.3.2 | Assessment of consistency in estimated
connectivity

To examine the consistency in estimated connectivity, post hoc func-

tional connectivity analysis is carried out for the mapped connectional

topography at a group level. In particular, the functional connectivity,

measured by Pearson correlation coefficient r, is firstly computed as

in Equation (1) between mean functional signals within each pair of

identified thalamic and cortical subregions from the mapped connec-

tional topography (Biswal et al., 1995). Next, the Pearson correlation

coefficient r is converted into z value by using Fisher's transform to

improve the normality of the coefficient's distribution calculated by

z= 1
2log

1+ r
1− r (Zar, 1999). Then, one sample t test is applied to the stan-

dardized functional connectivity measures, that is, transformed z

values, between each thalamic subregion and each cortical subregion

from the mapped connectional topography across all subjects in a data

set. Finally, the t value of the statistics is transformed into z value, and

the functional connectivity with statistical significant is determined at

p< .05 using family-wise error (FWE) correction for multiple compari-

sons. The resulting statistically significant functional connectivity with

the top-three largest z values for each subregion is referred as group-

level functional connectivity.
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2.3.3 | Symmetry index for mapped connectional
topography

To evaluate the validity of the proposed method, an index is adopted

to quantify the symmetry in the mapped connectional topography

between two hemispheres. For each of the pair-wisely connected

subregions, the symmetry measure is computed by (Kahnt, Chang,

Park, Heinzle, & Haynes, 2012)

SIi =
1
ni

X
u�Vi

1 if lu = lu0

0 otherwise

�
ð6Þ

where i = 1, 2, …, k*, ni is the number of voxels of the ith pair-wisely

connected subregions Vi from one hemisphere, u
0
is the mirrored voxel

of u from the other hemisphere, and l� denotes a voxel's subregion

label.

2.3.4 | Competitive connectional topography
mapping approaches

In addition to the proposed co-clustering based group-wise connec-

tional topography mapping method, there are three other prior con-

nectivity, ICA and clustering-based mapping approaches that have

been presented to construct the connectional topography of the brain

at the group level. In the first approach, a substructure (i.e., thalamus

here) considered for mapping its connectional topography is parcellated

into subregions by assigning each voxel of the substructure to one

of the prior defined brain targets with the strongest group-level

functional connectivity (Hwang et al., 2017; Jiang et al., 2019; Zhang

et al., 2008, 2010). In our experiments, five cortical regions were

selected as brain targets in the prior connectivity based mapping

approach, which are prefrontal zone, temporal zone, primary motor/

premotor zone, somatosensory zone, and posterior parietal/occipital

zone (Zhang et al., 2008, 2010). In addition, the group-level func-

tional connectivity strength between the substructure's voxels and

the brain targets was measured by using t value calculated following

the Subsection 2.3.2.

In the second approach, the ICA is applied to the functional simi-

larity matrix between two brain ROIs of a certain neural circuit

(i.e., thalamocortical system here) considered for connectional topog-

raphy mapping (Wu et al., 2018). The group-level functional similarity

matrix Mg for the thalamocortical system calculated as described in

the Subsection 2.1.2 is firstly decomposed into mutually linked inde-

pendent components (ICs) by means of ICA, and the number of pairs

of decomposed mutually linked ICs is set to the optimal clustering

number k* determined in our proposed co-clustering based mapping

method. Then, each voxel within the thalamocortical system is

assigned to one IC based on its maximum z score among

the decomposed k* ICs by means of the winner-take-all (WTA) rule.

The resulting WTA map is the constructed connectional topography

of the thalamocortical system at the group level with the ICA based

mapping approach.

In the third approach, many clustering algorithms are adopted to

construct the connectional topography of the brain, and the normal-

ized cut is one of the excellent clustering algorithms (Heuvel &

Pol, 2010; Lee et al., 2012; Salehi et al., 2018; Toro-Serey et al., 2020;

Van Den Heuvel et al., 2008; Yeo et al., 2011). So, the normalized cut

based mapping method is chosen as a representative approach for

comparison, which is a two-level mapping approach. The two-level

normalized cut based mapping method can construct more robust and

accurate group-level connectional topography than the connectional

topography identified by applying a clustering approach (such as a

normalized cut) to group-level functional connectivity (Van Den

Heuvel et al., 2008). The normalized cut based mapping method firstly

constructs the connectional topography at the individual level. Then,

this method constructs the group-level connectional topography

through clustering the consistency of resulting individual connectional

topographies across all subjects in a group, and the constructed

group-level connectional topography is chosen for comparison. Partic-

ularly, the normalized cut is applied to each subject's Pearson correla-

tion matrix of the brain region (i.e., thalamocortical system here)

considered for parcellation after thresholding (cutoff threshold 0.4),

and the matrix element (i.e., the Pearson correlation coefficient

between functional signals) is calculated according to Equation (1).

The partitions from each subject are utilized to calculate a group-level

weight matrix as follows. For each element of the weight matrix, the

number of subjects is counted when two voxels from the thalamocortical

system have the same partitioning label. This number is divided by the

total number of subjects in a group, and the ratio is adopted as the

value for the element of the weight matrix. Mathematically, the value

of the element in the weight matrix is defined as

w u,vð Þ= 1
N

X
Si ,i� 1,2,…,Nf gcountSi u,vð Þ, ð7Þ

where Si is one of the N subjects in a data set, countSi u,vð Þ is equal to
1 if voxels u and v have the same partitioning label in subject Si and

0 otherwise. Then, the normalized cut is applied to the group-level

weight matrix for parcellation of the thalamocortical system. The

final partition is the constructed connectional topography of the

thalamocortical system at the group level with the normalized cut

based mapping approach. For both individual and group partitions,

the clustering number is set to the optimal clustering number k*

determined in our proposed co-clustering based mapping method.

To evaluate the proposed method's quality, the proposed method

is compared quantitatively to the three alternative methods with their

aforementioned parameter settings. In particular, the proposed

method and the three alternative methods firstly construct the con-

nectional topography at the group level. Then, the modified SI index

defined in Equation (5) is used to measure the functional homogeneity

of the mapped connectional topographies obtained by these methods,

respectively. Finally, the proposed method and the three

alternative methods are compared with respect to the functional

homogeneity measured by the modified SI index. The SI value is in the

range (−∞, +∞). When the mapped connectional topography is an
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incorrect partition, the SI value is negative, and if the mapped connec-

tional topography is a good partition, the SI value is near 1.

3 | RESULTS

3.1 | Mapped connectional topography by the
proposed method

The modified SI index, measuring the clustering quality of mapped

connectional topography, was adopted as the objective criterion for

selecting the optimal clustering number in our proposed method.

Figure 2 exhibits that five-cluster solution has the global maximum SI

value among k = 2, 3, …, and K cluster solutions, thus k* = 5 was

selected as the optimal clustering number.

Subsequently, Figure 3 presents the mapped connectional topog-

raphies of bilateral thalamocortical systems with five-cluster solution.

As shown in Figure 3, the human thalamocortical system could be suc-

cessfully co-partitioned into five pairs of mutually connected subre-

gions based on rs-fMRI data by the proposed method. In particular, all

of the five cortical subregions are well-studied brain networks, which

are frontoparietal network, default mode network, visual network,

sensorimotor network, and precuneus network, respectively. Corre-

spondingly, the five co-partitioned thalamic subregions are named

frontoparietal area, default mode area, visual area, sensorimotor area,

and precuneus area, respectively according to their respective con-

nected cortical networks. Since mutually connected brain regions

should have close functional associations, the brain functions of co-

partitioned thalamic subregions could be inferred from their respec-

tive connected well-studied cortical networks. These results have indi-

cated that the proposed method could construct neurobiologically

meaningful and interpretable connectional topography.

In post hoc analysis, the thalamic and cortical subregions from the

constructed connectional topography show significant functional con-

nectivity at group level. As shown in Figure 4, the top-three most sig-

nificant functional connections for each subregion contain the

connection estimated by our proposed method. This is to say that

functional connections obtained by post hoc analysis are almost con-

sistent with the connections of mutually connected subregions from

the mapped connectional topography.

3.2 | Symmetry of the mapped connectional
topography

The mapped connectional topography of the thalamocortical system

has high symmetry, which is illustrated by symmetry measures for

each of the pair-wisely connected subregions between two hemi-

spheres shown in Figure 5. Particularly, the symmetry measures are

0.80, 0.93, 0.69, 0.68, and 0.20 for the frontoparietal area with the

frontoparietal network, default mode area with default mode network,

visual area with visual network, the sensorimotor area with the senso-

rimotor network, and precuneus area with precuneus network,

respectively. The fifth pair-wisely connected subregions, that is,

precuneus area with precuneus network, has lower symmetry, which

might be more vulnerable to the noise in the rs-fMRI data. In general,

these results have demonstrated that the mapped connectional

topography is fairly similar between two hemispheres. This evaluation

provides sufficient face validity for the proposed co-clustering based

connectional topography mapping method.

3.3 | Comparison with existing methods

The proposed method was compared both qualitatively and quantita-

tively with existing methods. Qualitatively, the proposed method does

not depend on prior knowledge, so that the mapped connectional

topography with our method would not be biased towards prior brain

targets required by the prior connectivity based mapping method.

More specifically, the prior connectivity based mapping method usu-

ally use the following anatomically defined cortical regions, including

prefrontal zone, temporal zone, primary motor/premotor zone,

F IGURE 2 Determination of optimal clustering number in the proposed method based on clustering quality measured by modified SI index.
(a) and (b) SI value for the mapped connectional topographies of bilateral thalamocortical systems with the proposed method as a function of k
(k = 2, 3, …, 10), respectively. The SI values of five-cluster solutions for both left and right hemispheres are maximal, suggesting that the optimal
clustering number is five. Abbreviation: SI, silhouette width
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somatosensory zone, and posterior parietal/occipital zone, as prior

brain targets (Figure 6a) (Zhang et al., 2008, 2010). By contrast,

cortical regions automatically identified through our method are

well-studied brain networks, which are frontoparietal network,

default mode network, visual network, sensorimotor network, and

precuneus network (Figure 3). Therefore, the thalamic subregions

co-partitioned by our method, respectively connecting with one of

the simultaneously identified well-studied brain networks, are more

meaningful and interpretable than the prior connectivity based map-

ping method.

In addition, the proposed method is a data-driven approach,

which could construct inherent connectional topography of the

human brain. While the ICA based mapping method is a data-driven

approach as well (O'Muircheartaigh et al., 2011; O'muircheartaigh

et al., 2015; O'muircheartaigh & Jbabdi, 2018, 2015; Wu et al., 2018;

Yuan et al., 2016). The ICA based mapping method usually identifies

mutually connected subclusters between two brain ROIs based on

their connectivity matrix (Wu et al., 2018). However, the cortical

clusters obtained by the ICA based mapping method are dispersely

distributed anatomical regions rather than well-studied brain net-

works, which could be identified through the proposed method as

shown in Figures 3 and 6b. Besides the ICA based mapping method,

the normalized cut based mapping method is also a data-driven

approach selected for comparison. As shown in Figure 6c, the normal-

ized cut based mapping method is capable of identifying well-studied

brain networks, such as default mode network, visual network, and

sensorimotor network. Nevertheless, the largest subregion of the thal-

amus was identified solely from the thalamocortical system, whose

mutually connected cortical subregion was not extracted by the nor-

malized cut based mapping method.

Quantitatively, the proposed method achieved the highest func-

tional homogeneity gauged by modified SI value among existing

methods, which is gauged by SI with the larger value indicating higher

functional homogeneity of the mapped connectional topography

(Cheng et al., 2014, 2020; Craddock et al., 2012). As listed in Table 1,

SI values of the constructed connectional topography by our method

F IGURE 3 The thalamocortical
connectional topography of the optimal
solution with five pairs of mutually
connected subregions obtained by our
proposed method. Each pair of mutually
connected subregions depicted in the same
color belongs to the same cluster. L and R
denote the left and right hemispheres,
respectively
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are higher than the prior connectivity, the ICA and the normalized cut

based mapping methods. These qualitative and quantitative compari-

sons have demonstrated that the proposed co-clustering based

connectional topography mapping method is superior to the existing

methods.

4 | DISCUSSION

In this study, we proposed a novel co-clustering based method for

mapping the inherent connectional topography of the human brain

based on rs-fMRI data. We addressed two major challenges in con-

nectional topography construction as follows. Firstly, the number of

clusters was automatically determined based on clustering quality.

Moreover, the proposed method is a data-driven approach for map-

ping connectional topography. Thus, this method could construct

more meaningful, interpretable, and homogeneous connectional

topography compared with the existing hypothesis-driven method

and two other data-driven methods (Van Den Heuvel et al., 2008; Wu

et al., 2018; Zhang et al., 2008, 2010), and the mapped connectional

topography with the proposed method was quite symmetrical

between two hemispheres as well.

4.1 | Determination of optimal clustering number

The decision upon the optimal number of clusters for mapping con-

nectional topography remains a major challenge. An objective crite-

rion (i.e., modified SI index measuring clustering quality) is accurate in

F IGURE 4 Functional interconnections between thalamic subregions and cortical subregions from the mapped thalamocortical connectional
topography at group level. (a) and (b) top-3 significant functional connections between each thalamic subregion and each cortical subregion
graphically rendered as a connectogram for left and right hemispheres, respectively. In panels (a, b), group-level functional connection strengths (z
values) represented by the opacity of the line are displayed as edges. The subregions, including FPN, DMN, VN, SMN, and PN, are identified
cortical networks by our proposed co-clustering based method, while FPA, DMA, VA, SMA, and PA are corresponding co-partitioned thalamic
subregions. Abbreviations: FPN, frontoparietal network; DMN, default mode network; VN, visual network; SMN, sensorimotor network; PN,
precuneus network; FPA, frontoparietal area; DMA, default mode area; VA, visual area; SMA, sensorimotor area; PA, precuneus area; L, left
hemisphere; R, right hemisphere

F IGURE 5 Symmetry of the mapped connectional topographies
of bilateral thalamocortical systems between two hemispheres. Pairs
1–5 represent frontoparietal area with frontoparietal network, default
mode area with default mode network, visual area with visual
network, sensorimotor area with sensorimotor network, and
precuneus area with precuneus network, respectively
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identifying the correct number of functional clusters in combination

with appropriate brain parcellation method reported in a previous

fMRI study (Ryali, Chen, Padmanabhan, Cai, & Menon, 2015). This is

to say that the modified SI index could accurately uncover the optimal

number of clusters from rs-fMRI data for parcellating the brain. In the

present study, the objective criterion (namely modified SI index) was

chosen for determining the optimal number of clusters in combination

with the proposed co-clustering based connectional topography map-

ping method. The optimal clustering number k* = 5 was successfully

identified for mapping thalamocortical connectional topography based

on rs-fMRI data using the modified SI index, that is, the mapped five-

cluster thalamocortical connectional topography was the optimal solu-

tion with the global maximum SI value among k = 2, 3, …, and K cluster

solutions for both left and right hemispheres, respectively. The

parameter K was set to 10 due to relatively low spatial resolution of

the rs-fMRI data. The modified SI index as the objective criterion com-

bined with the proposed method might be a desirable strategy for

uncovering the correct number of clusters from data in brain connec-

tional topography mapping.

4.2 | Proposed method versus existing mapping
methods

The proposed novel co-clustering based mapping method is a differ-

ent approach to automatically construct the connectional topography

of the human brain compared with existing mapping methods. The

proposed method could construct inherent connectional topography

F IGURE 6 Mapped thalamocortical connectional topography with existing methods, including prior connectivity based mapping method, ICA
based mapping method, and normalized cut based mapping method. Abbreviation: ICA, independent component analysis
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in a data-driven manner, which was validated by mapping the

thalamocortical connectional topography as shown in Figure 3. The

proposed method not only parcellates the substructure (i.e., thalamus

here), but also identifies their respective connected cortical networks.

Therefore, the proposed method is an effective data-driven approach

for mapping the inherent connectional topography of the human

brain. For existing methods, the prior connectivity based mapping

method requires prior defined brain targets (Figure 6a), the ICA based

mapping method is not robust enough (Figure 6b), and the normalized

cut based mapping method is not sufficiently suitable for constructing

the connectional topography between two brain ROIs of a certain

neural circuit under consideration (Figure 6c). Therefore, the mapped

connectional topography with the existing methods might deviate

from data as compared with the proposed method as shown in Fig-

ures 3 and 6.

Furthermore, the proposed method outperformed existing

methods with respect to functional homogeneity of the mapped con-

nectional topography (Table 1), which further confirms that our pro-

posed method is more faithful to data than existing methods. Overall,

the proposed novel, data-driven method could construct inherent

connectional topography of the human brain by leveraging the power

of the co-clustering.

4.3 | Interpretability of the mapped connectional
topography

The mapped connectional topography with the proposed method is

neurobiologically interpretable, which was validated through connec-

tional topography mapping of the thalamocortical system (Figure 3).

Particularly, the identified cortical networks are well-studied brain

functional networks, including frontoparietal network, default mode

network, visual network, sensorimotor network, and precuneus net-

work. These identified cortical networks are neurobiologically

meaningful. Therefore, the co-partitioned thalamic subregions are

neurobiologically meaningful as well, which can be indirectly verified

through their mutually connected these brain functional networks.

Although the precise functional roles that the co-partitioned thalamic

subregions play with regard to their mutually connected brain func-

tional networks are uncertain, the present study reinforces the evi-

dence of the presence of diverse functional interactions between

thalamus and cortex at a fine granularity. In addition, the pair-wisely

connected subregions of the mapped connectional topography

between two hemispheres have high symmetry ranging from 0.20 to

0.93 (Figure 5), which provides sufficient face interpretability for

mapped connectional topography. Overall, the mapped connectional

topography with the proposed method has good interpretability.

4.4 | Limitations and future work

There are several limitations in the present study. Firstly, the connec-

tional topography was constructed at the group level, which might

misrepresent the underlying individual connectional organization due

to inter-individual variability. The poor SNR of fMRI data is needed to

be improved for mapping connectional topography of the brain at the

individual level in future work. In addition, the granularity of the

mapped connectional topography was not fine enough, which was

limited by the relatively low spatial resolution of the rs-fMRI data.

More work should focus on mapping fine granularity connectional

topography of the brain using fMRI data with high spatial resolution.

Furthermore, the proposed connectional topography mapping method

could not extract mutually functionally anticorrelated subregions, and

could not estimate the functional connectivity strength of the

extracted mutually connected subregions as well. Usually, post hoc

processing is needed to compute the functional connectivity of the

resulting subregions identified by the proposed method. So, the func-

tional connectivity obtained by the post hoc processing might be

inconsistent with the connectional topography mapped by the pro-

posed method. Further work needs to be undertaken to address these

drawbacks of the proposed method for better revealing the connec-

tional organization of the human brain.

5 | CONCLUSIONS

In this study, we have proposed a novel, fully data-driven, co-

clustering based method for mapping inherent functional connectivity

topography of the human brain. The optimal clustering number in the

proposed method was automatically determined based on clustering

quality. The validation results have demonstrated that the proposed

method could construct neurobiologically meaningful and homoge-

neous connectional topography, which outperforms existing connec-

tional topography mapping methods. The validity of the proposed

method was further strengthened by the high symmetry of

the mapped connectional topography between two hemispheres.

The proposed method provides a new perspective to unveil the

TABLE 1 Quantitative comparison of existing methods and ours
through connectional topography mapping of bilateral thalamocortical
systems with respect to functional homogeneity measured by
modified silhouette width (SI) index

Methods

SI (left

hemisphere)

SI (right

hemisphere)

Our method 0.33 0.34

ICA based method 0.28 0.30

Prior connectivity based

method

0.20 0.26

Normalized cut based

method

0.09 0.19

Note: The existing methods are the ICA, prior connectivity and normalized

cut based methods. The bold values for the SI index represent the largest

value among existing methods and ours, and the larger SI value denotes

higher functional homogeneity for mapped connectional topography.

Abbreviation: ICA, independent component analysis.
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topographic organization of the human brain, which might facilitate a

better understanding of the brain connectional organization under

normal and disease states. In the future, the proposed method will be

further validated through constructing connectional topography of

other neural circuits based on functional or structural connectivity

information.
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