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Abstract: Plant-parasitic nematodes (PPNs) constitute the most damaging group of plant pathogens.
Plant infections by root-knot nematodes (RKNs) alone could cause approximately 5% of global
crop loss. Conventionally, chemical-based methods are used to control PPNs at the expense of the
environment and human health. Accordingly, the development of eco-friendly and safer methods
has been urged to supplement or replace chemical-based methods for the control of RKNs. Using
microorganisms or their metabolites as biological control agents (BCAs) is a promising approach
to controlling RKNs. Among the metabolites, volatile organic compounds (VOCs) have gained
increasing attention because of their potential in the control of not only RKNs but also other plant
pathogens, such as insects, fungi, and bacteria. This review discusses the biology of RKNs as
well as the status of various control strategies. The discovery of VOCs emitted by bacteria from
various environmental sources and their application potential as BCAs in controlling RKNs are
specifically addressed.

Keywords: volatile organic compounds (VOCs); plant-parasitic nematodes (PPNs); root-knot
nematodes (RKNs); biological control agents (BCAs); Meloidogyne spp.

1. Introduction

Plant-parasitic nematodes (PPNs) are known to be one of the greatest threats to agricul-
tural production, causing an annual crop loss of more than USD 150 billion worldwide [1–4].
To date, over 4100 species of PPNs have been reported [5,6], and they can be classified
into three groups according to their lifestyles: sedentary endoparasites, e.g., root-knot
nematodes (Meloidogyne spp.) and cyst nematodes (Heterodera and Globodera spp.); migra-
tory endoparasites, e.g., lesion nematodes (Pratylenchus spp.) and burrowing nematodes
(Radopholus spp.); and migratory ectoparasites, e.g., Belonolaimus spp., Xiphenema spp., and
Trichodorus spp. [7]. Among them, root-knot nematodes (RKNs) are the most important
agricultural pests, infecting the roots of over 3000 plant species [8–10].

Although chemical nematicides are still the most effective means for the management
of RKNs, withdrawal of such chemical agents from the market has been continuously
urged due to safety and environmental concerns [11–14]. To respond to the increasing
demand for eco-friendly and sustainable management to control RKNs, methods using live
microorganisms or their metabolites have been intensively explored recently.

Nematodes in soil are exposed to a diversity of microorganisms [15], of which ne-
matophagous bacteria and fungi represent the most promising candidates to control RKNs.
Bacterial species of a range of genera, such as Bacillus, Pseudomonas, and Pasteuria, were
observed to exhibit antagonistic activity against RKNs, while the fungi that were detri-
mental to RKNs were commonly isolated from the phylum Ascomycota, Basidiomycota,
Zygomycota, and Chytridiomycota [7,15–18]. With regard to microbial metabolites, volatile
organic compounds (VOCs) have attracted research attention in recent years due to their
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efficacy in killing RKNs [7,19,20]. Additionally, the application of VOCs in agricultural
practice could be both economically affordable and less toxic to humans than conventional
nematicides [21].

This review paper summarizes (i) the general knowledge of the life cycle and genome
of RKNs, (ii) the current status of the management strategies used in the control of RKNs,
and (iii) recent progress in the identification of bacterial VOCs and their application poten-
tial in the control of RKNs.

2. Root-Knot Nematodes (RKNs)

Many economically important crops are hosts of RKNs, including tomato, potato, corn,
soybean, maize, oats, wheat, and cotton [22–24]. The economic loss caused by RKNs has
been estimated at USD 78 billion annually worldwide, accounting for half of the total loss
due to PPNs [25]. Although the genus Meloidogyne consists of about 100 species [26], M.
incognita, M. arenaria, M. javanica, and M. hapla are the four major species that infect more
than 2000 plant species, particularly underground plant organs [22,27–29].

2.1. Life Cycle

The life span of RKNs is about three to six weeks with a cycle comprising embryo,
juvenile (J1, J2, J3, and J4), and adult stages [22]. RKNs reproduce via diverse mechanisms
but mostly by parthenogenesis. The eggs of RKNs are laid in gelatinous masses in the soil
or plant residues. The worms hatch as second-stage juveniles (J2), and they immediately
move toward the roots of plant hosts, attack the elongation zone, and migrate to the root
tip [5,30]. When they reach the apical meristem region, they transmigrate to the developing
vascular cylinder, triggering the formation of giant cells, which serve as nutrient sinks to
support the growth of the nematode. The juveniles then become sedentary and undergo
three more molts before they turn into adults [31,32]. In the adult stage, the worm-shaped
males move out of the plant root, but the sedentary females continuously develop into
pear-shaped females. Afterward, the female adults begin laying eggs (more than 1000 eggs
per female) on the external surface of the root [22,33,34].

2.2. Genome

The whole genome of mitotic obligate parthenogenetic M. incognita was determined
to be approximately 86 Mb, which contains 19,212 protein-coding genes, while that of
meiotic facultative parthenogenetic M. hapla was about 54 Mb, containing 14,700 protein-
coding genes [1,35]. Lately, the gene numbers of M. arenaria, M. javanica, and M. incognita
were predicted to be 30,308, 26,917, and 24,714, respectively [36]. These genomes share
some common features but with their own characteristics. One of the features shared by M.
incognita and M. hapla is the possession of genes encoding distinct plant-cell-wall-degrading
enzymes. A phylogenetic analysis suggested that these genes, which are absent in animals,
were probably obtained via horizontal gene transfer from fungi or bacteria [37]. Since
these enzymes are also present in some other PPNs of the order Tylenchida, the acquisition
of these genes might occur earlier in an ancestor of Tylenchida during evolution, which
supported the progress of their capability to parasitize plants [32,38,39].

The most notable differences between M. incognita and M. hapla are their genome
structure and reproduction mode. M. hapla has an ordinary genome structure of diploid
sexual species, while M. incognita is a hypotriploid with a proportion of one genome present
in a second copy. Furthermore, M. hapla reproduces with meiosis, whereas M. incognita
reproduces without meiosis and fusion of gametes.

3. Control Strategies for RKNs

Given the great damage to crop production due to the infestation of PPNs, a variety
of methods have been used to control nematodes. These methods can be categorized into
physical, chemical, and biological control strategies.
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3.1. Physical Control Strategies

Nematodes are highly vulnerable before they penetrate the host plant’s roots. There-
fore, targeting PPNs at their vulnerable stages could be effective. For instance, increasing
soil temperatures above 40 ◦C by solarization is an effective way to reduce the number of
nematodes in soil [24]. Moisture is another critical factor for the survival of nematodes.
It has been highlighted that an insufficient amount of water in the soil would affect ne-
matodes’ ability to move toward their host roots [40,41]. Flooding represents an opposite
strategy to control nematodes in soils. Many PPNs are intolerant to oxygen starvation;
therefore, flooding can kill nematodes by limiting their supply of oxygen. Similar effects
were observed when nematodes were stored in deep water in a laboratory. To be effective in
the field, the duration of anaerobiosis must be long enough to kill the nematodes. However,
flooding may not be practicable for every agricultural practice. Taking into consideration
the threat of global climate change, flooding would not be a good option to control PPNs.
In brief, physical control strategies are less effective than conventional chemical control
strategies, although the cost of physical control strategies is relatively lower [42].

3.2. Chemical Control Strategies

Using synthetic chemicals with the features of fumigants or nematicides to control
PPNs was a common method applied in agriculture in the previous half-century [43,44].
For example, methyl bromide and dibromochloropropane were intensively used as soil
fumigants due to their effectiveness. However, they are highly toxic chemicals causing
acute respiratory toxicity and neurotoxicity via inhalation [45–48]. Exposure to the dibro-
mochloropropane that had accumulated in the soil was found to influence men’s fertility
and was linked to certain human cancers [49–51]. Therefore, its use in agriculture was
banned in 1979. In addition, methyl bromide is a strong ozone-depleting substance. The
use of methyl bromide in fumigation was banned globally after 2015 under the directive
of the Montreal Protocol, except for quarantine and pre-shipment treatments [52,53]. Re-
cently, a couple of less environmentally toxic chemicals have been suggested as alternatives
to methyl bromide [42,54–56]. However, they have not yet been registered for use in
agriculture [14,16]. Nevertheless, farmers need more reliable, eco-friendly, and low-cost
approaches for sustainable agriculture.

3.3. Biological Control Strategies

Biological control refers to the suppression of a pest population, or the pest’s harmful
impact, by using living organisms (natural enemies) or their metabolites [57,58]. Because
biological control imitates the competition among species in nature, it is generally thought
to be more environmentally friendly than chemical control. The strategies of biological
control can be classified into conservation, importation, and augmentation according to
the source of the deployed organisms [59]. The conservation strategy is carried out to
maintain the existing natural enemies in an environment; the importation strategy is
carried out to introduce exotic enemies of the pests where they do not occur naturally; and
the augmentation strategy is carried out to release reared natural enemies periodically into
the habitat where the pests occur [60,61].

An organism (or its metabolites) that reduces the density of the pest population is
defined as a biological control agent (BCA). An ideal BCA should exert its effects by multiple
mechanisms without producing harmful substances to humans and the environment [62].
Bacteria from a wide range of genera have demonstrated the capability to control RKNs [63,
64]. The common genera include Achromobacter, Arthrobacter, Bacillus, Burkholderia, Pasteuria,
Pseudomonas, Rhizobium, and Serratia. The beneficial effects come from mechanisms such as
parasitism, niche competition, the induction of plant systemic resistance, and the production
of antagonistic substances (antibiotics, toxins, enzymes, VOCs, etc.) [15,63,65].

There is a growing interest in using Bacillus spp. to control PPNs. For example,
Bacillus subtilis conferred induced systemic resistance to M. incognita on tomato plants
under greenhouse conditions [66]. The treatment of tomato seeds with several strains of B.
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subtilis as well as the cell-free supernatant reduced the number of galls and egg masses of M.
incognita. 9H-purine, uracil, and dihydrouracil, produced by Bacillus cereus and B. subtilis,
showed nematicidal activity against Meloidogyne exigua [67]. The activity of dihydrouracil
was even stronger than that of the commercial nematicide carbofuran. Bacillus firmus
DS-1 had nematicidal activity against M. incognita. The serine protease produced by this
strain, known as Sep1, was toxic to both M. incognita and C. elegans. In vitro experiments
on C. elegans demonstrated that Sep1 has a destructive effect on multiple intestinal and
cuticle-associated proteins, resulting in impaired physical barriers of the worm [17]. Bacillus
amyloliquefaciens D1 efficiently influenced the mortality of M. incognita J2s and suppressed
its egg hatching rate; it also had a plant growth-promoting effect. B. amyloliquefaciens
Y1 produced cyclo(d-Pro-l-Leu) that functions as a nematicide against M. incognita [65].
Treatments of potato plants with a recombinant B. subtilis strain, which secreted plant-
defense elicitor peptide StPep1, effectively reduced root galling caused by Meloidogyne
chitwoodi [68]. The treatment of cucumber and tomato plants with Bacillus velezensis BZR 86
significantly reduced the development of root-knot disease caused by M. incognita, and, as
a result, the growth of the plants was enhanced [69].

Bacillus thuringiensis (Bt) is a spore-forming bacterium that produces parasporal crys-
tals (Cry) during the sporulation phase. Indeed, Cry proteins have been used as biological
insecticides around the world for decades. Ingestion of Cry proteins is a prerequisite for the
proteins to damage the guts of insects [70]. Although most Cry proteins are toxic to insects,
experiments on different nematode species have confirmed that several families of Cry
proteins, including Cry5, Cry6, Cry12, Cry13, Cry14, Cry21, and Cry55, target nematodes
and exhibit nematicidal activity [71–73]. Feeding M. incognita with transgenic tomato roots
that expressed Cry6A decreased the reproduction rate of the worm by a factor of 4 [74].
Cry6Aa2 not only showed toxicity to J2s but also suppressed the egg-hatching rate of M.
hapla. In addition, a pot experiment indicated that soil drenching with a mixture of spores
and Cry6Aa2 could reduce the number of galls and egg masses on plant roots as well
as enhancing the growth of the plant [75]. Cry5 produced by Bt strain Sbt003 adversely
affected the life span and reproduction of C. elegans; in addition, it had a detrimental impact
on the worm’s intestine [76].

Pasteuria penetrans is a Gram-positive nematode-parasitic bacterium. The capability
of P. penetrans to control RKNs has been investigated in several studies. The bacterial
parasitism starts when endospores of P. penetrans attach to the cuticle of J2 nematodes;
consequently, the infected J2s show a reduction in mobility and the ability to enter the roots
of plant hosts [77]. The treatment of cucumber with P. penetrans in greenhouse trials reduced
M. incognita populations in the roots of the plant [78]. The RNAi-mediated silencing of the
selenium-binding protein Mi-SeBP-1 of M. incognita increased the attachment of P. penetrans
endospore onto the J2s’ cuticles, revealing the involvement of Mi-SeBP-1 in the adhesion of
the bacterial endospore on the nematode cuticle [79].

Pseudomonas simiae sMB751 and its secreted cyclic dipeptide, cyclo(l-Pro-l-Leu), dis-
played significant nematicidal activity against M. incognita J2s. In fact, it was observed in a
pot experiment that the fermentation broth of P. simiae MB751 could suppress M. incognita
infection and confer induced systemic resistance against nematodes on tomato plants [80].
The E. coli-expressed and purified Nif3-family protein YqfO03, originally from Pseudomonas
syringae MB03, had nematicidal activity against both C. elegans and M. incognita [64]. The
treatment of M. incognita-infected bell pepper plants with Burkholderia cepacia Bc-2 and Bc-F
strains showed a reduction in the numbers of eggs and J2s of the worm [81]. Prodigiosin,
the red pigment produced by Serratia marcescens, had toxicity against juveniles of M. javanica
and Radopholus similis [82].

4. Volatile Organic Compounds (VOCs)

VOCs are carbon-based, low-molecular-weight compounds that have high vapor pres-
sure and easily evaporate at room temperature [83–85]. VOCs emitted by microorganisms
are capable of controlling plant-parasitic fungi, insects, bacteria, and nematodes [86]. There-
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fore, microbial VOCs are suitable to apply to different agricultural systems with relatively
low concentrations compared to agrochemicals, and supplemental spray or drench is not
essential for the application of VOCs [62,87–89]. Microbial VOCs are diverse in terms of
their chemical structures. They can be alcohols, ketones, hydrocarbons, terpenes, fatty
acids, or heteroatom-containing compounds [90]. A vast number of microbial VOCs are
archived in the mVOC 2.0 database, in which more than 2000 VOCs from approximately
1000 different microorganisms are categorized based on chemical structures, mass spectra,
and microbial emitters [91,92].

Solid-phase micro-extraction (SPME) is widely used for the collection of VOCs. In this
method, VOCs are adsorbed by the SPME fiber from the headspace of a culture medium.
The adsorbed compounds are then separated with gas chromatography and further identi-
fied with mass spectrometry. The culture conditions (medium composition, oxygen level,
temperature, etc.) and physiological stages of microorganisms may influence the pro-
duction of VOCs in terms of chemical types and amounts [93]. For instance, Lysobacter
strains grown on potato dextrose agar (PDA) and nutrient agar (NA) produced different
VOCs. Pyrazines, decanal, pyrrole, δ-hexalactone, and ethanol were emitted as VOCs when
Lysobacter strains were cultivated on NA; however, indole and acetoin were the major VOCs
when the bacteria were cultivated on PDA [94]. A recent study showed that B. gladioli
BBB-01 emitted dimethyl disulfide as the primary VOC when the bacterium was cultivated
on LB agar, whereas 2,5-dimethylfuran was emitted when the bacterium was cultivated on
PDA [92]. Although there is insufficient information on the mechanism of VOC emission,
it has been reported that the production of certain bacterial VOCs is regulated by the
GacS/GacA two-component regulatory system [95].

4.1. Biocontrol of RKNs with Bacterial VOCs

The toxicity of microbial VOCs to RKNs has been shown in numerous reports. A VOC
could affect nematodes by acting as a contact nematicide, fumigant, repellent, or attractant.
It could also suppress the hatching of eggs. Some of these reports are briefly described
in the following text. The frequently discovered VOCs and their reported functions are
summarized in Table 1.

The nematicidal activity of Bacillus spp. has been shown in many reports. VOCs emit-
ted by Bacillus megaterium YFM3.25 inhibited the hatching of eggs and reduced the infection
of M. incognita in a pot experiment. Among the 17 VOCs, 2-nonanone, 2-undecanone,
decanal, dimethyl disulfide, and benzeneacetaldehyde accounted for the fumigant toxicity
against juveniles and eggs of the worm [96]. Bacillus atrophaeus GBSC56 emitted methyl iso-
valerate, 2-undecanone, and dimethyl disulfide, which exhibited strong nematicidal activity
against M. incognita [21]. B. cereus Bc-cm103 exhibited repellent activity to J2s of M. incognita.
In addition, VOCs from Bc-cm103, mainly consisting of dimethyl disulfide and S-methyl
ester butanethioic acid, displayed fumigant toxicity to M. incognita J2s and reduced the
number of root galls on a cucumber plant in a double-layered pot test [97]. Bacillus aryabhat-
tai MCCC 1K02966 emitted dimethyl disulfide, methyl thioacetate, 1-butanol, and pentane.
Among the four VOCs, methyl thioacetate displayed the strongest contact and fumigant
toxicity as well as repellent activity against M. incognita [16]. Bacillus altitudinis AMCC
1040 emitted eight VOCs. Of these, acetic acid, octanoic acid, 2-methyl-butanoic acid,
3-methyl-butanoic acid, 2,3-butanedione, and 2-isopropoxy ethylamine had nematicidal
activity against M. incognita [98].
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Table 1. In vitro activity of bacterial VOCs on Meloidogyne incognita.

VOC Emitter

Effects on J2s

Egg Hatching
Suppression

C
on

ta
ct

To
xi

ci
ty Fumigant Activity

Fa
ta

l

A
tt

ra
ct

an
t

R
ep

el
le

nt

Acetaldehyde Virgibacillus dokdonensis MCCC 1A00493 [99] [99] [99] [99] [99]

Acetic acid Bacillus altitudinis AMCC 1040 [98] [98]

Acetone Paenibacillus polymyxa KM2501-1 [2] [2]

Acetophenone
Pseudochrobactrum saccharolyticum [100]

Arthrobacter nicotianae [100]
Achromobacter xylosoxidans [100]

[100]

4-acetylbenzoic Paenibacillus polymyxa KM2501-1 [2] [2]

Benzaldehyde Ochrobactrum pseudogrignonense NC1 [101] [101]

Benzeneacetaldehyde Bacillus megaterium YMF3.25 [96] [96] [96]

2,3-Butanedione Bacillus altitudinis AMCC 1040 [98] [98]

2-butanone Virgibacillus dokdonensis MCCC 1A00493 [99] [99]

Butyl isovalerate Wautersiella falsenii [100] [100]

Decanal Bacillus megaterium YMF3.25 [96] [96] [96]

2-decanol Paenibacillus polymyxa KM2501-1 [2] [2] [2] [2]

2-decanone Paenibacillus polymyxa KM2501-1 [2] [2] [2]

Dimethyl disulfide

Pseudochrobactrum saccharolyticum [100]
Wautersiella falsenii [100]

Proteus hauseri [100]
Arthrobacter nicotianae [100]

Achromobacter xylosoxidans [100]
Bacillus megaterium YMF3.25 [96]
Bacillus atrophaeus GBSC56 [21]

Ochrobactrum pseudogrignonense NC1 [101]
Virgibacillus dokdonensis MCCC 1A00493 [99]

Pseudomonas putida 1A00316 [6]
Bacillus cereus Bc-cm103 [97]

Bacillus aryabhattai MCCC 1K02966 [16]

[6,21,99,101] [96,100] [99] [6] [6,96]

1-(ethenyloxy)-
octadecane Pseudomonas putida 1A00316 [6] [6] [6]

Ethylbenzene Virgibacillus dokdonensis MCCC 1A00493 [99] [99]

Ethyl 3,3-dimethylacrylate Pseudochrobactrum saccharolyticum [100] [100]

Furfural acetone Paenibacillus polymyxa KM2501-1 [2] [2] [2] [2]

(Z)-hexen-1-ol acetate Pseudomonas putida 1A00316 [6] [6] [6] [6]

2-Isopropoxy ethylamine Bacillus altitudinis AMCC 1040 [98] [98]

1-methoxy-4-
methylbenzene

Wautersiella falsenii [100]
Proteus hauseri [100]

Achromobacter xylosoxidans [100]
[100]

2-Methyl-butanoic acid Bacillus altitudinis AMCC 1040 [98] [98]

3-Methyl-butanoic acid Bacillus altitudinis AMCC 1040 [98] [98]

Methyl isovalerate Bacillus atrophaeus GBSC56 [21] [21]

Methyl thioacetate Bacillus aryabhattai MCCC 1K02966 [16] [16] [16] [16] [16]

S-methyl thiobutyrate

Pseudochrobactrum saccharolyticum [100]
Wautersiella falsenii [100]

Proteus hauseri [100]
Arthrobacter nicotianae [100]

Achromobacter xylosoxidans [100]

[100]
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Table 1. Cont.

VOC Emitter

Effects on J2s

Egg Hatching
Suppression

C
on

ta
ct

To
xi

ci
ty Fumigant Activity

Fa
ta

l

A
tt

ra
ct

an
t

R
ep

el
le

nt

2-nonanol Paenibacillus polymyxa KM2501-1 [2] [2] [2]

2-nonanone

Pseudochrobactrum saccharolyticum [100]
Wautersiella falsenii [100]

Proteus hauseri [100]
Achromobacter xylosoxidans [100]
Bacillus megaterium YMF3.25 [96]

Paenibacillus polymyxa KM2501-1 [2]
Pseudomonas putida 1A00316 [6]

[2,6] [96,100] [6] [6,96]

Octanoic acid Bacillus altitudinis AMCC 1040 [98] [98]

2-octanone Pseudomonas putida 1A00316 [6] [6] [6] [6]

2-undecanol Paenibacillus polymyxa KM2501-1 [2] [2] [2]

2-undecanone

Bacillus megaterium YMF3.25 [96]
Bacillus atrophaeus GBSC56 [21]
Pseudomonas putida 1A00316 [6]

Paenibacillus polymyxa KM2501-1 [2]

[2,6,21] [2,6,96] [2,6] [6,96]

1-undecene Pseudomonas putida 1A00316 [6] [6] [6]

Paenibacillus polymyxa KM2501-1 caused 87.6% and 82.6% mortality of M. incognita
under both in vitro and in planta conditions, respectively. Eleven VOCs were emitted
by P. polymyxa KM2501-1. Among them, furfural acetone and 2-decanol could attract M.
incognita and then kill the worm by acting as fumigants or contact nematicides [2]. VOCs
produced by Virgibacillus dokdonensis MCCC 1A00493 displayed several activities against M.
incognita. Acetaldehyde acted as an attractant, contact nematicide, and fumigant, whereas
ethylbenzene acted as an attractant and 2-butanone as a repellent [99].

Pseudomonas putida strain 1A00316, isolated from Antarctic soil, emitted 2-nonanone,
2-octanone, 2-undecanone, dimethyl disulfide, (Z)-hexen-1-ol acetate, 1-undecene, and
1-(ethenyloxy)-octadecane. Of these, 2-nonanone, 2-octanone, 2-undecanone, dimethyl
disulfide, and (Z)-hexen-1-ol acetate showed contact nematicidal activity against M. incog-
nita; however, only 2-undecanone exhibited fumigant activity. In addition, all seven VOCs
suppressed egg hatching and showed repellent activity to M. incognita J2s in Petri plate
experiments [6].

In total, 53 VOCs were identified from five bacteria, namely, Pseudochrobactrum sac-
charolyticum, Wautersiella falsenii, Proteus hauseri, Arthrobacter nicotianae, and Achromobacter
xylosoxidans. Among the VOCs, S-methyl thiobutyrate, dimethyl disulfide, acetophenone,
2-nonanone, butyl isovalerate, ethyl 3,3-dimethylacrylate, and 1-methoxy-4-methylbenzene,
exhibited significant nematicidal activity against both C. elegans and M. incognita in Petri
plate experiments. Moreover, S-methyl thiobutyrate was the most active VOC [100].
Ochrobactrum pseudogrignonense NC1 significantly inhibited M. incognita in Petri plate
and greenhouse trials. The main VOCs emitted by NC1, namely, dimethyl disulfide and
benzaldehyde, also had nematicidal activity against M. incognita [101].

Besides M. incognita, some reports addressed the microbial fumigant toxicity to other
Meloidogyne species. Three bacterial strains (Bacillus sp., Paenibacillus sp., and Xanthomonas
sp.) emitted VOCs that were toxic to rice RKN Meloidogyne graminicola in both in vitro
and in planta studies [102]. In vitro treatment with P. putida, Microbacterium sp., Bacillus
methylotrophicus, and Bacillus pumilus caused significant mortality of M. exigua via the release
of VOCs [103]. Variovorax paradoxus, Comamonas sediminis, Pseudomonas soli, Pseudomonas
koreensis, and two strains of Pseudomonas monteilii were reported to exhibit nematicidal
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activity. They showed strong virulent effects on M. javanica through the production of
VOCs [104].

Among the microbial VOCs identified thus far, dimethyl disulfide is the most com-
monly identified. In light of its toxicity to a broad spectrum of pests, dimethyl disulfide
was registered by Arkema as a pesticide by the name of Paladin in 2012 [105].

4.2. Mechanism of Action of Bacterial VOCs

It is thought that VOCs may destroy nematodes by targeting the intestine, nervous
system, surface coat, pharynx, or other tissues [2,17,106]. A recent study has claimed that
VOCs cause rapid death by inducing severe oxidative stress in nematodes [21]. However,
the detailed molecular mechanisms underlying the nematicidal activity of VOCs are poorly
understood, with a few exceptions. A well-studied VOC, dimethyl disulfide, exerts its
toxicity by blocking the activity of the enzyme cytochrome oxidase, consequently stopping
the mitochondrial respiration of the pests [105].

Bacterial VOCs have also been reported to regulate the key genes involved in different
signaling pathways by which plant growth is stimulated and induced systemic resistance
against phytopathogens is triggered. For example, methyl isovalerate and 2-undecanone pro-
moted plant growth and stimulated induced systemic resistance by enhancing the antioxidant
enzyme activity in plant roots infested with M. incognita [21]. The effects of bacterial VOCs on
plant morphology and physiology are discussed in a recent review paper [107].

5. Concluding Remarks and Future Perspectives

Driven by the concerns about the negative impacts of chemical nematicides on human
health and the environment, there has been a surge of interest in the development of
sustainable methods to replace the chemical strategy of controlling RKNs. A large number
of reports have demonstrated that microorganisms constitute a rich source for the discovery
of potentially useful VOCs in the control of RKNs. Although most of the data came from
in vitro tests, some were from in planta experiments performed in greenhouse conditions.
However, extensive investigations are needed to confirm whether VOCs are also effective
against RKNs in open fields.

Dimethyl disulfide represents a successfully commercialized VOC, which not only
is emitted by a broad spectrum of bacteria but is also effective for the control of a variety
of pests. Some other VOCs, particularly the sulfur-containing ones, such as S-methyl
thiobutyrate and S-methyl thioacetate, are also promising candidates because of their
strong toxicity to nematodes. Further assessments of their potential in agricultural practice
should be encouraged.

Investigations into how nematodes are affected by VOCs at the molecular level are
still rare. Since the chemical nature of VOCs is diverse, each type of VOC might have its
own mode of action. The answer to this query is not only of interest for academic research
purposes but is also crucial for the development of VOCs for nematode control in the future.
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