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SUMMARY

While several genes and clinical traits have been associated with higher risk of
severe coronavirus disease 2019 (COVID-19), how host genetic variants may
interact with these parameters and contribute to severe disease is still unclear.
Herein, we performed phenome-wide association study, tissue and immune-cell-
specific expression quantitative trait locus (eQTL)/splicing quantitative trait lo-
cus, and colocalization analyses for genetic risk loci suggestively associated
with severe COVID-19 with respiratory failure. Thirteen phenotypes/traits
were associated with the severe COVID-19-associated loci at the genome-
wide significance threshold, including monocyte counts, fat metabolism traits,
and fibrotic idiopathic interstitial pneumonia. In addition, we identified tissue
and immune subtype-specific eQTL associations affecting 48 genes, including
several ones that may directly impact host immune responses, colocalized
with the severe COVID-19 genome-wide association study associations, and
showed altered expression in single-cell transcriptomes. Collectively, our
work demonstrates that host genetic variations associated with multiple genes
and traits show genetic pleiotropy with severe COVID-19 and may inform dis-
ease etiology.

INTRODUCTION

Upon emerging fromWuhan, China, in December 2019, the outbreak of coronavirus disease 2019 (COVID-

19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has become a global

pandemic, infecting, as of August 2020, more than 24 million people worldwide (Dong et al., 2020) While

most infected individuals either are asymptomatic or present with mild flu-like symptoms (i.e., fever, cough,

sore throat, malaise, and so on), few experience severe manifestations of COVID-19 that span multiple or-

gan systems (Chen et al., 2020; Guan et al., 2020; Huang et al., 2020). Although several clinical observational

studies have identified several demographic and clinical factors associated with increased disease severity

andmortality such as sex, age, and other comorbidities such as cancer, chronic kidney disease, and obesity,

which and how host genetic factors may contribute to the pathogenesis and pathophysiology of severe

COVID-19 are poorly understood (Williamson et al., 2020) While a recent effort by the severe COVID-19

genome-wide association study (GWAS) group identified two significant loci (3p21.31 and 9q34.2) andmul-

tiple suggestive host genetic loci associated with increased risk of suffering from severe COVID-19 with

respiratory failure, the functional effects of these loci and how they may influence disease severity remain

unclear (Ellinghaus et al., 2020).

A phenome-wide association study (PheWAS) is a genotype-to-phenotype approach to identify associa-

tions between a particular genetic variant and a wide range of human traits (Hebbring, 2014). Since the first

published PheWAS in 2010(Denny et al., 2010), the PheWAS has been used to interrogate genetic pleiot-

ropy, facilitate drug discovery and repositioning and discover novel genetic etiologies of complex and

polygenic disorders (Diogo et al., 2018; Hebbring, 2014; Semmes et al., 2020; Zhao et al., 2018) and system-

atic compilations of GWAS results, such as that recently undertaken by GWAS Atlas, have facilitated the

PheWAS (Watanabe et al., 2019). Considering the multiorgan involvement and manifold individual varia-

tions of severe COVID-19, it is likely that host susceptibility to severe COVID-19 is determined by multiple

genetic factors. By connecting variants associated with both severe COVID-19 and other diseases or phe-

notypes, PheWAS analysis can use genetic pleiotropy to validate known comorbidities and unveil novel

biological insights. Furthermore, PheWAS may offer new insights into the genetic etiology of severe

COVID-19 by leveraging known biology behind seemingly disparate phenotypes.
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In addition to PheWAS that can link categorical phenotypes, tissue-specific quantitative trait locus (QTL)

analysis can help to prioritize gene-disease connections for mechanistic investigations. With the advent

of immense functional genomic databases such as GTEx (GTEx Consortium et al., 2020), the transcriptional

effects of genetic variants can be investigated at tissue-specific resolution. The findings gathered from tis-

sue-specific QTL analysis to severe COVID-19 can help to (1) identify candidate genes that may contribute

to the pathophysiology of severe COVID-19, (2) focus the range of mechanistic hypotheses regarding the

effect of specific gene expressions to organs most affected by severe COVID-19, and (3) cross-reference

with known biology of linked phenotypes uncovered by the PheWAS analysis to validate and refine hypoth-

eses regarding the pathophysiological mechanisms of severe COVID-19.

In this present study, we conducted both PheWAS and QTL analyses to identify potential mechanisms

through which host genomic factors contribute to the pathogenesis and pathophysiology of severe

COVID-19. We extracted the lead single-nucleotide polymorphism (SNP) with the smallest p value from

each locus showing suggestive associations with severe COVID-19 cases with respiratory failure using

the recent GWAS (Ellinghaus et al., 2020) and conducted the PheWAS using these lead SNPs by leveraging

the GWAS Atlas database and identified a list of linked phenotypes. We systematically performed coloc-

alization analyses between each locus identified by the PheWAS and 112 QTL data sets from GTEx (GTEx

Consortium et al., 2020) and the eQTL Catalogue (Kerimov et al., 2020), spanning 69 unique tissue types.

This provided a robust list of candidate genes with their tissue-specific expression alterations. Together,

the results presented here have generated multiple focused hypotheses regarding the pathophysiology

of severe COVID-19 for future validation and investigation.

RESULTS

PheWAS of genetic risk loci associated with severe COVID-19

To identify phenotypes sharing genetic etiologies with severe COVID-19, we conducted PheWAS of 22

pruned genetic risk loci significantly or suggestively associated (p < 1e-5) with severe COVID-19 based

on GWAS results published by The severe Covid-19 GWAS group (accession numbers: GCST90000256) (El-

linghaus et al., 2020) (Table S1). We first sought to replicate the 22 SNPs using GWAS performed by the

COVID-19 Host Genetics Initiative (COVID-19 hg). Five SNPs, including rs2440652, rs3934992,

rs12610495, rs11385942, and rs657152, showed an association passing the Bonferroni threshold (p <

0.05/22) and were further considered as ‘‘COVID-19 hg-replicated SNPs’’ in the following texts. To gauge

the independence of the signal for each lead SNP, linkage disequilibrium (LD) analysis was performed using

the LDmatrix tool (Machiela and Chanock, 2015). LD analysis demonstrated that the 22 lead SNPs were in-

dependent from each other (R2 < 0.01; Table S2) and each replicated SNP was found within an LD block (R2

> 0.8) consisting of its neighboring variants.

On conducting the PheWAS of the 22 lead SNPs using GWAS Atlas (Watanabe et al., 2019) that has

aggregated summary statistics of more than 4,756 GWAS studies, we identified 5 SNPs, including the

2 reported COVID-19 GWAS SNPs (rs647800, rs11385942)(Ellinghaus et al., 2020) and two COVID-19

hg-replicated SNPs (rs3934992, rs12610495), that showed associated traits reaching the genome-wide

significance threshold (p < 5e-8) (a full list of PheWAS results was listed in Table S3). A total of 13 traits

were significant (Figure 1A)—8 of which were associated with rs647800, an intronic variant of the ABO

gene (Yeung et al., 2017). Significant associated traits were predominantly immunological or metabolic

(Figure 1B). The immunological traits were mostly relevant to population counts/proportions of mono-

cytes and erythrocytes. Top metabolic traits were biochemical and physiological metrics concerning

coagulation (‘‘activated partial thromboplastin time’’) and fat metabolism (‘‘total cholesterol,’’ ‘‘legs-

leg fat ratio [male]). Of all the significantly associated traits, fibrotic idiopathic interstitial pneumonia

was the only disease linked through the COVID-19 GWAS-lead SNPs. Taken together, the PheWAS anal-

ysis of 22 lead SNPs identified several physiological metrics as well as a disease associated with severe

COVID-19.

eQTL/sQTL analyses

To evaluate the functional relevance of the lead GWAS loci, we used 22 lead SNPs to query GTEx and

compiled e/sQTLs associated with the lead SNPs. After filtering associations based on QTL FDR < 0.05,

11 lead GWAS SNPs were identified as significant e/sQTLs (Tables S4 and S5) with the vast majority of

eQTLs (n = 227 of 258) and sQTLs (n = 140 of 143) being associated with 1 SNP (rs3934992; Figure 2A).

No one particular tissue type dominated the eQTL and sQTL associations; the top tissue types with
2 iScience 24, 102550, June 25, 2021



Figure 1. PheWAS of the lead SNPs showing suggestive associations (p < 1e-5) with severe COVID-19

(A) A Manhattan plot of the phenotypes associated with the lead SNPs. Only phenotypes that had p-values reaching genome-wide significance (p < 5e-8,

marked by the horizontal line) were marked with their associated SNPs (See ‘‘Significant SNP IDs’’).

(B) A table of significant associated traits. (*) indicates that there were duplicate entries resulted from two- and three-way meta-analyses for the same trait,

where the three-way meta-analysis results were used for all these associations.

See also Figure S1 and Tables S1, S2, and S3.
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associated eQTLs include the muscularis layer of the esophagus (n = 10), tibial nerve (n = 10), sun-exposed

skin at the lower leg (n = 10), and lungs (n=6). The eQTL analysis encompassing 22 lead SNPs identified 29

novel genes in addition to 4 genes (i.e., SLC6A20, FYCO1,CXCR6,CCR1) previously reported by the severe

COVID-19 GWAS group to be associated with rs11385942 at locus 3p21.31 (Ellinghaus et al., 2020). Two

sets of three genes (CMB9-55F22.1, PIDD1, RPLP2), all of which are associated with the predominant

lead COVID-19 hg-replicated SNP (rs3934992), constituted top 10% of statistically significant eGenes

and sGenes, respectively.

In addition to these top genes, we also identified several genes with known immune and metabolic func-

tions—paralleling our findings in the PheWAS analysis (Figure 2B). Corresponding to the top metabolic

PheWAS traits related to fat metabolism, one distinct COVID-19 hg-replicated SNP was a genome-wide

significant e/sQTL of PNPLA2, a critical enzyme involved in the first step of triglyceride hydrolysis
iScience 24, 102550, June 25, 2021 3



Figure 2. Significant eQTLs associated with lead SNPs

(A) A volcano plot of eQTLs associated with rs3934992. Dashed line (-) represents adjusted p-value of 0.05. NES: Normalized Effect Size.

(B) A table of eQTLs affecting immune and metabolic genes.

See also Tables S4 and S5
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(Taxiarchis et al., 2019). In terms of immunity, expression changes in CD151, PIDD1, and DPP9—genes

involved in immune cell activation and NF-kB-mediated immune response (Okondo et al., 2017; Rocha-Pe-

rugini et al., 2014; Tinel et al., 2007)—were associated with two distinct COVID-19 hg-replicated SNPs

(rs3934992, rs12610495). Overall, QTL analyses of the lead SNPs identified genes of which expression

changes may be functionally associated with severe COVID-19 at a tissue-specific resolution.
4 iScience 24, 102550, June 25, 2021
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Figure 3. Significant immune subtype-specific eQTLs associated with lead SNPs

The eQTLs were compiled from the eQTL Catalogue (Kerimov et al., 2020) database and filtered at a Benjamini-Hochberg FDR < 0.05. Point color reflects the

significance of that SNP in the COVID-19 GWAS (Ellinghaus et al., 2020) (more yellow = more significant p-values), while point size reflects the significance of the

eQTL SNP (larger = more significant FDR). When multiple SNPs overlap within a given gene-tissue combination, the SNP with the lowest p-value/FDR is plotted.

See also Figures S2 and S3 and Table S6
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Immune-specific eQTL analysis

Based on the identification of genes with known immune function in the eQTL analysis, as well as the reported

involvement of the dysregulated immune response in severe COVID-19 (Lucas et al., 2020), we further queried

the 22 lead SNPs in the eQTL Catalogue to determine whether they affected gene expression in specific im-

mune cell subtypes. We identified 134 immune-cell-subtype-specific eQTL associations (FDR <0.05) that are

distributed across 7 GWAS SNPs and 31 eGenes. Several genes that were the most statistically significant in

the GTEx analysis (RPLP2, PIDD1) reemerged in the immune-subtype-specific eQTL analysis and were primarily

seen in monocytes and macrophages (Mo/M4) and several T cell subsets. Moreover, expression changes of a

few immune genes (DPP9, CD151, PIDD1) that were previously highlighted were predominantly seen in both

CD4+ and CD8+ T cells as well as Mo/M4. Notably, 14 of these genes were not nominated by the GTEx

eQTL analysis but were associated in various T, B, natural killer (NK), and myeloid cell subsets (Figure 3),

including several genes involved in leukocyte recruitment and migration such as CCR1, CCR2, CCR3, CCR5,

and CXCR6. These results highlight the resolution gained by conducting cell-type-specific analyses into im-

mune-cell-expressed genes that may be linked to the genetic factors underlying severe COVID-19.

GWAS/eQTL colocalization analysis

Owing to LD, overlapping significant SNPs between GWAS and QTL do not necessarily mean they share

the same underlying causal signal. Or does a lack of overlapping lead variants necessarily mean that
iScience 24, 102550, June 25, 2021 5



Figure 4. Colocalization analysis

Manhattan plots of two severe COVID-19 GWAS loci (A) chr11-771716-A-C (B) chr1-161253626-C-T and their respective colocalized immune eQTLs from the

eQTL Catalogue (colocalization probability >0.8). Each point represents an SNP across a genomic range, and color indicates the degree of LD (r2) with the

proxy GWAS SNPs in each locus (indicated by crossed diamonds). In the eQTL rows, crossed diamonds indicate the lead QTL SNP (with the smallest

association p value for a given gene).
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they do not share the same signal being tagged by different variants. To robustly test for GWAS-eQTL

signal sharing, we performed a series of colocalization analyses (Wakefield, 2009) in the 9 loci in which

the GWAS-lead SNPs overlapped with significant eVariants (FDR <0.05) in the eQTL analysis. We identified

7 colocalizations that met the posterior probability threshold (see STAR Methods), spread across 2 GWAS

loci, 5 eQTL data sets (all in macrophages and monocytes), and affecting the expression of 4 genes

(PDDC1, PIDD1, CD48, and SLAMF1) (Figure 4)

In locus chr11-771716-A-C (Figure 4A), the colocalized genetic signal both increased severe COVID-19 risk

and modulated expression of PDDC1 in monocytes under three conditions (naive, LP2, and R848) and in

IFN-g-stimulated macrophages. The expression of P53-induced death domain protein 1 (PIDD1) was

also affected in macrophages (naive), suggesting that both PDDC1 and PIDD1 are perhaps controlled

by a common regulatory element that is disrupted by the severe COVID-19 risk signal in this region.

While locus chr1-161253626-C-T was also colocalized with eQTLs in monocytes (naive), the signal modu-

lated expression of CD48 and signaling lymphocytic activation molecule family member 1, both of which

are immunoglobulin-like receptors of the CD2 subfamily (Figure 4B). Interestingly, a closer inspection re-

vealed that the colocalizing GWAS signal was not the same one tagged by the previously identified proxy

SNP showing the most significant association with severe COVID-19 (rs114173811) but instead a signal

~0.5Mb upstream tagged by the SNP rs1980606. LD analysis confirmed that these signals are independent
6 iScience 24, 102550, June 25, 2021
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(no SNPs in the upstream signal had r2 > 0 with the lead SNP in the downstream signal). This highlights the

complexity of genetic association signals as well as the additional insights that colocalization analyses can

reveal.

Differential gene expression in bronchoalveolar lavage fluid using single-cell analyses

To determine if expression of any of these eQTL-nominated immune genes as well as genes involved in

implicated pathways (i.e., inflammasome activation) was altered in patients with severe COVID-19

compared with patients with moderate COVID-19 or healthy controls, we performed a DGE analysis on

a recentlypublished scRNA-seq data set of bronchoalveolar lavage fluid of patients with COVID-19 of vary-

ing disease severity and healthy controls (Liao et al., 2020b). Because the functions of these immune genes

are either most well-characterized in Mo/M4s (DPP9, NLRP1, GSDMD) (Okondo et al., 2017) or known to be

most relevant for Mo/M4s (CCR1, CCR2, CCR5)(Dyer et al., 2019), we specifically focused our DGE analysis

on Mo/M4s subsets within the data set and evaluated the differential expression of six eQTL-nominated

immune genes. Average expression of genes involved in inflammasome activation (DPP9, NLRP1, GSDMD)

was significantly altered (adj. p < 0.001) betweenMo/M4s of patients with severe andmoderate COVID-19.

Moreover, average expression of several genes involved in leukocyte recruitment and migration (CCR1,

CCR2, CCR5) was significantly higher (Bonferroni adj. p < 0.001) in Mo/M4s of patients with severe

COVID-19 than in both patients with moderate COVID-19 as well as healthy controls (Figure S3). These re-

sults demonstrate, in at least a subset of patients with COVID-19, the differential expression of eQTL-nomi-

nated immune genes between Mo/M4s of patients with severe COVID-19 and of patients with moderate

COVID-19 or healthy controls.

DISCUSSION

In this study, we characterized the phenome- and transcriptome-wide associations of genetic loci impli-

cated in severe COVID-19 with respiratory failure. We leveraged GWAS ATLAS database (Watanabe

et al., 2019) containing summary statistics from 4,756 GWASs to perform a PheWAS of the lead SNPs

and identified 13 significant traits linked to genetic risk loci of severe COVID-19. Using both eQTL

databases, we performed eQTL analysis of the lead SNPs to characterize their effects on gene expression

in tissue- and immune-cell-subset-specific resolution. Eighteen lead SNPs were identified as eQTLs/sQTLs

of 48 genes. Taken together, these results reveal insights into potential mechanisms that could drive the

formation of focused hypotheses about the pathophysiology of severe COVID-19.

Immunological and metabolic traits were among significant phenotypes uncovered by the PheWAS anal-

ysis. Severe cases of COVID-19 are often characterized by dysregulated and hyperinflammatory immune

system (Lucas et al., 2020; Merad and Martin, 2020; Vabret et al., 2020) and metabolic dysfunction (Ayres,

2020)—suggesting that these SNPs may either play a role in multisystem manifestations of severe COVID-

19 or contribute to the development of comorbidities known to exacerbate the severity of disease. For

instance, that top immunological traits were hematologic parameters such as monocyte and erythrocyte

populations is concordant with the hematological findings in severe COVID-19 cases such as monocyte

expansion (Merad and Martin, 2020; Wen et al., 2020) and decrease in hemoglobin levels (Chowdhury

and Anwar, 2020; Li et al., 2020). Recent reports have suggested that cytokine profiles of patients with se-

vere COVID-19 show similarities to cytokine release syndromes such as macrophage activation syndromes

(Giamarellos-Bourboulis et al., 2020; Mehta et al., 2020; Moore and June, 2020) and that monocytes/mac-

rophages extensively accumulate in the lungs (Sánchez-Cerrillo et al., 2020). Further investigations are

required to disseminate how these lead SNPs (rs647800 and rs11385492) may similarly or differentially

contribute to monocyte count and monocyte-driven inflammation seen in COVID-19.

Coupled with hyperinflammation driven partly by these mononuclear cells, another major prong of severe

COVID-19 pathology is systemic coagulopathy. Patients suffering from severe COVID-19 often have lower

levels of platelet counts and increased levels of D-dimers (Becker, 2020; Chan and Weitz, 2020; Iba et al.,

2020; Liao et al., 2020a). Numerous cases of widespread pulmonary thrombosis and disseminated intravas-

cular coagulation or sepsis-induced coagulopathy have also been described in severe COVID-19 patients

(Becker, 2020; Tang et al., 2020). Possibly reflective of the predominant role of coagulopathies in the path-

ophysiology of severe COVID-19, the most statistically significant trait identified in our PheWAS analysis

was activated partial thrombin time (p value = 2.29e-43; associated SNP: rs647800) which has been re-

ported to be prolonged in patients with severe COVID-19. Notably, a recent review by Merad et al. (Merad

and Martin, 2020) has suggested a link between hyperinflammatory monocytes and coagulopathies—as
iScience 24, 102550, June 25, 2021 7



ll
OPEN ACCESS

iScience
Article
even in the absence of any vascular injury, coagulation pathway can still be activated through the recruit-

ment of tissue-factor-expressing inflammatory monocytes. Taken together, it would be interesting to inter-

rogate the genetic pleiotropy underlying rs647800 and how it affects monocyte count, activated partial

thrombin time, and severe COVID-19.

In addition to coagulation, another metabolic traits highlighted by the PheWAS results were regarding

cholesterol levels (‘‘total cholesterol’’; p-value = 3.29e-10) and physiological measures associated with

obesity (‘‘waist-hip ratio’’ and ‘‘legs-leg fat ratio’’; p-values = 1.34e-10 and 1.68e-8, respectively). Both

obesity and high cholesterol levels have been associated with increased risk of severe COVID-19 (Wang

et al., 2020; Zhu et al., 2020), thereby suggesting that the PheWAS analysis can capture some of the comor-

bidities found by epidemiological studies.

The PheWAS also identified rs12610495 to be associated with fibrotic idiopathic interstitial pneumonias

(FIIP; p-value: 9.57e-9), a disease directly connected to respiratory failure. FIIP shares a similar risk profile

with severe COVID-19 disease and thus is a potential comorbidity of severe COVID-19 (George et al., 2020).

Notably, in addition to sharing a similar risk profile with FIIP, some patients with severe COVID-19 suffer

from lung function abnormalities that strongly suggest the presence of pulmonary fibrosis (Raghu and Wil-

son, 2020), implicating similar etiologies underlying COVID-19 and FIIP.

In line with the immunological and metabolic traits that emerged from the PheWAS analysis, our QTL an-

alyses identified several genes with related functions that contribute to those traits. For instance, we found

that rs12610495, an intron variant of DPP9, is within a susceptibility locus for FIIP (Fingerlin et al., 2013) and

modulates both the expression and splicing of DPP9. DPP9 can inhibit NLRP1 and repress downstream in-

flammasome activation (Zhong et al., 2018). Conversely, pharmacological inhibition of DPP9 has been

shown to induce NLRP1 inflammasome-mediated pyroptosis in monocytes and macrophages (Gai et al.,

2019; Okondo et al., 2017; Vasconcelos et al., 2019; Zhong et al., 2018). NLRP1-dependent pyroptosis in

the lung alveolar macrophages has been shown to cause progressive lung damage that is similar to the

one seen in acute respiratory distress syndrome (Kovarova et al., 2012). Furthermore, NLRP1-dependent

pyroptosis is sufficient to cause progressive lung injury, independent of NLRP3 activation or IL-1b secre-

tion, which suggests a relevant role of DPP9 in mediating lung injury seen in severe COVID-19 (Kovarova

et al., 2012). Finally, it was recently shown that human NLRP1 senses double-stranded RNA (dsRNA) and

activates an inflammasome complex upon dsRNA sensing (Bauernfried et al., 2021)—thereby raising a

distinct possibility that dsRNA replication intermediates of SARS-CoV-2 (V’kovski et al., 2021) can be

sensed by NLRP1 and set off an inflammatory cascade mediated by inflammasome activation. Considering

the evidence together, it is possible that decreased DPP9 expression in the lungs can predispose patients

with COVID-19 to develop lung injury mediated by increased NLRP1-dependent pyroptosis. Concordant

with this hypothesis, the lead SNP rs12610495 is associated not only with decreased expression of DPP9

specifically in the lung and in macrophages but also with increased risk of severe COVID-19 with respiratory

failure. Furthermore, our DEG analysis of scRNA-seq of bronchoalveolar fluid of patients with COVID-19

showed that expression of DPP9, NLRP1, and GSDMD, an effector protein for pyroptosis (Mathur et al.,

2018), was significantly altered in Mo/M4s of patients with severe COVID-19 compared to their moderate

counterparts. Overall, our results suggest the potential role of inflammasome activation and pyroptosis in

exacerbating respiratory distress in severe COVID-19—a point that was recently echoed in a recent review

of inflammasomes in COVID-19 (Yap et al., 2020).

Beyond DPP9, our QTL analyses identified several immune genes that may play a role in potential mech-

anisms through which host immune response against SARS-CoV-2 can be affected. These potential mech-

anisms include NF-kB-mediated immune response (i.e. PIDD1) (Bock et al., 2013; Tinel et al., 2007), immune

synaptic interaction involved in T cell activation (i.e. CD151) (Rocha-Perugini et al., 2014) and T cell exhaus-

tion in viral infection (i.e. CD244) (Agresta et al., 2018; Pacheco et al., 2013). In our immune subset-specific

QTL analysis, we were able to resolve changes in expression of PIDD1 and CD151 in diverse T cell subsets

as well as monocytes. Moreover, the QTL overlap and colocalization analyses showed that the genetic

signal associated with increased severe COVID-19 risk also modulated immune genes (i.e., PDDC1,

CD150, CD48) in monocytes. For instance, one of the colocalized genes, CD48, is known to interact with

CD244 to modulate NK cell and CD8+ T cell effector function (Agresta et al., 2018; McArdel et al., 2016).

Taken together, both QTL overlap and colocalization analyses highlight strong associations between

risk of severe COVID-19 and transcriptional changes that underpin monocyte-lymphocyte interactions.
8 iScience 24, 102550, June 25, 2021
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Furthermore, we also identified several leukocyte adhesion and chemokine receptors (CCR3, CCR5) in

addition to the chemokine receptors (CCR1, CCR2, CXCR6) previously reported by the severe COVID-19

GWAS group (Ellinghaus et al., 2020)—all of which can mediate the increased leukocyte recruitment

seen in the lungs of patients with severe COVID-19 (Sánchez-Cerrillo et al., 2020) In line with our im-

mune-subset-specific QTL analysis and the aforementioned histological findings, we observed in our

DEG analysis a significant increase in the expression of these chemokine receptors (CCR1, CCR2, CCR5)

in Mo/M4s of patients with severe COVID-19 compared with those of both patients with moderate

COVID-19 and healthy controls. While current scRNA-seq data set did not include genotype information,

future single-cell data sets with paired DNA/RNA data can help confirm the link between genetic risk allele

and their eQTL effects at a single-cell resolution.

Concordant with several metabolic traits identified in the PheWAS such as obesity and cholesterol levels

(Kanai et al., 2018; Pulit et al., 2019; Rask-Andersen et al., 2019), the QTL analyses identified two genes,

PNPLA2 and USF1, whose functions are directly connected to those traits. Furthermore, we were able to

resolve changes in expression of USF1 to the level of various immune cell compartments and found that

USF1 expression was altered predominantly in Mo/M4s and T cell subtypes. USF1 is a transcription factor

that modulates several genes involved in lipid and glucosemetabolism such as apolipoproteins and lipases

including PNPLA2, a triglyceride lipase that catalyzes the initial step in triglyceride hydrolysis (Aguilar-Sal-

inas et al., 2014; Taghizadeh et al., 2019). Knockout studies of USF1 in mice have been shown to enhance

cholesterol efflux inmacrophages and downregulate secretion of pro-inflammatory cytokines such asMCP-

1 and IL-1b (Ruuth et al., 2018) and USF1 variants in humans have been associated with familial combined

hyperlipidemia and coronary artery disease (Fan et al., 2014; Laurila et al., 2016; Ruuth et al., 2018). Inter-

estingly, a recent study by Dias et al. showed that monocytes from COVID-19 have increased lipid droplet

accumulation and that pharmacological inhibition of lipid droplet formation led to a significant inhibition of

replication of SARS-CoV-2 (Dias et al., 2020). In addition to lipid metabolism, kynurenine metabolism has

also been implicated by one of our nominated genes, KYAT3, an aminotransferase that transaminates ky-

nurenine to kynurenic acid. Considering that kynurenine pathway plays an integral role in immunosuppres-

sion (Routy et al., 2016; Wirthgen et al., 2018; Zhai et al., 2020), it would be interesting to investigate how

expression changes in KYAT3 can affect the immune response against SARS-CoV2. Notably, alterations in

both metabolic pathways implicated in the QTL analyses—fatty acid and kynurenine metabolism—have

also been observed in patients with COVID-19 (Thomas et al., 2020), further supporting that these genes

may play a role in immune dysfunction seen in severe COVID-19.

In summary, we conducted PheWAS and QTL analyses to investigate how host genetic factors may

contribute to pathophysiology of severe COVID-19 and uncovered numerous gene-disease-tissue connec-

tions. Our results provide plausible consequences of the host genetic risk factors underlying severe dis-

ease, informing future investigations into immune, metabolic, and other aspects of COVID-19

pathophysiology.
Limitations of the study

We acknowledge the limitations of our approaches, such as the restriction of discovering traits studied by

available GWAS or QTL data sets and their correlational nature, which may be addressed by techniques

such asMendelian randomization as the COVID-19GWAS expands in size (T.C.-19 H.G., 2020). Widespread

LD also poses challenges when trying to distinguish causal variants from their close correlates—an issue

which fine-mapping techniques aim to resolve (Broekema et al., 2020; Hutchinson et al., 2020; Schaid

et al., 2018). Furthermore, the suggestive genetic risk loci of severe COVID-19 used for analyses herein

as well as the identified PheWAS and QTL associations also require validation.
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Information and requests for resources should be directed to and will be fulfilled by the lead contact, Kuan-

lin Huang (kuan-lin.huang@mssm.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All relevant data are available from the lead contact upon request. All code use in the eQTL Catalogue and

colocalization analyses can be found in the following GitHub repository: https://github.com/RajLabMSSM/

COVID19_PheWAS.

Additional Supplemental Items are available from Mendeley Data at http://doi.org/10.17632/nyn84yyms7.

1 and https://data.mendeley.com/datasets/nyn84yyms7/1.

METHOD DETAILS

Extraction of severe COVID-19 associated lead SNPs

We downloaded the summary statistics of the genome-wide meta-analysis that was corrected for age and

sex as reported by The Severe Covid-19 GWAS group (Accession numbers: GCST90000256) (Ellinghaus

et al., 2020). Aside from the reported SNPs, namely rs11385942 at locus 3p21.31 and with rs657152 at locus

9q34.2, we extracted the SNPs with suggestive associations (p < 1e-5), resulting in 319 SNPs from

GCST90000256. We then pruned the associated SNPs based on the most significant p value per locus

(G100Kb regions surrounding the lead SNP) recursively within the study, resulting in 22 non-adjacent

loci, including 2 genome-wide significant SNPs (p < 5e-8) (Altshuler and Donnelly, 2005; Pe’er et al.,

2008) and 20 suggestive SNPs associated with severe COVID-19 with respiratory failure (Table S1). We

then cross-referenced 22 lead SNPs against the meta-analysis of GWAS studies between hospitalized

COVID-19 patients and the population controls (B2_ALL, dated 09/30) performed by the COVID-19 Host

Genetics Initiative (COVID-19 hg) (COVID-19 Host Genetics Initiative, 2020) We considered these SNPs’ as-

sociation as ‘‘replicated’’ in the independent GWAS if they surpassed the Bonferroni-corrected p-value for

the 22 queried SNPs (P < 0.05/22), validating associations for 3 additional SNPs (rs2440652, rs3934992,

rs12610495) in addition to the two previously reported COVID-19 GWAS SNPs. In order to evaluate the

level of independence of each SNP, linkage disequilibrium (LD) analysis was performed using the LDmatrix
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tool (Machiela and Chanock, 2015) (1) between any pair of the 22 lead SNPs that are located on the same

chromosome ((Table S2) and (2) between each replicated SNP and other variants showing suggestive as-

sociations (p<1e-5) from GCST90000256 within G100Kb surrounding each replicated SNP (Figure S1).

Spanish and Italian population were used as reference population for the LDmatrix analysis to correspond

with the population used in the original COVID-19 GWAS study.
PheWAS analysis

Phenotype associations of the 22 lead SNPs were queried using the PheWAS database available at the

GWAS ATLAS(Watanabe et al., 2019) and the PheWAS results of each SNP was compiled into the candidate

list of PheWAS hits (Table S3). Upon compilation, the list of associations was filtered using the genome-

wide significance threshold (p < 5e-8) (Altshuler and Donnelly, 2005; Pe’er et al., 2008), resulting in 17 sig-

nificant phenotypes. Considering the varying statistical thresholds used in the PheWAS literature(Denny

et al., 2013; Diogo et al., 2018; Hebbring, 2014), we focused on a concise description of the associations

passing the genome-wide significance threshold in the main texts, while noting that the full list of PheWAS

results are available in Table S3 enabling examination of other associations.
Tissue- and immune-specific eQTL/sQTL analysis

Similar to the PheWAS analysis, we used our list of 22 lead SNPS to query tissue-specific expression QTL

(eQTL) and splicing QTL (sQTL) datasets from the GTEx database(GTEx Consortium et al., 2020). In order

to correct for multiple testing, e/sQTL associations were then filtered using the Benjamini-Hochberg(Ben-

jamini and Hochberg, 1995), resulting in 258 eQTLs and 143 sQTLs with FDR<0.05. In addition to the GTEx

analysis, we used the R package catalogueR (https://github.com/RajLabMSSM/catalogueR) (Schilder et al.,

2020) to query these same 22 SNPs in the eQTL Catalogue(Kerimov et al., 2020), which contains 63 eQTL

datasets across 20 studies (excluding GTEx). GWAS hits within sex chromosomes were excluded as the

eQTL Catalogue only contains results for autosomes. eQTL Catalogue contains many immune subtype-

specific and stimulation condition-specific datasets, permitting greater resolution of our biological inter-

pretations. 190 significant eVariants associated with 9 lead GWAS SNPs (Table S6) remained after filtering

by FDR<0.05 (Figure S2)—132 of which were immune subtype- or state- specific.
GWAS/eQTL colocalization analyses

Using the summary statistics of the original GWAS study (GCST90000256) and the eQTL Catalogue data-

sets, colocalization analysis was performed on 9 lead SNPs whose eVariants identified in the eQTL Cata-

logue were statistically significant (FDR<0.05). The locus for each lead SNP was defined as G 1Mb from

the lead SNP (2Mb windows). Since the original GWAS summary statistics do not provide both minor allele

frequency (MAF) or the sample size for each SNP, MAF of each SNP was assumed to be the same as the one

provided by the eQTL Catalogue. Each SNP was assumed to have the same effective sample size calculated

from the total number of participants in the GWAS while accounting for the proportion of cases/controls

using the formula:

4�
1

Ncases+
1

Ncontrols

�

A series of Bayesian colocalization tests of were run to evaluate the probability of shared genetic signal be-

tween each GWAS locus and each eQTL locus. Specifically, we used the run_coloc() function within cata-

loguer (Schilder et al., 2020), which runs Approximate Bayes Factor colocalization (Wakefield, 2009) to first

infer the probability that each SNP is causal for the phenotype within each respective dataset and then

calculate the probability that the same underlying genetic signal is shared in both datasets. eQTL pseudo-

genes were identified via Ensembl and removed from downstream analysis. For each GWAS-QTL locus

comparison, the signals were considered to be colocalized if they met the following criterion (where

PP.H4 is the posterior probability that the signals are associated with their respective traits and shared,

and PP.H3 is the posterior probability that the signals are associated with their respective traits but not

shared):

ðPP:H3 + PP:H4 > 0:8 Þ &
�

PP:H4

PP:H3

�
R 2
14 iScience 24, 102550, June 25, 2021

https://github.com/RajLabMSSM/catalogueR


ll
OPEN ACCESS

iScience
Article
scRNA-seq analysis

Previously published single-cell RNA-seq (scRNA-seq) dataset (accession number: GSE145926) of bron-

choalveolar lavage fluid (BALF) from COVID-19 patients and healthy controls was downloaded and

analyzed for differential expression of six immune genes nominated from the immune-specific eQTL ana-

lyses above (DPP9, NLRP1, GSDMD, CCR1, CCR2, CCR5) in monocyte/macrophage subsets using the

analytical pipeline described previously (Liao et al., 2020b) Briefly, using the cluster annotations described

in the original publication to isolate monocyte/macrophage subsets, the macrophage clusters were then

integrated using IntegrateData() function with default parameters from the Seurat v3 package (Stuart

et al., 2019) and differential gene expression analysis between disease severity groups was performed us-

ing MAST (Finak et al., 2015) in Seurat v3(Stuart et al., 2019) to generate a list of differentially expressed

genes between two groups (i.e. Severe vs. Moderate, Moderate vs. Healthy, Severe vs. Healthy). The list

was then queried for specific immune genes of interest for their statistics. In accordance with Seurat’s

best practices, Bonferroni adjusted p values were computed taking into account the full number of genes

tested in the dataset (Stuart et al., 2019). Violin plots comparing their expression levels as well as the UMAP

plot of the integrated macrophage subset are shown in Figure S3.
QUANTIFICATION AND STATISTICAL ANALYSIS

All quantification and statistical analyses were performed as described in the method details section of the

STAR Methods.
iScience 24, 102550, June 25, 2021 15
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